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Synonyms

Digital forensics; Image authentication

Related Concepts

� Image Processing
� Iconic Matching
� Sensing

Definition

Image forensics refers to the analysis of an image
to determine if it has been manipulated from the
time of its recording. The techniques described
here – so called passive techniques – operate in
the absence of digital watermarks, signatures, or
specialized hardware. Instead, these techniques
analyze physical, geometric, optical, sensor, and
file properties for inconsistencies that may arise
from image manipulation.

Background

History has shown that many autocratic leaders
had photographs manipulated in an attempt to

rewrite history. These men understood the power
of photography and that if they changed pho-
tographs they could change history. Cumbersome
and time-consuming darkroom techniques were
required to alter the historical record on behalf
of Stalin and others. Today, powerful and low-
cost digital technology coupled with sophisti-
cated rendering and synthesis techniques and the
broad and rapid reach of social media have made
it far easier to alter and disseminate digital con-
tent. The resulting fakes are often very difficult
to detect and are having a significant impact in
many different areas of society.

Doctored photographs are appearing in tabloid
and fashion magazines, government media, main-
stream media, social media, online auction sites,
online dating sites, political ad campaigns, and
scientific journals. More recently, the coupling of
fake news with fake imagery has been used by
individuals and state-sponsored entities to disrupt
democratic elections, incite civil and political
discord, and fuel horrific violence.

The technology that can distort and manipu-
late digital media is developing rapidly, and the
implications of not authenticating content quickly
and accurately are becoming more pronounced.
The goal of the field of image (and video/audio)
forensics is to develop techniques for quickly and
accurately authenticating digital content.

At their foundation, most image forensic
techniques rely on understanding the imaging
pipeline, from the interaction of light with
the physical 3-D world, the refraction of light
as it passes through the camera lenses, the
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transformation of light to electrical signals in
the camera sensor, to the conversion of electrical
signals into a digital image file. This entry is
organized according to this pipeline, with each
section describing a representative set of forensic
techniques built on understanding and modeling
some aspect of the imaging process. Portions of
this entry are adapted from [1].

Application

Physics-Based Forensics
A political ad shows a presidential candidate
covertly meeting with a foreign agent. Is the
image real or is it a composite created by splicing
together two images? The lighting and reflections
often hold the answer. Unless the candidate and
agent were photographed under identical lighting
conditions, there may be discrepancies in the

shadows and lighting created by the light source
and in the reflections of each actor on nearby
shiny surfaces. This section describes a forensic
technique for reasoning about the physical plau-
sibility of shadows and reflections [2, 3].

Shadows
Let’s start with the simplest situation: A 3-D
scene is illuminated by a single, small light
source. Consider the scene depicted in Fig. 1a
in which a box casts a shadow on the ground.
For every point in this cast shadow, there must
be a line to the light source that passes through
the box. For every point outside the shadow,
there must be a line to the light source that is
unobstructed by the box. Consider now a line
connecting the point at the corner of the shadow
and its corresponding point at the corner of the
box: Follow this line, and it will intersect the
light.

Image Forensics, Fig. 1 A cast shadow constraint connects (a) a point on the box’s shadow with the corresponding
point on the box. Multiple such constraints (b) intersect at the projection of the light source
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Because straight lines in the physical scene
are imaged as straight lines (assuming no lens
distortion), the location constraint in the 3-D
scene also holds in an image of the scene. Just as
the shadow corner, the corresponding box corner,
and the light source are all constrained to lie on a
single line in the scene, the image of the shadow
corner, the image of the box corner, and the image
of the light source are all constrained to lie on a
single line in the image. This idea is illustrated in
Fig. 1a, which shows a line that connects a point
on the edge of the shadow to the corresponding
point on the box. In the image, the projection of
the light source lies somewhere on this line. Now
let’s connect two more points on the cast shadow
to their corresponding points on the box, as in
Fig. 1b. We will continue to use the corners of the
box because they are distinctive. These three lines
intersect at a single point above the box. This
intersection is the projection of the light source
in the image.

The geometric constraint relating the shadow,
the object, and the light holds whether the light
source is nearby (a desk lamp) or distant (the
sun). This constraint also holds regardless of
the location and orientation of the surfaces onto
which the shadow is cast. Regardless of the scene
geometry, all of the constraint lines intersect at
the same point.

