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ABSTRACT
Virtually all optical imaging systems introduce a variety of
aberrations into an image. Chromatic aberration, for exam-
ple, results from the failure of an optical system to perfectly
focus light of different wavelengths. Lateral chromatic aber-
ration manifests itself, to a first-order approximation, as an
expansion/contraction of color channels with respect to one
another. When tampering with an image, this aberration is
often disturbed and fails to be consistent across the image.
We describe a computational technique for automatically es-
timating lateral chromatic aberration and show its efficacy
in detecting digital tampering.
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General Terms
Security
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1. INTRODUCTION
Most images contain a variety of aberrations that result

from imperfections and artifacts of the optical imaging sys-
tem. In an ideal imaging system, light passes through the
lens and is focused to a single point on the sensor. Optical
systems, however, deviate from such ideal models in that
they fail to perfectly focus light of all wavelengths. The
resulting effect is known as chromatic aberration which oc-
curs in two forms: longitudinal and lateral. Longitudinal
aberration manifests itself as differences in the focal planes
for different wavelengths of light. Lateral aberration mani-
fests itself as a spatial shift in the locations where light of
different wavelengths reach the sensor – this shift is pro-
portional to the distance from the optical center. In both
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cases, chromatic aberration leads to various forms of color
imperfections in the image. To a first-order approximation,
longitudinal aberration can be modeled as a convolution of
the individual color channels with an appropriate low-pass
filter. Lateral aberration, on the other hand, can be mod-
eled as an expansion/contraction of the color channels with
respect to one another. When tampering with an image,
these aberrations are often disturbed and fail to be consis-
tent across the image.

We describe a computational technique for automatically
estimating lateral chromatic aberration. Although we even-
tually plan to incorporate longitudinal chromatic aberra-
tion, only lateral chromatic aberration is considered here.
We show the efficacy of this approach for detecting digital
tampering in synthetic and real images. This work provides
another tool in a growing number of image forensic tools, [3,
7, 8, 10, 9, 5, 6].

2. CHROMATIC ABERRATION
We describe the cause of lateral chromatic aberration and

derive an expression for modeling it. For purposes of expo-
sition a one-dimensional imaging system is first considered,
and then the derivations are extended to two dimensions.

2.1 1-D Aberration
In classical optics, the refraction of light at the boundary

between two media is described by Snell’s Law:

n sin(θ) = nf sin(θf ), (1)

where θ is the angle of incidence, θf is the angle of refrac-
tion, and n and nf are the refractive indices of the media
through which the light passes. The refractive index of glass,
nf , depends on the wavelength of the light that traverses it.
This dependency results in polychromatic light being split
according to wavelength as it exits the lens and strikes the
sensor. Shown in Figure 1, for example, is a schematic show-
ing the splitting of short wavelength (solid blue ray) and
long wavelength (dashed red ray) light. The result of this
splitting of light is termed lateral chromatic aberration.

Lateral chromatic aberration can be quantified with a
low-parameter model. Consider, for example, the position
of short wavelength (solid blue ray) and long wavelength
(dashed red ray) light on the sensor, xr and xb, Figure 1.
With no chromatic aberration, these positions would be
equal. In the presence of chromatic aberration, it can be
shown (Appendix A) that these positions can be modeled
as:

xr ≈ αxb, (2)
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Figure 1: The refraction of light in one dimension.
Polychromatic light enters the lens at an angle θ, and
emerges at an angle which depends on wavelength.
As a result, different wavelengths of light, two of
which are represented as the red (dashed) and the
blue (solid) rays, will be imaged at different points,
xr and xb.

where α is a scalar value. This model generalizes for any two
wavelengths of light, where α is a function of these wave-
lengths.

2.2 2-D Aberration
For a two-dimensional lens and sensor, the distortion

caused by lateral chromatic aberration takes a form sim-
ilar to Equation (2). Consider again the position of short
wavelength (solid blue ray) and long wavelength (dashed red
ray) light on the sensor, (xr, yr) and (xb, yb). In the pres-
ence of chromatic aberration, it can be shown (Appendix A)
that these positions can be modeled as:

(xr, yr) ≈ α(xb, yb), (3)

where α is a scalar value.
Shown in Figure 2 is vector-based depiction of this aber-

ration, where each vector ~v =
`
xr − xb, yr − yb

´
. Note that

this model is simply an expansion/contraction about the
center of the image. In real lenses, the center of optical
aberrations is often different from the image center due to
the complexities of multi-lens systems [12]. The previous
model can therefore be augmented with an additional two
parameters, (x0, y0), to describe the position of the expan-
sion/contraction center. The model now takes the form:

xr = α(xb − x0) + x0 (4)

yr = α(yb − y0) + y0. (5)

