
Exposing Digital Forgeries in Video by
Detecting Duplication

Weihong Wang
Department of Computer Science

Dartmouth College
Hanover, NH 03755

whwang@cs.dartmouth.edu

Hany Farid
Department of Computer Science

Dartmouth College
Hanover, NH 03755

farid@cs.dartmouth.edu

ABSTRACT
With the advent of high-quality digital video cameras and
sophisticated video editing software, it is becoming increas-
ingly easier to tamper with digital video. A common form
of manipulation is to clone or duplicate frames or parts of a
frame to remove people or objects from a video. We describe
a computationally efficient technique for detecting this form
of tampering.

Categories and Subject Descriptors
I.4 [Image Processing]: Miscellaneous

General Terms
Security

Keywords
Digital Tampering, Digital Forensics

1. INTRODUCTION
In the popular movie Speed, the characters created a doc-

tored video by simply duplicating a short sequence of frames,
Figure 1. In so doing, they were able to conceal activity on
the bus. This common and relatively easy to perform ma-
nipulation can be used to remove people or objects from a
video sequence or simply remove an undesired event from a
video. When done carefully, this form of tampering can be
very difficult to detect.

Techniques for detecting image duplication have previ-
ously been proposed [2, 5]. These techniques, however, are
computationally too inefficient to be applicable to a video
sequence of even modest length. We describe two compu-
tationally efficient techniques for detecting duplication. In
the first, we show how to detect duplicated frames, and
in the second, we show how to detect duplicated regions
across frames. We also describe how these techniques can
be adapted to yield a more computationally efficient image

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’07, September 20–21, 2007, Dallas, Texas, USA.
Copyright 2007 ACM 978-1-59593-857-2/07/0009 ...$5.00.

Figure 1: By duplicating frames on a surveillance
video, the characters in the movie Speed create a
doctored video to conceal activity on the bus.

duplication algorithm. In each case we show the efficacy on
several real video sequences.

2. METHODS

2.1 Frame Duplication
Shown in Figure 2 is a portion of a video where three

frames are duplicated to remove the flight attendant. This
type of manipulation is fairly easy to perform and can be
difficult to detect visually particularly in a video taken from
a stationary surveillance camera. Given a video sequence,
f(x, y, t), t ∈ [0, L − 1], of length L, it would be computa-
tionally intractable to search for duplication by comparing
all possible sub-sequences of arbitrary length and positions
in time. An additional difficulty in searching for duplication
is that compression artifacts (e.g., MPEG) introduce dif-
ferences between initially identical duplicated frames. We,
therefore, describe a computationally efficient algorithm for
detecting duplicated video frames that is robust to compres-
sion artifacts.

Our basic approach is to partition a full-length video se-
quence into short overlapping sub-sequences. A compact

Figure 2: Shown in the left column are seven frames
of an original video. Shown on the right are the
results of duplicating three frames so as to remove
the flight attendant from the scene.

and efficient to compute representation that embodies both
the temporal and spatial correlations in each sub-sequence
is then extracted and compared throughout the entire video.
Similarity in the temporal and spatial correlations are then
used as evidence of duplication.

Throughout, we will use the correlation coefficient as a
measure of similarity. The correlation coefficient between
two vectors ~u and ~v (or matrices or images strung out in
vector form) is given by:

C(~u,~v) =

P
i(ui − µu)(vi − µv)pP

i(ui − µu)2
pP

i(vi − µv)2
, (1)

where ui and vi are the ith element of ~u and ~v, and µu and
µv are the respective means of ~u and ~v.

Denote a sub-sequence which starts at time τ and of length
n frames as:

Sτ (t) = {f(x, y, t + τ) | t ∈ [0, n − 1]}. (2)

We define the temporal correlation matrix Tτ to be a n × n
symmetric matrix whose (i, j)th entry is the correlation coef-
ficient between the ith and the jth frame of the sub-sequence,
C(Sτ (i), Sτ (j)). This temporal correlation matrix embod-
ies the correlations between all pairs of frames in a sub-
sequence. If, for example, there is little change across the
sub-sequence then the matrix entries will each have a value
near 1, whereas, if there is significant change, then the ma-
trix entries will have values closer to −1.

The spatial correlations of each frame within a sub-
sequence, Sτ (t), can be embodied in a similar spatial cor-
relation matrix, Bτ,k, for k ∈ [0, n − 1]. To compute this
matrix, a frame is first tiled with m non-overlapping blocks.
The spatial correlation matrix is a m × m symmetric matrix
whose (i, j)th entry is the correlation coefficient between the
ith and jth blocks.