The boundary of the image plane in Fig. 1b
had to be extended to see the intersection of the
three lines. This is because the light source is
not visible in the original image of the scene.
This will typically be the case, and, depending
on where the light is, the lines may have to be
extended beyond the image’s left, right, top, or
(counterintuitively) bottom boundary.

If one or more of the cast shadow constraint
lines in an image do not converge on a common
intersection, the image may be a fake [3].

Reflections
Somewhat surprisingly, reflections in flat mirror
surfaces lend themselves to the same type of
analysis as cast shadows. The basic geometry of a
reflection is shown in the bottom panel of Fig. 2.
Shown on the left is a bird’s eye view of three
boxes, and shown on the right is their mirror

reflection, with the mirror shown in the middle.
The reflections are equal in size and equal in
distance from the mirror so that corresponding
points on the virtual and real objects are con-
nected by parallel lines.

This scene geometry changes when the scene
is projected onto a camera sensor. Lines that
were parallel when viewed from the plane of
the mirror are no longer parallel. Instead, due to
perspective projection, these parallel lines con-
verge to a single point, as shown in the top
panel of Fig. 2. Because the lines connecting
corresponding points in a scene and its reflection
are always parallel, these lines should have a
common intersection in the image.

If one or more of the reflection constraint
lines in an image do not converge on a common
intersection, the image may be a fake [2].

Sensor-Based Forensics
Gun barrels are grooved to impart spin to a
bullet for increased accuracy and range. Because
these grooves introduce distinct markings to the
bullet, ballistic techniques can link a bullet to a
specific handgun. Similarly, photo forensic tech-
niques can use the distinctive artifacts introduced
by a camera’s sensor to link an image to a
specific device. In addition, inconsistencies in
these artifacts can provide evidence of tampering.
This section describes forensic techniques for
estimating image artifacts introduced by camera
sensors [4–6].

Color Filter Array
Modern digital cameras have three channels with
different peak sensitivities: R (red), G (green),
and B (blue). This means that each pixel in a
digital image is represented as three values: R, G,
and B. The camera sensor, however, is sensitive
to all visible light. To measure the light in one
color channel, it is, therefore, necessary to restrict
the wavelength of the light that impinges on the
sensor. This restriction is accomplished by a color
filter array (CFA) that sits atop the sensor. Most
CFAs use a Bayer pattern as shown in Fig. 3. The
color of each square in the pattern indicates the
part of the visible spectrum (R, G, or B) that
the filter transmits at that location. Note that the
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Image Forensics, Fig. 2
Three boxes are reflected in
a mirror (top) and a virtual
bird’s eye view (bottom) of
this scene with the boxes
on the left, mirror in the
middle, and reflection on
the right. The yellow lines
connect points on a box to
their reflection. When such
a scene is imaged under
linear perspective
projection, lines connecting
any point in the scene with
its reflection will intersect
at a single point, as shown
in the top panel

Image Forensics, Fig. 3
A Bayer pattern used to
record a subset of RGB
pixels



Image Forensics 5

I

R, G, and B filters of the CFA are distributed
in a consistent, periodic pattern. This periodicity
is important because it is the key to this next
forensic technique.

The CFA transmits only one part of the visible
spectrum to each cell on the sensor. For a full
color image, it is necessary to have all three
measurements for each pixel. Since each sensor
cell makes only one measurement, the other two
values must be reconstructed. This process – CFA
interpolation – reconstructs the missing RGB
values by interpolating the surrounding values.
Consider, for example, the cell in the second row
and second column in the Bayer pattern shown in
Fig. 3. This sensor cell measures the R-channel,
but not the G-channel or B-channel. Values for
the G-channel are measured by cells immediately
above, below, and on either side. We can make
a reasonable guess about the missing G-channel
value from an average of its four neighbors.
This basic process underlies all CFA interpolation
algorithms.

As a result of CFA interpolation, two-thirds
of all RGB values have been reconstructed
by interpolating neighboring measurements.
And, because the CFA pattern is periodic, the
interpolation introduces periodic correlations
between these values. These periodic correlations
are highly distinctive, and so their presence
provides a reliable sign that the image is
authentic. We do not know, however, which
pixels are CFA interpolated, nor do we know the
precise form of the CFA correlations. The classic
expectation/maximization (EM) algorithm can be
used to simultaneously estimate both and localize
parts of an image that violate the expected
correlations [4, 6].