It is common for lens designers to try to minimize chro-
matic aberration in lenses. This is usually done by combin-
ing lenses with different refractive indices to align the rays
for different wavelengths of light. If two wavelengths are
aligned, the lens is called an achromatic doublet or achro-
mat. It is not possible for all wavelengths that traverse an
achromatic doublet to be aligned and the residual error is
known as the secondary spectrum. The secondary spectrum

Figure 2: The refraction of light in two dimensions.
Polychromatic light enters the lens and emerges at
an angle which depends on wavelength. As a re-
sult, different wavelengths of light, two of which are
represented as the red (dashed) and the blue (solid)
rays, will be imaged at different points. The vec-
tor field shows the amount of deviation across the
image.

is visible in high-contrast regions of an image as a magenta
or green halo [4].

2.3 Estimating Chromatic Aberration
In the previous section, a model for lateral chromatic aber-

ration was derived, Equations (4)–(5). This model describes
the relative positions at which light of varying wavelength
strikes the sensor. With a three color channel RGB image,
we assume that the lateral chromatic aberration is constant
within each color channel. Using the green channel as ref-
erence, we would like to estimate the aberration between
the red and green channels, and between the blue and green
channels. Deviations or inconsistencies in these models will
then be used as evidence of tampering.

Recall that the model for lateral chromatic aberration
consists of three parameters, two parameters for the cen-
ter of the distortion and one parameter for the magnitude
of the distortion. These model parameters will be denoted
(x1, y1, α1) and (x2, y2, α2) for the red to green and blue to
green distortions, respectively.

The estimation of these model parameters can be framed
as an image registration problem [1]. Specifically, lateral
chromatic aberration results in an expansion or contraction
between the color channels, and hence a misalignment be-
tween the color channels. We, therefore, seek the model
parameters that bring the color channels back into align-
ment. There are several metrics that may be used to quan-
tify the alignment of the color channels. To help contend
with the inherent intensity differences across the color chan-
nels we employ a metric based on mutual information that
has proven successful in such situations [11]. We have found
that this metric achieves slightly better results than a sim-
pler correlation coefficient metric (with no difference in the
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Figure 3: Synthetically generated images. Shown are, from left to right, a sample image, the distortion
applied to the blue channel (the small circle denotes the distortion center), the estimated distortion, and a
histogram of angular errors from 2000 images. For purposes of display, the vector fields are scaled by a factor
of 50.

run-time complexity1). Other metrics, however, may very
well achieve similar or better results.

We will describe the estimation of the red to green dis-
tortion parameters (the blue to green estimation follows a
similar form). Denote the red channel of a RGB image as
R(x, y) and the green channel as G(x, y). A corrected ver-
sion of the red channel is denoted as R(xr, yr) where:

xr = α1(x− x1) + x1 (6)

yr = α1(y − y1) + y1 (7)

The model parameters are determined by maximizing the
mutual information between R(xr, yr) and G(x, y) as fol-
lows:

argmaxx1,y1,α1
I(R;G), (8)

where R and G are the random variables from which the
pixel intensities of R(xr, yr) and G(x, y) are drawn. The
mutual information between these random variables is de-
fined to be:

I(R;G) =
X
r∈R

X
g∈G

P (r, g) log

„
P (r, g)

P (r)P (g)

«
, (9)

where P (·, ·) is the joint probability distribution, and P (·)
is the marginal probability distribution.

This metric of mutual information is maximized using a
brute-force iterative search. On the first iteration, a rela-
tively course sampling of the parameter space for x1, y1, α1 is
searched. On the second iteration, a refined sampling of the
parameter space is performed about the maximum from the
first stage. This process is repeated for N iterations. While
this brute-force search can be computationally demanding,
it does ensure that the global minimum is reached. Standard
gradient descent optimization techniques may be employed
to improve run-time complexity.

