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ABSTRACT

A recent case of scientific fraud, involving manipulated im-
ages in a high-profile scientific publication, has sent shock-
waves through the scientific community. By some measures,
however, this case is not isolated — in at least one journal, it
is estimated that as many as 20% of accepted manuscripts
contain figures with inappropriate manipulations, and 1%
with fraudulent manipulations. Several scientific editors are
considering putting safeguards in place to help reduce these
numbers. While sensible policy and awareness are certainly
important, there is likely to be a need for computational
techniques that automatically detect common forms of tam-
pering. We describe three such techniques for detecting
traces of tampering in scientific images. Specifically, im-
age segmentation techniques are employed to detect image
deletion, “healing”, and duplication.
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1.4 [Image Processing]: Miscellaneous

General Terms
Security
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1. INTRODUCTION

In 2004, Professor Hwang Woo-Suk and colleagues pub-
lished what appeared to be ground-breaking advances in
stem cell research [5]. Their paper appeared in Science, one
of the most prestigious scientific journals. In late 2005, ev-
idence slowly emerged that these results were manipulated
and/or fabricated. After months of controversy, Hwang re-
tracted the Science paper [7] and resigned his position at
Seoul National University. An independent panel investi-
gating the accusations of fraud found, in part, that at least
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Figure 1: A sample gel that separates DNA frag-
ments (top), and the result of several digital manip-
ulations: (a) a band is erased; (b) several bands are
removed using Photoshop’s healing brush; and (c) a
band from the left is copied and pasted into a new
location.



nine of the eleven customized stem cell colonies that Hwang
had claimed to have made were fakes. Much of the evidence
for those nine colonies, the panel said, involved doctored
photographs of two other, authentic, colonies.

While this case garnered international coverage and out-
rage, it is by no means unique. In an increasingly com-
petitive field, scientists are succumbing to the temptation
to exaggerate or fabricate their results. Mike Rossner, the
managing editor of the Journal of Cell Biology estimates
that as many as 20% of accepted manuscripts to his journal
contain at least one figure that has to be remade because of
inappropriate image manipulation, and roughly 1% of fig-
ures are simply fraudulent [10].

While the Journal of Cell Biology has strict guidelines
on which types of digital manipulations are acceptable and
which are not [14], many journals do not. In the aftermath
of the Hwang case, many scientific journals have begun to
consider introducing policy and technological safeguards to
reduce the occurrence of misleading and fraudulent images.
To this end, we describe three techniques for detecting traces
of digital tampering specifically in the context of scientific
images (e.g., gels, micrographs, etc.). Unlike previous work
(e.g., [2,11,9, 13, 12, 6, 8]), these techniques are specifically
designed for scientific images and for common manipulations
that may be applied to them.

Consider, for example, the gel shown in the top panel of
Figure 1. Three simple manipulations were performed on
this gel: (a) a band was erased; (b) several bands were re-
moved using Photoshop’s “healing brush”; and (c) a band
was copied and pasted into a new location. In each case, the
manipulation disturbs certain image statistics that are often
imperceptible to the eye !. The erasing of a band removes
small amounts of noise that, although not always visually
salient, are present throughout the dark background of the
image. The “healing” of a region disturbs the underlying
spatial frequency (texture) [3]. The duplication of a band
leaves behind an obvious statistical pattern — two regions
in the image are identical (see [2, 11] for other approaches
for detecting duplication). We formulate the problem of
detecting each of these statistical patterns as an image seg-
mentation problem. Detecting an erased or healed region,
for example, is formulated as a segmentation problem where
the gel background is segmented based on intensity or spa-
tial frequency. A description of the segmentation algorithm
is first provided, followed by several examples of detecting
tampering in real scientific images.

2. METHODS

Consider a weighted graph G = (V, E) with vertices V and
edges E. The weight between vertices v and v is denoted as
w(u,v). A graph can be partitioned into two disjoint groups
A and B such that AN B =@ and AU B = V. The “cost”
associated with splitting the graph G into two subgraphs, A
and B, is the sum of the weights between all of the vertices
in A and B, termed the cut:

cut(4,B) = > wlu,v). (1)

uceAveB

While many image manipulations are imperceptible to the
eye, they may sometimes be revealed by contrast enhancing
the image (erasure/healing), or by careful inspection of small
image features (duplication).