Photo Response Nonuniformity
In an ideal imaging device, the pixel values of
the digital image would accurately reflect the
amount of light recorded by each photo detector.
Real devices, however, have imperfections that
introduce noise in the image. One source of noise
arises when stray electrons occur sporadically
within sensor cells. These stray electrons intro-
duce noise when they combine with the electrons

generated by the photo detector as it responds to
light. The resulting noise pattern is random, fluc-
tuating from image to image. Another source of
noise arises from slight variations in the size and
material properties of the sensor cells themselves.
Physical inconsistencies across the sensor cells
lead to differences in the efficiency with which
the cells convert light into digital pixel values.
Some cells consistently underreport the amount
of light, while others consistently over-report the
amount of light. These variations, termed photo-
response nonuniformity (PRNU), lead to a stable
noise pattern that is distinctive to the device.

To illustrate how PRNU noise might alter an
image, imagine that we point our camera at a
perfectly uniform gray wall. A noise-free sensor
will record an image with exactly the same value
at every pixel. Let’s say that this pixel value is
128 (on a scale of 0 (black) to 255 (white)).
PRNU noise modulates the value of each pixel
by multiplying 128 by a value slightly less than
or slightly greater than 1.0. Unlike sensor noise,
which additively modulates the pixel regardless
of its value, PRNU modulates the pixel pro-
portional to its value. Also unlike sensor noise,
PRNU is a fixed property of the sensor and does
not vary from image to image.

With some modest assumptions, a maximum
likelihood estimator can be used to estimate the
PRNU. Although it is possible to get a crude
estimate of a device’s PRNU from a single image,
a reliable estimate requires 10–20 images (the
exact number depends on the quality of the cam-
era, as well as the quality and content of the
images).

The PRNU associated with a particular device
is not only stable, it is also distinctive. Even
devices of the same make and model have differ-
ent PRNUs. The stable and distinctive properties
of the PRNU allow it to serve two forensic
functions: It can be used to detect localized image
tampering, and it can be used to link an image to
a specific device [5].

File-Based Forensics
The first rule of any forensic analysis must surely
be “preserve the evidence.” Because JPEG and
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other lossy image compression schemes discard
and distort image information, they would seem
to be a forensic analyst’s worst enemy. How-
ever, because the details of compression dif-
fer across devices, JPEG compression may pro-
vide an opportunity for the analyst. This section
describes forensic techniques that exploit features
of the image file that differ across devices. These
features can be used to link an image to a device
or to determine whether an image has been re-
saved after its initial recording [7, 8].

Quantization
By way of background, the JPEG image format
has emerged as the standard for devices that
capture digital images. This image format uses a
lossy compression scheme that allows for a trade-
off between memory size and visual quality.

Specifically, given a three-channel color
image, JPEG encoding consists of four basic
steps: (1) transform the image from a three-
channel color image (RGB) to a three-channel
luminance/chrominance image (YCbCr); (2)
convert the image into a spatial frequency
representation by partitioning the individual
channels into non-overlapping 8×8 pixel blocks.
Each block is then converted to frequency space
using a 2-D discrete cosine transform (DCT); (3)
quantize the DCT values in each 8 × 8 block by
an amount that depends on the frequency and
channel (to quantize a value c by an amount q,
divide c by q and round up or down to the nearest
integer); and (4) perform entropy-encoding on
the quantized DCT coefficients. The decoding
of a JPEG image follows the same steps but in
reverse order.

Device and software engineers fine-tune this
trade-off to suit their individual tastes and needs.
The resulting variation in JPEG settings pro-
vides a distinctive signature for each type of
device. These settings can be used to link an
image to a specific camera type or to determine
whether an image has been re-saved after its
initial recording.

Decoding requires knowing the quantization
values used to encode the image, and so the
quantization values must be stored as part of
a JPEG file. The quantization values are spec-

ified as a set of 192 integer values organized
as three 8 × 8 tables. Each table contains the
quantization values for 64 frequencies for one of
the three image channels (YCbCr). Because the
JPEG standard does not impose the use of specific
quantization tables, engineers are free to select
all 192 values resulting in quantization tables that
vary greatly across devices and software.

An image that is edited and re-saved acquires
the JPEG quantization tables of the editing soft-
ware. If it can be determined that an image’s
quantization tables are not the same as those of
the original recording device, this may indicate
that the image has been altered. To test whether
the image and device quantization tables match,
we need the camera make and model which is
typically embedded in the image metadata. (The
metadata for a digital image contains data about
the camera make and model, the camera settings
(e.g., exposure time and focal length), the date
and time of image capture, the GPS location of
image capture, and much more. The metadata is
stored along with the image data in the image file,
and it is readily extracted with various programs.)
We also need to know the set of possible quanti-
zation tables for this device.