In order to quantify the error between the estimated and
known model parameters, we compute the average angu-
lar error between the displacement vectors at every pixel.
Specifically, let x0, y0, α0 be the actual parameters and let
x1, y1, α1 be the estimated model parameters. The vector

1The run-time complexity is dominated by the interpolation
necessary to generate R(xr, yr), and not the computation of
mutual information.

displacement fields for these distortions are:

~v0(x, y) =

„
(α0(x− x0) + x0)− x
(α0(y − y0) + y0)− y

«
(10)

~v1(x, y) =

„
(α1(x− x1) + x1)− x
(α1(y − y1) + y1)− y

«
(11)

The angular error θ(x, y) between any two vectors is:

θ(x, y) = cos−1

„
~v0(x, y) · ~v1(x, y)

||~v0(x, y)|| ||~v1(x, y)||

«
. (12)

The average angular error, θ̄, over all P pixels in the image
is:

θ̄ =
1

P

X
x,y

θ(x, y). (13)

To improve reliability, this average is restricted to vectors
whose norms are larger than a specified threshold, 0.01 pix-
els. It is this measure, θ̄, that is used to quantify the error
in estimating lateral chromatic aberration.

3. RESULTS
We demonstrate the suitability of the proposed model for

lateral chromatic aberration, and the efficacy of estimat-
ing this aberration using the mutual information-based algo-
rithm. We first present results from synthetically generated
images. Results are then presented for a set of calibrated im-
ages photographed under different lenses and lens settings.
We also show how inconsistencies in lateral chromatic aber-
ration can be used to detect tampering in visually plausible
forgeries.

3.1 Synthetic images
Synthetic color images of size 512 × 512 were generated

as follows. Each image consisted of ten randomly placed
anti-aliased discs of various sizes and colors, Figure 3. Lat-
eral chromatic aberration was simulated by warping the blue
channel relative to the green channel. The center of the
distortion, x2, y2, was the image center, and the distortion
coefficient, α2, was chosen between 1.0004 and 1.0078, pro-
ducing maximum displacements of between 0.1 and 2 pixels.
Fifty random images for each of forty values of α2 were gen-
erated for a total of 2000 images.

As described in the previous section, the distortion param-
eters are determined by maximizing the mutual information,



Equation (9), for the blue to green distortion. On the first
iteration of the brute-force search algorithm, values of x2, y2

spanning the entire image were considered, and values of α2

between 1.0002 to 1.02 were considered. Nine iterations of
the search algorithm were performed, with the search space
consecutively refined on each iteration.

Shown in the second and third panels of Figure 3 are ex-
amples of the applied and estimated distortion (the small
circle denotes the distortion center). Shown in the fourth
panel of Figure 3 is the distribution of average angular er-
rors from 2000 images. The average error is 3.4 degrees with
93% of the errors less than 10 degrees. These results demon-
strate the general efficacy of the mutual information-based
algorithm for estimating lateral chromatic aberration.

3.2 Calibrated images
In order to test the efficacy of our approach on real im-

ages, we first estimated the lateral chromatic aberration for
two lenses at various focal lengths and apertures. A 6.3
mega-pixel Nikon D-100 digital camera was equipped with
a Nikkor 18–35mm ED lens and a Nikkor 70–300mm ED
lens2. For the 18–35 mm lens, focal lengths of 18, 24, 28,
and 35 mm with 17 f -stops, ranging from f/29 to f/3.5,
per focal length were considered. For the 70–300 mm lens,
focal lengths of 70, 100, 135, 200, and 300 with 19 f -stops,
ranging from f/45 to f/4, per focal length were considered.

A calibration target was constructed of a peg board with
1/4-inch diameter holes spaced one inch apart. The camera
was positioned at a distance from the target so that roughly
500 holes appeared in each image. This target was back-
illuminated with diffuse lighting, and photographed with
each lens and lens setting described above. For each color
channel of each calibration image, the center of the holes
were automatically computed with sub-pixel resolution. The
red to green lateral chromatic aberration was estimated by
comparing the relative positions of these centers across the
entire image. The displacements between the centers were
then modeled as a three parameter expansion/contraction
pattern, x1, y1, α1. These parameters were estimated using
a brute force search that minimized the root mean square
error between the measured displacements and the model.
Shown in the top panel of Figure 4 is the actual red to green
distortion, and shown in the bottom panel is the best model
fit. Note that while not perfect, the three parameter model
is a reasonable approximation to the actual distortion. The
blue to green aberration was estimated in a similar manner,
yielding model parameters x2, y2, α2. This calibration data
was used to quantify the estimation errors from real images
of natural scenes.

Images of natural scenes were obtained using the same
camera and calibrated lenses. These images, of size 3020×
2008 pixels, were captured and stored in uncompressed TIFF
format (see below for the effects of JPEG compression). For
each of the 205 images, the focal length and f -stop were
extracted from the EXIF data in the image header. The
estimated aberration from each image was then compared
with the corresponding calibration data with the same lens
settings.