The temporal and spatial correlation matrices, embodying
the correlations of short sub-sequences, are used to detect
duplicated frames in a full-length video. In the first stage
of detection, the temporal correlation matrix for all overlap-
ping (by one frame) sub-sequences is computed. The cor-
relation coefficient between pairs of these matrices, Tτ1 and
Tτ2 , is then computed, C(Tτ1 , Tτ2). Any two sub-sequences
with a correlation above a specified threshold (close to 1)
is considered a candidate for duplication. In the second
stage, the spatial correlation matrices, Bτ1,k and Bτ2,k for
k ∈ [0, n−1], of these candidate sub-sequences are compared.
If the correlation coefficient, C(Bτ1,k, Bτ2,k), between all
pairs of these matrices is above a specified threshold (close
to 1), then the sub-sequences are considered to be tempo-
rally and spatially highly correlated, and hence duplicated.
Multiple sub-sequences with the same temporal offset are
combined to reveal the full extent of the duplicated frames.
See Figure 3 for a detailed algorithmic description.

A stationary video surveillance camera recording a largely
static scene will seemingly give rise to numerous duplica-
tions. To avoid this problem, we ignore sub-sequences when
the minimum element in the temporal correlation matrix Tτ

is above a specified threshold (close to 1). Such a correlation
matrix implies that all pairs of frames in the sub-sequence
are nearly identical, and hence the scene is static.

framedup(f(x, y, t))

1 � f(x, y, t): video sequence of length N
2
3 � n: sub-sequence length
4 � γm: minimum temporal correlation threshold
5 � γt: temporal correlation threshold
6 � γs: spatial correlation threshold
7
8 for τ = 1 : N − (n − 1)
9 do Sτ = {f(x, y, t + τ) | t ∈ [0, n − 1]}

10 build Tτ � temporal correlation
11
12 for τ1 = 1 : N − (2n − 1)
13 do for τ2 = τ1 + n : N − (n − 1)
14 do if (min(Tτ1) > γm & C(Tτ1 , Tτ2) > γt)
15 build Bτ1,k � spatial correlation
16 build Bτ2,k � spatial correlation
17 if (C(Bτ1,k, Bτ2,k) > γs) � ∀k
18 do � Frame Duplication at τ1

Figure 3: Pseudo-code for detecting frame duplica-
tion.

2.2 Region Duplication
In the previous section we showed how to detect dupli-

cated frames in a video sequence. Shown in Figure 4 is an ex-
ample where only part of several frames are duplicated. Note
that this form of duplication will not typically be detected
using the algorithm described above. Here we describe how
this form of tampering can be efficiently detected. We be-
gin by assuming that a subset of the pixels in f(x, y, τ1)
of unknown location are duplicated and placed in another
frame at a different spatial location, f(x + ∆x, y + ∆y, τ2).
We also assume that these pixels undergo no other geomet-
ric or significant intensity changes. Next we describe how,
given a pair of frames, to estimate the shift (∆x, ∆y), and
then how to verify that this estimated shift corresponds to
a duplication.

2.2.1 Stationary Camera
For simplicity, we begin by assuming that our video was

taken with a stationary camera (this assumption will be re-
laxed later). Given a pair of frames f(x, y, τ1) and f(x, y, τ2),
we seek to estimate a spatial offset (∆x, ∆y) corresponding
to a duplicated region between these frames. Phase corre-
lation [4, 1] affords a robust and computationally efficient
mechanism for this estimation. We begin by defining the
normalized cross power spectrum:

P (ωx, ωy) =
F (ωx, ωy, τ1)F

∗(ωx, ωy, τ2)

‖F (ωx, ωy, τ1)F ∗(ωx, ωy, τ2)‖
, (3)

where F (ωx, ωy, τ1) and F (ωx, ωy, τ2) are the Fourier trans-
forms of the two frames, ∗ is complex conjugate, and ‖ · ‖
is complex magnitude. Let p(x, y) be the inverse Fourier
transform of P (ωx, ωy). Phase correlation techniques esti-
mate spatial offsets by extracting peaks in p(x, y). In our
case, since the video camera is stationary, we expect a sig-
nificant peak at the origin (0, 0). Peaks at other positions
denote secondary alignments that may be the result of dupli-
cation (and translation). Region duplication can therefore

Figure 4: Shown in the left column are seven frames
of an original video. Shown on the right are the
results of region duplication so as to add another
zebra into the scene.