Figure 2: A six vertex graph. The weights be-
tween vertices colored with the same gray value are
large (solid line), while the other edges have a small
weight (dashed line). A bipartioning into sets A and
B cuts this graph along low-cost edges.

The optimal bipartioning of a graph is that which mini-
mizes the cut. Shown in Figure 2, for example, is a graph
with six vertices. The weights between vertices colored with
the same gray value are large (solid line), while the other
edges have a small weight (dashed line). The optimal bipar-
tioning, therefore, is one that partitions the graph along the
line labeled “cut”, which severs only low-cost edges, leaving
three vertices in each of A and B.

Computing the optimal cut is NP-complete, as there are
an exponential number of partitions to consider. There are,
however, efficient approximation algorithms. We review one
such technique, normalized cuts [15], and then discuss a
number of computational issues necessary to make this al-
gorithm efficient for medium- to large-sized graphs.

2.1 Normalized Cuts
When minimizing the graph cut, Equation (1), there is a
natural tendency to simply cut a small number of low-cost
edges. The normalized cut [15], introduced to remove this
bias, is defined as:
cut(A, B) cut(A, B)

Ncut(A,B) = 2
cut(4, B) assoc(A, V) + assoc(B,V)’ 2)

where,

assoc(A,V) = ZZw(u,v) 3)

ucAveV
and
assoc(B,V) = ZZw(u,v). (4)
u€EBveV

This metric normalizes the cut by the total cost of all edges
in the entire graph, V. As a result, small partitions are
penalized. Solving for the optimal normalized cut is still NP-
complete. Formulation as a real-valued problem, however,
yields an efficient and approximate discrete-valued solution.
A brief overview of this technique is given below — see [15]
for complete details.

Let G = (V,E) be a weighted graph with n vertices,
and define W to be a n x n weighting matrix such that



Wi;,; = w(i, j) is the weight between vertices ¢ and j. Define
D to be a n x n diagonal matrix whose i*" element on the
diagonal is di = 3, w(i, j). Solve the generalized eigenvec-
tor problem (D — W)e& = ADg, for the eigenvector € with
the second smallest eigenvalue A. Let the sign of each com-
ponent of € (corresponding to each vertex of G) define the
membership of that vertex into one of two sets, A or B — for
example, vertices with corresponding negative components
are assigned to A and vertices with corresponding positive
components are assigned to B.

2.2 Implementation Details

In our applications, we will be considering the partitioning
of a graph with possibly as many vertices as pixels in an
image. Contending with even a modest-sized image of 256 x
256 pixels is computationally prohibitive, as it requires us
to solve a 65, 536-D eigenvector problem. Note that most of
this computation is unnecessary, as only the second smallest
eigenvalue eigenvector is required to partition a graph. To
this end we employ Lanczos’ method [4] for estimating large,
sparse and symmetric eigenproblems, such as ours. This
technique is particularly efficient when only a few of the
extremal (maximum or minimum) eigenvalue eigenvectors
are needed. Since our graphs will typically be sparse, sparse
matrix calculations may be employed to further reduce the
memory and computational costs. Complete details of these
issues are given in Appendix A.

2.3 A Toy Example

In order to demonstrate how graph bipartioning may be
used to segment an intensity image, consider the simple 11 x
11 pixel grayscale image shown in Figure 3. If we desire to
segment this image based on gray value, then the pixels
should be portioned along the vertical mid-line, where there
is a clear change in brightness.