The distortion parameters were determined by maximiz-
ing the mutual information, Equation (9), between the red
and green, and blue and green channels. On the first itera-

2ED lenses help to eliminate secondary chromatic aberra-
tion.

Figure 4: Calibration. Shown in the top panel is an
actual red to green chromatic aberration. Shown in
the bottom panel is the best three parameter model
fit to this distortion. Note that the actual distortion
is well fit by this model. For purposes of display, the
vector fields are scaled by a factor of 100.

tion of the brute-force search algorithm, values of x1, y1 and
x2, y2 spanning the entire image were considered, and val-
ues of α1 and α2 between 0.9985 to 1.0015 were considered.
The bounds on α1 and α2 were chosen to include the entire
range of the distortion coefficient measured during calibra-
tion, 0.9987 to 1.0009. Nine iterations of the search algo-
rithm were performed, with the search space consecutively
refined on each iteration.

Shown in the top panel of Figure 5 is one of the 205 im-
ages. Shown in the second and third panels are the cali-
brated and estimated blue to green distortions (the small
circle denotes the distortion center). Shown in the bottom
panel of Figure 5 is the distribution of average angular er-
rors, Equation (13), from the red to green and blue to green
distortions from all 205 images. The average error is 20.3
degrees with 96.6% of the errors less than 60 degrees. Note
that the average errors here are approximately six times
larger than the synthetically generated images of the previ-
ous section. Much of the error is due to other aberrations
in the images, such as longitudinal aberration, that are not
considered in our current model.

3.2.1 JPEG Compression
The results of the previous section were based on uncom-

pressed TIFF format images. Here we explore the effect
of lossy JPEG compression on the estimation of chromatic
aberration. Each of the 205 uncompressed images described
in the previous section were compressed with a JPEG qual-
ity of 95, 85, and 75 (on a scale of 1 to 100). The chromatic
aberration was estimated as described above, and the same
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Figure 5: Calibrated images. Shown are, from top
to bottom, one of the 205 images, the calibrated blue
to green aberration, the estimated aberration, and
a histogram of angular errors from 205 images, for
the blue to green and red to green aberrations. For
purposes of display, the vector fields are scaled by a
factor of 150.

error metric computed. For a quality of 95, the average er-
ror was 26.1 degrees with 93.7% of the errors less than 60
degrees. For a quality of 85, the average error was 26.7 de-
grees with 93.4% of the errors less than 60 degrees. For a
quality of 75, the average error was 28.9 degrees with 93.2%
of the errors less than 60 degrees. These errors should be
compared to the uncompressed images with an average error
of 20.3 degrees and with 96.6% of the errors less than 60 de-
grees. While the estimation suffers a bit, it is still possible to
estimate, with a reasonable amount of accuracy, chromatic
aberration from JPEG compressed images

3.3 Forensics
When creating a forgery, it is sometimes necessary to con-

ceal a part of an image with another part of the image or
to move an object from one part of an image to another
part of an image. These types of manipulations will lead to
inconsistencies in the lateral chromatic aberrations, which
can therefore be used as evidence of tampering.

In order to detect tampering based on inconsistent chro-
matic aberration, it is first assumed that only a relatively
small portion of an image has been manipulated. With the
additional assumption that this manipulation will not signif-
icantly affect a global estimate, the aberration is estimated
from the entire image. This global estimate is then com-
pared against estimates from small blocks. Any block that
deviates significantly from the global estimate is suspected
of having been manipulated.

The 205 calibrated images described in the previous sec-
tion were each partitioned into overlapping 300× 300 pixels
blocks. It is difficult to estimate chromatic aberration from
a block with little or no spatial frequency content (e.g., a
largely uniform patch of sky). As such, the average gradi-
ent for each image block was computed and only 50 blocks
with the largest gradients were considered. The gradient,
∇I(x, y), is computed as follows:

∇I(x, y) =
q

I2
x(x, y) + I2

y(x, y), (14)

where Ix(·) and Iy(·) are the horizontal and vertical partial
derivatives estimated as follows:

Ix(x, y) = (I(x, y) ? d(x)) ? p(y) (15)

Iy(x, y) = (I(x, y) ? d(y)) ? p(x), (16)

where ? denotes convolution and d(·) and p(·) are a pair of
1-D derivative and low-pass filters [2].

Shown in the top panel of Figure 6 is one of the 205 images
with an outline around one of the 300× 300 blocks. Shown
in the second and third panels are, respectively, estimated
blue to green warps from the entire image and from just a
single block. Shown in the bottom panel is a histogram of
angular errors, Equation (13), between estimates based on
the entire image and those based on a single block. These
errors are estimated over 50 blocks per 205 images, and over
the blue to green and red to green estimates. The average
angular error is 14.8 degrees with 98.0% less than 60 degrees.
These results suggest that inconsistencies in block-based es-
timates significantly larger than 60 degrees are indicative of
tampering.