Figure 5: Two frames of a a mountain peak as the
camera pans from left to right.

be detected by simply extracting peaks in p(x, y) that are
not at or near the origin. The spatial location of a peak
corresponds to the spatial offset (∆x, ∆y).

For each spatial offset, (∆x, ∆y), we compute the corre-
lation between f(x, y, τ1) and f(x + ∆x, y + ∆y, τ2) to de-
termine if an offset is likely to correspond to a duplicated
region. More specifically, each frame is tiled into 16 × 16
overlapping (by 1 pixel) blocks, and the correlation coeffi-
cient between each pair of corresponding blocks is computed,
Equation (1). All blocks whose correlation is above a speci-
fied threshold (close to 1) are flagged as possibly belonging
to a duplicated region. In order to remove spurious corre-
lations a binary image is constructed whose pixel value is
1 at the center of each block whose correlation is above a
specified threshold (close to 1), and 0 elsewhere. This binary
image is subjected to a connected components labeling using
a connectivity of eight [3]. Any remaining connected regions
with pixel value 1 whose area is above a specified threshold
are considered to be the result of region duplication.

See regiondup1 in Figure 6 for a detailed algorithmic
description.

2.2.2 Moving Camera
The above algorithm describes how to detect region du-

plication from a stationary camera. We next describe how
to extend this technique to a largely stationary scene filmed
with a moving camera (e.g., a panning surveillance camera).
Given our current approach, there is no way of differentiat-
ing between region duplication from a stationary camera,
and no duplication from a moving camera where objects
simply appear in different spatial locations due to camera
motion. Shown in Figure 5 for example is a scene that will
appear to our above algorithm to contain region duplication
because the mountain peak appears in different positions on
successive frames. A similar problem may arise when an
object moves across an otherwise static scene – we do not
consider this case here, although we do note that nearby
objects will change appearance as they move away from or
towards the camera, and hence will not necessarily be seen
as duplications.

In order to contend with this ambiguity, we compute a
rough measure of the camera motion to determine if the field
of view between f(x, y, τ1) and f(x, y, τ2) are sufficiently dif-
ferent so as to not contain any overlap, and hence the same
objects. The camera motion between successive frames is
approximated as a global translation. The motion between
all pairs of successive frames between time τ1 and τ2 are

computed and summed to give an overall estimate of cam-
era motion. If, for example, between τ1 and τ2, the camera
continually moves to the right displacing 10 pixels in the im-
age, then the estimated motion in the horizontal direction
will be 10(τ2 − τ1). If, on the other hand, the camera pans
to the right and then to the left returning to its starting
position, then the estimated motion will be close to 0. In
the latter case, region duplication cannot be detected be-
cause of the frame overlap between τ1 and τ2, whereas in
the former case, assuming an overall large camera motion,
a detected region duplication is unlikely to be caused by an
overlap in the field of view. Phase correlation, as described
above, is used to estimate this camera motion – the largest
peak is assumed to correspond to the camera motion. If the
accumulated motion is within a specified factor of the size
of a frame, then it is assumed that the frames at time τ1

and τ2 share a common field of view, and detection of re-
gion duplication is not applicable. If, on the other hand, the
frames do not share a field of view, then we detect region
duplication as described above. That is, peaks in the phase
correlation between f(x, y, τ1) and f(x, y, τ2) are considered
as candidate duplications, the correlation at the estimated
offsets is computed to verify duplication, and the connected
components are computed.

See regiondup2 in Figure 6 for a detailed algorithmic
description.

3. RESULTS
Shown in Figure 7 are every 1000th frame from two video

sequences, each captured with a SONY-HDR-HC3 digital
video camera. Each frame is 480 × 720 pixels in size, and
the length of each sequence is 10, 000 frames (approximately
5 minutes in length). For the first video, the camera was
placed on a tripod and kept stationary throughout. For
the second video, the camera was hand-held as the observer
walked through the Dartmouth College campus. These videos
were subjected to various forms of duplication, the results
of which are reported below. Throughout, each frame was
converted from color to grayscale.

3.1 Frame Duplication
Frame duplication was simulated by selecting a random

location in each video sequence, and duplicating 200 frames
to another non-overlapping position in the video sequence.
This entire process was repeated 100 times, each time ran-
domly selecting a different region to be duplicated to a new
random location.