A graph G = (V, E) is constructed where each pixel is a
vertex in V', and there exists an edge in E between all pairs of
vertices. The edge between vertices of similar gray values are
given a large weight, while the edge between vertices with
different gray values are given a small weight. Superimposed
on the image of Figure 3 is such a graph, on a subset of the
pixels. The solid edges represent a large weight, while the
dashed edges represent a small weight. Given such a graph,
a cut that separates the pixels along the vertical mid-line will
be small, while any cut that separates pixel with similar gray
value will be costly. Each edge may be assigned a weight
given by the following Gaussian:

—((H)-1(4))*
w(ij) = e 7T, (5)
where, I(-) denotes the gray value at a given pixel. When
segmenting an image, it is natural to prefer to group pixels
that are in spatial proximity to one another. This constraint
may be added by augmenting the above weight with an ad-
dition term:

SUORIO —Aj,j
w(i,j) = e I e A, (6)

where A, ; is the Euclidean distance between pixels ¢ and j:

A=V (xi —2)% + (yi — yj)% (7)

Note that the addition of this Euclidean distance constraint
gives rise to a sparse graph, since only nearby pixels will

+ F+ + ++ + ++ + +
+ ++ + ++ + A+ + o+
+ ++ + ++ + A+ + o+
+ ++ + ++ + ++ + o+
+ ++ + ++ + A+ + + o+
+ ++ + + 4+ + A+ + o+

Figure 3: Shown in the top panel is a graph on a
subset of the 11 x 11 pixel image. The edges joining
pixels of similar gray value are large (solid lines),
while the edges joining pixels of different gray value
are small (dashed line). The normalized cut of a
complete graph, constructed on all pixels, segments
the image into regions of similar intensity. Shown
in the bottom panel is the resulting segmentation
where each pixel is annotated with — or + denoting
its group membership.

have a non-zero weight. In practice, of course, this Euclidean
metric needs to be truncated to zero for all values below a
specified threshold.

The 11 x 11 pixel image of Figure 3 yields a 121 x 121
weighting matrix, constructed according to Equation (6).
In this example o7 = 0.01 (gray values are scaled into the
range [0,1]) and oA = 0.1 (the sampling lattice is scaled into
the range [0, 1]). The nxn diagonal matrix D is constructed
so that the i*" element on the diagonal is d; = 2o wid, ).

In this small toy example, the second smallest eigenvalue
eigenvector can be solved for directly. Specifically, the gen-
eralized eigenvector problem (D — W)é = ADE is cast into a
standard eigenvector problem, D™/2(D — W)D~'/2¢ = )\é.
The eigenvector, €, with the second smallest eigenvalue, A,
of this system is a 121-D vector. The sign of each compo-
nent of this vector corresponds to the group assignment of
each vertex (i.e., image pixel). Shown in the bottom panel
of Figure 3 is the resulting segmentation of the dark (—)
and light (+) pixels. As described above, larger eigenvec-
tor problems require a more memory and computationally



original tampered

Figure 4: In the tampered image on the right, a
band is removed by replacing a rectangular region
with the mean intensity of the background. Shown
below are the results of intensity-based segmenta-
tion. The gray pixels correspond to the first iter-
ation where the bright bands are separated from
the dark background. The black/white pixels cor-
respond to grouping of only the background. This
grouping clearly reveals the deleted band.

efficient approach, as described in Appendix A.

3. IMAGE MANIPULATIONS

Shown in Figure 1 are several manipulations on a com-
mon scientific image, a gel. The detection of each of these
manipulations is framed as a segmentation problem. The
graph cut algorithm described above is then used to detect
traces of these forms of tampering. In the following three
sections, the basic formulations are described and their effi-
cacy shown on simple examples. The final section describes
a technique for automatically detecting tampering based on
results of segmentation.

3.1 Intensity

In order to detect differences in background intensity, a
weighting function based on differences in intensity and dis-
tance between pixels is employed:

SUORIO) *AZ?,J-
w(i,j) = e I e A, (8)

where, I(-) denotes the gray value at a given pixel, and A, ;
is the Euclidean distance, Equation (7), between pixels ¢ and
J-

Shown in the top row of Figure 4 is a portion of a gel
(left) and a tampered version (right), where a band has been
erased by replacing a rectangular region around it with the
mean of the background intensity. Shown in the bottom
row of this figure are the results of graph cut segmentation.
These three-tone images correspond to two iterations of seg-
mentation. In the first iteration, the image is grouped into
regions corresponding to the bands (gray pixels) and the
background. In the second iteration, the background region
is further grouped into two regions (black and white pixels).
Note that in the original image, the grouping of the back-
ground does not yield any large cohesive areas, while the
grouping of the tampered region clearly yields the rectangu-

lar region that was erased. See Section 3.4 for an automatic
approach to detecting tampering from these segmentation
results.