Shown in the left column of Figure 7 are three original im-
ages, and in the right column are visually plausible doctored
versions where a small part of each image was manipulated.
For each image, the blue to green and red to green aberra-
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Figure 6: Block-based estimates. Shown are, from
top to bottom, one of the 205 images with one of
the 300 × 300 pixel blocks outlined, the estimated
aberration based on the entire image, the estimated
aberration based on a single block, and a histogram
of 10,250 average angular errors (50 blocks from 205
images) between the image-based and block-based
estimates for both the red to green and blue to
green aberrations. For purposes of display, the vec-
tor fields are scaled by a factor of 150.

tion is estimated from the entire image. Each aberration is
then estimated for all 300×300 blocks with an average gradi-
ent above a threshold of 2.5 gray-levels/pixel. The angular
error for each block-based estimate is compared with the
image-based estimate. Blocks with an average error larger
than 60 degrees, and an average distortion larger than 0.15
pixels are considered to be inconsistent with the global esti-
mate, and are used to indicate tampering. The red (dashed
outline) blocks in Figure 7 reveal the traces of tampering,
while the green (solid outline) blocks are consistent with the
global estimate and hence authentic. For purpose of display,
only a subset of all blocks are displayed.

This approach for detecting tampering is effective when
the manipulated region is relatively small, allowing for a re-
liable global estimate. In the case when the tampering may
be more significant, an alternate approach may be taken.
An image, as above, can be partitioned into small blocks.
An estimate of the global aberration is estimated from each
block. The estimates from all such blocks are then com-
pared for global consistency. An image is considered to be
authentic if the global consistency is within an expected 60
degrees.

4. DISCUSSION
We have described a new image forensic tool that exploits

imperfections in a camera’s optical system. Our current ap-
proach only considers lateral chromatic aberrations. These
aberrations are well approximated with a low-parameter
model. We have developed an automatic technique for esti-
mating these model parameters that is based on maximizing
the mutual information between color channels (other cor-
relation metrics may be just as effective). And, we have
shown the efficacy of this approach in detecting tampering
in synthetic and real images.

We expect future models to incorporate longitudinal chro-
matic aberrations and other forms of optical distortions. We
expect that the addition of these effects will greatly im-
prove the overall sensitivity of this approach. Since the op-
tical aberrations from different cameras and lenses can vary
widely, we also expect that the measurement of these distor-
tions may be helpful in digital ballistics, that of identifying
the camera from which an image was obtained.
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Figure 7: Doctored images. Shown are three original images (left) and three doctored images (right). The
red (dashed outline) blocks denote regions that are inconsistent with the global aberration estimate. The
green (solid outline) blocks denote regions that are consistent with the global estimate.



Appendix A
Here we derive the 1-D and 2-D models of lateral chromatic
aberration of Equations (2) and (3).

Consider in 1-D, Figure 1, where the incident light reaches
the lens at an angle θ, and is split into short wavelength
(solid blue ray) and long wavelength (dashed red ray) light
with an angle of refraction of θr and θb. These rays strike
the sensor at positions xr and xb. The relationship between
the angle of incidence and angles of refraction are given by
Snell’s law, Equation (1), yielding:

sin(θ) = nr sin(θr) (17)

sin(θ) = nb sin(θb), (18)

which are combined to yield:

nr sin(θr) = nb sin(θb). (19)

Dividing both sides by cos(θb) gives:

nr sin(θr)/ cos(θb) = nb tan(θb)

= nbxb/f, (20)

where f is the lens-to-sensor distance. If we assume that the
differences in angles of refraction are relatively small, then
cos(θb) ≈ cos(θr). Equation (20) then takes the form:

nr sin(θr)/ cos(θr) ≈ nbxb/f

nr tan(θr) ≈ nbxb/f

nrxr/f ≈ nbxb/f

nrxr ≈ nbxb

xr ≈ αxb, (21)

where α = nb/nr.
In 2-D, an incident ray reaches the lens at angles θ and

φ, relative to the x = 0 and y = 0 planes, respectively. The
application of Snell’s law yields:

nr sin(θr) = nb sin(θb) (22)

nr sin(φr) = nb sin(φb). (23)

Following the above 1-D derivation yields the following 2-D
model:

(xr, yr) ≈ α(xb, yb). (24)
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