The duplication algorithm was configured as follows: for
run-time considerations, each frame was first down-sampled
by a factor of 8; the temporal correlation matrix was com-
puted from sub-sequences of length n = 30 frames; the
minimum correlation for classifying the frames of a sub-
sequence as stationary was γm = 0.96; the temporal cor-
relation threshold was γt = 0.99; the spatial correlation
threshold was γs = 0.99; and the spatial correlation ma-
trix was computed for each frame partitioned into 15 × 15
pixel blocks (i.e., m = 24);

For the uncompressed video taken from a stationary cam-
era, an average of 84.2% of the duplicated frames were de-
tected with only an average of 0.03 false positives (a non-
duplicated frame classified as duplicated). For the uncom-
pressed video taken from a moving camera, 100% of the
duplicated frames were detected with 0 false positives. The

Figure 7: Sample frames from two video sequences captured from a stationary camera (top) and hand-held
camera (bottom).

improvement in performance over the stationary camera se-
quence is because duplication cannot be detected in largely
static frames which occur more often with a stationary cam-
era.

To test the sensitivity to compression, each video was sub-
jected to MPEG compression with a bit rate of either 3, 6,
or 9 Mbps. Below are the average detection accuracies and
false positives (averaged over 50 random trials).

detection false positive
video 3 6 9 3 6 9
stationary 87.9% 84.8% 84.4% 0.06 0.0 0.0
moving 86.8% 99.0% 100.0% 0.0 0.0 0.0

These results show that the frame duplication algorithm is
effective in detecting duplications, and is reasonably robust
to compression artifacts.

Running on a 3.06 GHz Intel Xeon processor, a 10, 000
frame sequence requires 45 minutes of processing time. This
run-time could be greatly reduced by distributing the calcu-
lations and comparisons of the temporal and spatial corre-
lation matrices to multiple nodes of a cluster. The run-time
complexity of this algorithm is O(N2) where N is the total
number of frames. The run-time is dominated by the pair-
wise comparison of temporal and spatial correlation matri-
ces.

3.2 Region Duplication
Region duplication was simulated by selecting a local re-

gion from one frame and duplicating it into a different lo-
cation in another frame. The regions were of size 64 × 64,

128 × 128, and 256 × 256. For each region size, this pro-
cess was repeated 500 times, each time randomly selecting
a different region location and pair of frames.

3.2.1 Stationary Camera
Assuming that the pair of frames containing the dupli-

cated regions are known, the duplication algorithm, re-
giondup1, was configured as follows: the phase correlation
threshold was γp = 0.015; the phase correlation offset was
γo = 15 pixels; the block neighborhood size was b = 16 pix-
els; the block correlation threshold was γb = 0.7; and the
minimum area threshold was γa = 1, 500 pixels.

To test the sensitivity to compression, each video was sub-
jected to MPEG compression with a bit rate of either 3, 6,
or 9 Mbps. Below are the average detection accuracies and
false positives (a non-duplicated region classified as dupli-
cated) for the video from the stationary camera (top row of
Figure 7).

region detection false positive
size 3 6 9 3 6 9
64 8.6% 23.4% 35.0% 0.004 0.000 0.000
128 70.4% 80.0% 82.2% 0.006 0.004 0.002
256 100.0% 100.0% 100.0% 0.000 0.000 0.000

These results show that the region duplication algorithm is
effective in detecting relatively large regions, but, not sur-
prisingly, struggles to find small regions (a region of size
64 × 64 occupies just over 1% of the pixels in a frame of
size 480 × 720). In addition, detection is reasonably robust

regiondup1(f(x, y, τ1), f(x, y, τ2))

1 � f(x, y, τ1), f(x, y, τ2): two video frames
2
3 � γp: phase correlation threshold
4 � γo: phase correlation offset threshold
5 � b: block neighborhood size
6 � γb: block correlation threshold
7 � γa: minimum area threshold
8
9 compute p(x, y) � phase correlation

10 for each (∆x, ∆y), s.t. p(∆x, ∆y) > γp and
(|∆x| > γo or |∆y| > γo)