While the above formulation and example pertains to grayscale

images, the extension to color is straight-forward. In order
to detect differences in a RGB color image, the weighting
function takes the form:

—IF@-T@I? =A%,

2

0% e 7a (9)

w(i,j) = e

where I(-) is a 3-D vector consisting of the RGB values at a
given pixel, and || - || is vector norm. This approach may, of
course, be applied to an image representation of choice, for
example, RGB, HSV, or CMYK.

3.2 Texture

In order to detect differences in background texture, a
weighting function based on differences in the magnitude
of the image gradient 2 and distance between pixels is em-
ployed:

—Ug()=1gG)> =AY

o

w(i,j) = e ; e A, (10)

where, I4(-) denotes the magnitude of the image gradient
at a given pixel, and A; ; is the Euclidean distance, Equa-
tion (7), between pixels ¢ and j. The image gradient is
computed as follows. The partial derivative of the intensity
image is computed via linear convolutions with a pair of 1-D
filters 3:

L (z,y) (I(z,y) x d(z)) x p(y) (11)
Iy(z,y) (I(z, y) » p(x)) * d(y)- (12)

The magnitude of the gradient, VI(z,y) = [I.(z,y) I,(z,y)],
is given by:

I(wy) = \/I3@y) + ). (13)

Shown in the top row of Figure 5 is a portion of a gel
(left) and a tampered version (right), where a band has been
erased using the Photoshop “healing brush” tool. The heal-
ing brush removes small blemishes, but also has the effect of
reducing overall spatial frequency [3]. Shown in the bottom
row of this figure are the results of graph cut segmentation.
These three-tone images correspond to two iterations of seg-
mentation. In the first iteration, the image is grouped, using
intensity-based segmentation (Section 3.1) into regions cor-
responding to the bands (gray pixels) and the background.
In the second iteration, the background region is further
grouped into two regions (black and white pixels) using the
texture-based segmentation described in this section. Note
that in the original image, the grouping of the background
does not yield any large cohesive areas, while the grouping
of the tampered region clearly yields the region that was
“healed”. See Section 3.4 for an automatic approach to de-
tecting tampering from these segmentation results.

*The Laplacian, I;(z,y) = I2,(z,y) + I, (z,y) may also be
considered as a measure of background texture. We find,
however, that the image gradient provides slightly better
results.

3A pair of 7-tap derivative filters [1] are used to compute
image derivatives:

p(-) = [0.0047 0.0693 0.2454 0.3611 0.2454 0.0693 0.0047]
and

d(-) =[0.0187 0.1253 0.1930 0.0 —0.1930 —0.1253 —0.0187].
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Figure 5: In the tampered image on the right, sev-
eral bands are removed using the Photoshop heal-
ing brush. Shown below are the results of texture-
based segmentation. The gray pixels correspond to
the first iteration of intensity-based segmentation
where the bright bands are separated from the dark
background. The black/white pixels correspond to
grouping of only the background. This grouping
clearly reveals the deleted bands.

3.3 Duplication

Shown in top row of Figure 6 is a portion of a gel (left) and
a tampered version (right), where two bands were copied and
pasted into a new location. In order to detect this sort of
duplication, a “minimum difference” image is first computed
as follows. For a 5 x 5 neighborhood centered at each pixel,
x,y, in the original image, a similarly-sized neighborhood is
found with minimum average intensity difference:

Li(z,y) = argmin,, ,

Z (I(x — czyy — cy) —](u—cgg,v—cy))2 (14)

Cr,Cy=—2

Duplicated regions are then detected by defining the fol-
lowing weighting function:

—<1d<i>—21d<a’>>2 fAj,j
w(i,j) = e 7a e 7a (15)

where, I4(-) denotes the value of the difference image at a
given pixel, and A; ; is the Euclidean distance, Equation (7),
between pixels ¢ and j. Note that this similarity measure
does not contain the location of the duplicated region. This
could, however, be easily incorporated by considering a sim-
ilarity metric on the vector between regions of minimal in-
tensity difference.

original tampered

Figure 6: In the tampered image on the right, sev-
eral bands are copied and pasted into a new location.
Shown below are the results of duplication-based
segmentation. The black/white pixels correspond
to grouping results. This grouping clearly reveals
the duplicated bands.