For most devices, the range of possible quan-
tization tables can be determined by recording
images at all possible pairings of quality, resolu-
tion, and, when it is adjustable, aspect ratio. Most
devices have a relatively small number of these
settings, yielding a small number of possible
quantization tables. The tables associated with a
particular device can then be compared with the
quantization tables of an image purportedly taken
with that device [7].

This image-to-device comparison can be made
more specific by including the dimensions of
the image. Because the compression settings are
often associated with a particular resolution, the
quantization table and image resolution may be
combined into a single device signature. This
device signature can be honed further by con-
sidering the dimensions and quantization tables
of the embedded thumbnail (which is stored as
a separate JPEG image, typically with differ-
ent quantization tables than the full-resolution
image).
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Markers
A JPEG image file contains data corresponding
to the compressed image and thumbnail as well
as their quantization tables. The way this data
is organized within the file varies across devices
and programs adding to the device signature
details that can link an image to a specific camera
type. A JPEG file consists of multiple labeled
segments of data. Each data segment is labeled
with a unique marker. Although the JPEG stan-
dard specifies that certain information must be
stored in the JPEG file, it does not specify the
location or order of these segments. Camera and
software engineers are, therefore, free to organize
file data in any way that they choose. As with
the JPEG signature described above, the JPEG
markers associated with a particular device can
then be compared with the markers of an image
purportedly taken with that device [8].

Pixel-Based Forensics
In the hands of a talented forger, the methods for
manipulating images may be applied so skillfully
that the faked image appears authentic, even to a
trained eye. But these same methods often leave
anomalous patterns that are too regular to be acci-
dental. This section describes forensic techniques
that can detect pixel-level anomalies that arise
from different forms of tampering [9–11].

Double Compression
Because most digital images are initially
recorded in the JPEG format, any image
manipulation will lead to multiple compressions:
A first compression on the camera and a second
compression by the photo editing software. Mul-
tiple compressions – and in particular, multiple
DCT quantizations – may leave behind a telltale
artifact in the underlying DCT coefficients.

Consider a simple example of this double
quantization (to quantize a value c by an amount
q, divide c by q and round up or down to the
nearest integer). Shown in Fig. 4 are the dis-
tributions for each of the following stages: (a)
initial DCT values, (b) after quantization with
q1 = 3, (c) after re-scaling with q1 = 3, and
(d) after a second quantization with q2 = 2. The
shaded gray areas in panel (d) for bins 1 and 3

Image Forensics, Fig. 4 Double quantization with first
quantization of q1 = 3 and second quantization of
q2 = 2 (panels (a)-(d)). The shaded gray regions illustrate
how values in the original histogram (a) are transformed
through a single quantization (b), re-scaling (c), and a
second quantization (d). The empty bins in the resulting
distribution (d) are a telltale sign of double compression,
as compared to the singly compressed distribution (with
q1 = 2) in panel (e)
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show how these values are transformed by the
first quantization, the re-scaling, and the second
quantization. Note that bins 2 and 5 are empty
in the final distribution (d). This shouldn’t be
surprising because we initially condensed 12 bins
into four and then later expanded the range to
five bins.

For comparison, shown in Fig. 4e is the orig-
inal distribution after a single quantization with
q1 = 2. This singly compressed distribution
has the same number of bins as in panel (d),
but the content of the bins is strikingly differ-
ent. Unlike the doubly compressed distribution,
the single compression produces no empty bins.
The anomalous distribution after double com-
pression is the telltale sign that the image was re-
compressed after the original recording.

When present, the anomalous pattern is
repeated across the entire distribution of DCT
values. In some cases, this periodic pattern is
as simple as a populated bin followed by an
unpopulated bin (e.g., q1 = 2 and q2 = 1). In
other cases, this periodic pattern is a bit more
complex. For example, with q1 = 5 and q2 = 2
the anomalous pattern is one populated bin,
followed by two unpopulated bins, followed by
one populated bin, followed by one unpopulated
bin. This pattern of five then repeats. Regardless
of the specific pattern, the detection of double
compression is based on the presence of a
periodic pattern in the distribution of DCT values.
Because the double compression artifacts are so
distinct, it is relatively straightforward to detect
their presence [9, 11].