11 do for each i, j
12 do i′ = i + ∆x

13 j′ = j + ∆y

14 b1 = f(i : i + b − 1, j : j + b − 1, τ1)
15 b2 = f(i′ : i′ + b − 1, j′ : j′ + b − 1, τ2)
16 if (C(b1, b2) > γb) � correlation
17 do mask(i, j) = 1
18 mask = connected components(mask)
19 if (area(mask(x, y)) > γa)
20 do � Region Duplication at (x, y)

regiondup2(f(x, y, t), τ1, τ2)

1 � f(x, y, t): video sequence
2 � τ1, τ2: two frame indices
3 � frame size: Nx × Ny pixels
4
5 � s: motion camera offset threshold
6
7 for τ = τ1 : τ2 − 1
8 do compute p(x, y) for f(x, y, τ) and f(x, y, τ + 1)
9 (δx, δy) = arg maxx,y(p(x, y))

10 (∆x, ∆y) = (∆x, ∆y) + (δx, δy)
11 if (∆x > sNx and ∆y > sNy)
12 do regiondup1(f(x, y, τ1), f(x, y, τ2))

Figure 6: Pseudo-code for detecting region dupli-
cation from a stationary (regiondup1) and moving
camera (regiondup2).

to compression artifacts, and overall, the number of false
positives is small.

Shown in Figure 8 are two frames with region duplication
from a 800 frame video taken with a stationary camera (the
zebra was copied from one frame to another). Assuming the
first frame known, the entire video sequence was searched
for duplication. Shown in this same figure are the results of
regiondup1. In the third panel is the detected duplication
and in subsequent panels are false positives corresponding
to the largely uniform sky. These false positives could be
reduced because the duplicated regions are almost entirely
overlapped. Note also that the phase correlation for the
actual duplication was 0.21, while that for the false positives
was on the order of 0.05. As such, the phase correlation can
be used to rank-order the suspicious regions.

3.2.2 Moving Camera
A new video of length 4, 200 frames was captured to test

region duplication from a moving camera. The camera was
hand-held as the operator walked along the sidewalk for one
half of the sequence and then back to his starting position.
In this way, we are able to select frames with and without
overlap.

Region duplication was applied to two random frames
from the first 2, 000 frames of the video sequence that were
at least 1, 000 frames apart, and hence had no overlap in
their views. This process was repeated 500 times, each time
randomly selecting a pair of frames and different region lo-
cations.

Assuming that the pair of frames containing the duplica-
tion regions is known, the duplication algorithm regiondup2
was configured as follows: the camera motion offset thresh-
olds was s = 1.2 and the parameters to regiondup1 were
the same as that described above except that the phase cor-
relation offset threshold was set to γo = −1 to allow all
possible phase correlations to be considered. Below are the
average detection accuracies and false positives for the video
from the moving camera.

region detection false positive
size 3 6 9 3 6 9
64 16.6% 30.8% 39.4% 0.012 0.006 0.004
128 47.8% 67.2% 72.8% 0.002 0.000 0.000
256 72.4% 83.4% 87.8% 0.004 0.004 0.002

Note that the detection accuracies are, on average, not as
good as those from the stationary camera. The reason for
this is that the compression artifacts are more severe in the
presence of motion which introduce larger differences in the
originally duplicated regions. Note, however, that for the
64×64 region size, the performance is slightly better than in
the stationary camera. The reason for this is that the phase
correlation is more likely to detect the duplicated region
when the overall background is not stationary.

The above experiment was repeated where the pairs of
frames were selected so that they shared a portion of their
field of view. Here we tested the ability of our camera motion
estimation algorithm to determine that these pairs of frames
were not suitable for duplication detection. Below are the
percentage of frames (averaged over 500 random trials) that
were correctly classified.

region detection
size 3 6 9
64 100.0% 100.0% 100.0%
128 100.0% 100.0% 100.0%
256 97.6% 100.0% 100.0%

This result shows that the camera motion estimation is re-
liable, allowing us to disambiguate between duplication and
an object simply appearing twice in a scene due to camera
motion.

In our final experiment, we tested the ability of our tech-
nique to detect region duplication when only one of the
frames containing duplication was known. Fifty sequences
with region duplication were generated from the first 2, 000
frames of the 4, 200 frame video described above. In each
case, two random frames that were at least 1, 000 frames
apart were selected, and a randomly selected region of size
128x128 was copied from one frame to a different randomly
selected location of the second frame. Each sequence was

Figure 8: Shown in the first panel is one frame of a 800 frame video taken from a stationary camera. Shown
in the second panel is the result of region duplication where the zebra from the first panel was copied into
this frame. Shown in the subsequent panels are the detection results: in the third panel is the duplication
corresponding to the zebra, and in the subsequent panels are false positives corresponding to the largely
uniform sky.

subjected to MPEG compression with a bit rate 9 Mbps.
Assuming that one of the duplicated frames, τ1, is known,
the function regiondup2 was applied. The block correla-
tion threshold was increased from γb = 0.7 to 0.9 so as to
reduce the number of false positives. All other parameters
remained unchanged. The duplicated regions were detected
94% of the time, with an average of 0.1 false positives.