Shown in the bottom row of Figure 6 are the results of
graph cut segmentation. These two-tone images correspond
to one iteration of segmentation. The black and white pix-
els correspond to the resulting grouping of the pixels. Note
that in the original image, the grouping does not yield any
large cohesive areas, while the grouping of the tampered re-
gion clearly yields the region that was duplicated. See Sec-
tion 3.4 for an automatic approach to detecting tampering
from these segmentation results

3.4 Automatic Detection

In the previous three sections, we saw the ability of graph
cut segmentation to reveal traces of three types of tamper-
ing. While the traces of tampering are fairly obvious by
visual inspection of the resulting segmentation results (Fig-
ures 4, 5, and 6), it would be beneficial to have a quantitative
metric for automatic detection. Such a metric is introduced
below, thus making the detection of tampering fully auto-
matic.

Recall that the segmentation partitions an image into one
of two groups, with a group value of 0 or 1. Denote the seg-
mentation map as S(z,y). Consider all pixels z, y with value
S(z,y) = 0 such that all 8 spatial neighbors, S(z—c., y—cy),
¢z, ¢y € [—1,1], also have value 0. The mean of all of the
edge weights between such vertices is computed across the
entire segmentation map. This process is repeated for all
pixels z,y with value S(z,y) = 1. These average weights, so
and s; are used to quantify the likelihood that the under-
lying image was manipulated. The intuition behind these
metrics is that values near 1 are indicative of tampering
because the edges weights in contiguous areas are high in-
dicating significant similarity in the underlying measures of
intensity, texture, or duplication.

For the results of Figure 4, the values of sy and s; are
0.10 and 0.00 for the original image, and 0.91 and 0.16 for
the tampered image. For the results of Figure 5, the values
of sp and s1 are 0.48 and 0.00 for the original image, and
0.75 and 0.12 for the tampered image. For the results of
Figure 6, the values of sp and s1 are 0.00 and 0.00 for the
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Figure 7: In the tampered image, two cells are re-
moved by replacing a region with the mean intensity
of the background. Shown below are the segmenta-
tion results, revealing the tampered region.

original image, and 0.99 and 0.00 for the tampered image.
In each case, one group from the tampered images has a
high value, while both groups from the original images have
a relatively low value. The max(so, s1) can, therefore, be
used as a metric to quantify the likelihood that the image
has been doctored — with values closer to 1 denoting a high
likelihood, and values closer to 0 denoting a low likelihood.

Shown in Figure 7 is an example of tampering of a mi-
croscope image. In the tampered image, two cells are re-
moved by painting the corner with the average intensity of
the background. The segmentation clearly reveals the area
of tampering. The likelihood of the original image being
tampered is 0.19 and the tampered image is 0.99.

Shown in Figure 8 is an example of tampering of an im-
age from the Hubble telescope. In the tampered image, stars
along the bottom of the image are removed by painting with
the average intensity of the background. The segmentation
clearly reveals the area of tampering. The likelihood of the
original image being tampered is 0.30 and the tampered im-
age is 0.98. Note that the tampered region is broken into
two parts (the left-most corner is grouped differently than
the remaining bottom portion of the image). The reason for
this is that the similarity metric favors regions that are in
close spatial proximity to one another. This constraint can
be relaxed by increasing the value of oa in Equation (8).

Shown in Figure 9 is another example of tampering in an
image from the Hubble telescope. In the tampered image a
star from the lower-left corner is copied and pasted into each
corner of the image. Shown in the bottom row of Figure 9
are the segmentation results. The likelihood of the original
image being tampered is 0.50 and the tampered image is
0.97.