Cloning
In 2008, a photo of Iran’s provocative missile test
appeared on the front page of newspapers around
the world. It was quickly revealed, however, that
the photo of four airborne missiles had been
doctored. To conceal the launch failure of one of
the missiles, the image of a successful missile had
been copied and pasted over the failed missile.
This cloning was easily detected because of the
suspicious similarity in the billowing dust clouds.
Although the cloning in this image was detectable
by eye, carefully executed clones can be visually
imperceptible.

Detecting a clone involves two steps: the iden-
tification of potential matches and the verification
of a match. The verification step is straight-
forward: If two regions are clones, their pixel
values will be highly correlated. In contrast to the
simplicity of verifying matches, the problem of
identifying potential matches can easily lead to a
combinatorial explosion. To see why this problem
explodes, let’s assume that we are searching a
1000 × 1000 pixel image for a cloned region
of known size and shape. An image of this size
contains 1, 000, 000 pixels and yields 500 bil-
lion region pairs that could be potential matches.
(Ignoring overlapping regions and the edges of
the image, there are 1, 000, 000 choose 2, equal to
(1, 000, 000 × 999, 998)/2 = 500, 000, 000, 000
possible pairings of pixels, each of which may
be the center of a pair of cloned regions.) We
do not typically know the cloned region’s size
and shape, nor do we know whether the cloned
region has been resized or rotated before being
added back into the image. Clearly, an exhaustive
search of the potential matches in an image is
computationally intractable.

With an easy verification step but a prohibitive
search space, the task of detecting cloning
reduces to finding an efficient and accurate
way to search an image for two nearly identical
regions. One particularly effective algorithm [10]
consists of three basic steps: (1) the identification
of distinctive features in the image; (2) the
extraction of a compact descriptor of each
feature; and (3) the search for two clusters of
features that have pairwise similar descriptors
and that are related by a translation (and
optionally a scaling and rotation).

The first step is to identify salient features in
the image. These salient features should be suffi-
ciently distinctive that they would have relatively
few matches in the image. One such approach
is the Harris detector which assigns a value to
each pixel that is proportional to the amount of
spatial variation in the pixels that surround it.
Once the salient features in the image have been
identified, the next step is to describe them in
a compact way to allow for efficient matching.
This description should retain the distinctiveness
of the feature, but it should also be unaffected by
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common image transformations such as scaling,
rotation, brightness and contrast adjustment, and
compression. The scale-invariant feature trans-
form (SIFT) or histogram of oriented gradients
(HOG) descriptor offers a reasonable compro-
mise between specificity and tolerance to trans-
formations.

The third step in detecting potential matches
is to search for two sets of similar features that
are related by a translation (and optionally a scal-
ing and rotation). Isolating these corresponding
sets in a sea of features requires model-fitting
in the presence of outliers. The random sample
consensus (RANSAC) algorithm can be used to
simultaneously extract the matching features and
estimate the relationship between them.

The output of this clone detection algorithm
will typically require a human analyst to review
the purported matches to determine if they are
semantically meaningful.

Recent Trends
There are many forensic techniques that can
detect image tampering, and new techniques
are constantly being developed. Each of these
techniques, however, can be circumvented. A
determined and skilled forger can, for example,
build a custom JPEG coder that exactly mimics
a camera’s file packaging, carefully remove
any DCT artifacts that arise from multiple
compressions, reinsert the expected color filter
array interpolation correlations, analyze all
shadows and reflections to ensure that they are
physically consistent, and carefully work through
all of the other traces used by dozens of different
forensic techniques. The number, variety, and
complexity of these techniques, however, make it
difficult and time-consuming (but not impossible)
for the average forger to create a fake that is
completely indistinguishable from an authentic
image.

Despite significant advances over the past two
decades in the field of image forensics, much
work remains to be done. While many forensic
techniques are highly effective, many of them
also require manual and careful oversight to apply
them. This means that they require some exper-
tise to apply and that they are not yet ready to be

deployed at Internet-scale (to the tune of millions
or billions of uploads a day).

Authentication will also be made more diffi-
cult by rapid advances in machine learning that
have made it easier than ever to create sophis-
ticated and compelling fakes [12–14]. These
technologies have removed many of the time and
skill barriers previously required to create high-
quality fakes. Not only can these automatic tools
be used to create compelling fakes, they can be
turned against our forensic techniques in the form
of generative adversarial networks (GANs) that
modify fake content to bypass forensic detection
[15]. There is little doubt that this arms race will
continue into the foreseeable future.
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