Shown in Figure 10 is another example of tampering in a

original tampered

Figure 8: In the tampered image, stars along the
bottom are removed by replacing a region with the
mean intensity of the background. Shown below are
the segmentation results, revealing the tampered re-
gion.

chest x-ray. In the tampered image the tumor in the right
lung is removed by duplicating a flipped copy (about the
vertical axis) of the left lung, and removing some distin-
guishing features to make the duplication less obvious. Since
the duplicated regions are related by a transformation, the
previously described approach has to be adapted. The most
straight-forward way to do this is to compute the difference
between a local neighborhood and a similarly transformed
region elsewhere in the image. Specifically, the difference
image, Equation (14) becomes:

Ig(x,y) = argmin,,
2
> U@—cay—cy) = I(utcav—cy))* | (16)

Cp,Cy=—2

Other transformations such as rotations can be similarly
detected by adjusting the difference image appropriately.
Shown in the bottom row of Figure 10 are the segmentation
results. The likelihood of the original image being tampered
is 0.05 and the tampered image is 0.98.

4. DISCUSSION

The ease with which digital media can be altered and
manipulated is affecting nearly every corner of our world:
media, politics, law, business, and science. As we continue
to grapple with the ethical and technological implications of
this, it is important that we develop techniques for detect-
ing tampering in digital media. To this end, we, and others,
have previously developed general-purpose detection algo-
rithms. Here, we describe detection algorithms specific to
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Figure 9: In the tampered image on the right a star
from the lower-left corner is duplicated into each
corner of the image. Shown below are the segmen-
tation results, revealing the tampered regions.

original tampered

Figure 10: In the tampered image on the right, the
tumor is removed from the right lung by duplicating
a flipped copy of the left lung, and removing some
distinguishing features to make the duplication less
obvious. Shown below are the segmentation results,
revealing the tampered region.

scientific images. These techniques are applicable to com-
mon scientific images such as gels and micrographs. The
three detection techniques described here employ a segmen-
tation algorithm for detecting regions in an image with a
common intensity pattern, texture pattern, or duplicated
pixels. Grouping based on similar intensity and texture de-
tect tampering caused by erasing using a uniform intensity
or a tool such as Photoshop’s healing brush that affects the
underlying spatial frequency. Grouping based on duplicated
pixels detects tampering caused by a simple copy/paste. As
usual, these techniques are vulnerable to a host of counter-
measures that can hide traces of tampering. As we continue
to develop new detection techniques, however, it will become
increasingly difficult to evade all such approaches.
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Appendix A

This section gives a detailed description of how Lanczos’
method is used to solve for the second smallest eigenvalue
eigenvector of the generalized eigenvector problem (D —
W)é = ADé. To begin, this problem is cast into a stan-
dard eigenvector problem, D71/2(D—W)D71/2é': Aé. The
second smallest eigenvalue eigenvector is then estimated as
follows:

Lanczos(W,D,M)

22

23
24
25
26
27
28

> W is a n X n weighting matrix
> D is a n X n diagonal matrix
> m = number of iterations
A=D"Y*D-w)D'/?
k=0

0 > n-D column vector

T > n-D column vector

U=
117:
W= W/Vwtw
by =

> unit length

1
while £ <m
doif £ >0
dofori=1ton
do t = w;
w; = Uz’/bk
Vi = —bkt
Erx=4 > k™ column of matrix E
U =7+ Ad
k=k+1
ar = W'T
U= — apW
be = Vo
al b1 0 0 0 0
0 b1 a2 b2 O 0
=" : :
0 0 0 0 bm—2) am—1) b(m—-1)
0 0 0 O 0 b(m —1) a(m
Te; = \je; > solve eigenvector problem, j = 1...m
£=0 > n-D column vector

for k=1tom

doZ =7+ )\QE.,]C
> T is an approximation to the second smallest
> eigenvalue eigenvector of the matrix A

The number of iterations m is typically chosen to balance
accuracy and run-time efficiency. In all of our results, we
consider all values of m € [5,50] and use the result from the
value of m that yields the minimum cost of the resulting
graph cut (i.e., the graph cut with the minimum normalized
cut, Equation (2)).

(12]
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