Running on a 3.06 GHz Intel Xeon processor, region dupli-
cation between two pairs of frames requires about 1 second
of processing time. The run-time complexity of this algo-
rithm is O(P log(P)) where P are the total number of image
pixels. The run-time is dominated by the Fourier transform
needed to compute phase correlation.

3.3 Image Duplication
With only a few minor adjustments, the region duplica-

tion algorithm described above can be adapted to detect
tampering in a single static image (or video frame). This
approach is more computationally efficient than our earlier
approach to detecting duplication in images [5].

An image is first partitioned into non-overlapping sub-
images of equal size. The function regiondup1 is then
evaluated for all pairs of sub-images. This approach will
not detect a duplicated region if it is contained within a sin-
gle sub-image. To contend with this, each sub-image can
be processed recursively to detect more and more spatially
localized duplication.

Shown in Figure 9 are several original images (left) and the
results of duplication (right) to remove an object or person
from the image. Also shown in this figure are the results
of duplication where the duplicated image was saved with
JPEG compression of 100 (left) and 50 (right), on a scale
of 0 to 100. In each example, regiondup1 was configured
as follows: the phase correlation threshold was γp = 0.05;
the phase correlation offset threshold was γo = −1 to allow
all possible phase correlations to be considered; the block
neighborhood size was b = 16 pixels; the block correlation

threshold was γb = 0.8; and the minimum area threshold
was γa = 1, 000 pixels. The image was partitioned into 4
sub-images (2 × 2), and each was recursively processed 2
times. In each example the duplication was detected.

For a grayscale image of size 512 × 512 pixels, the run-
time on a 3.06 GHz Intel Xeon processor is approximately 1
second as compared to 10 seconds for our earlier implemen-
tation [5].

4. DISCUSSION
We have described two techniques for detecting a com-

mon form of tampering in video. The first technique detects
entire frame duplication and the second detects if only a
portion of one or more frames was duplicated. In each case,
central to the design of the algorithms was the issue of com-
putational cost since even a video of modest length can run
into the tens of thousands of frames. In addition to being
computationally efficient, each algorithm can easily be dis-
tributed to a cluster for more efficient processing. Results
from both real and simulated tampering suggests that these
algorithms can detect most duplications in both high- and
low-quality compressed video, with relatively few false pos-
itives. We have also shown how these techniques can be
adapted to efficiently detect duplication in a single image or
video frame.

We expect these techniques, in conjunction with earlier
work in video forensics [6, 7] to make it increasingly harder
to doctor digital video.

Acknowledgments
This work was supported by a Guggenheim Fellowship, a
gift from Adobe Systems, Inc., a gift from Microsoft, Inc.,
a grant from the United States Air Force (FA8750-06-C-
0011), and by the Institute for Security Technology Studies
at Dartmouth College under grant 2005-DD-BX-1091 from
the Bureau of Justice Assistance and Award Number 2006-
CS-001-000001 from the U.S. Department of Homeland Se-
curity. Points of view or opinions in this document are those
of the author and do not represent the official position or
policies of the U.S. Department of Justice, the U.S. Depart-
ment of Homeland Security, or any other sponsor.

5. REFERENCES
[1] E. D. Castro and C. Morandi. Registration of

translated and rotated images using finite fourier
transforms. IEEE Transactions on Pattern Analysis
Machine Intelligence, 9(5):700–703, 1987.

[2] J. Fridrich, D. Soukal, and J. Lukás̆. Detection of
copy-move forgery in digital images. In Proceedings of
Digital Forensic Research Workshop, August 2003.

[3] R. Gonzalez and R. Woods. Digital Image Processing.
Prentice Hall, New Jersey, 2002.

[4] C. Kuglin and D. Hines. The phase correlation image
alignment method. In IEEE International Conference
On Cybernetics and Society, pages 163–165, New York,
September 1975.

[5] A. Popescu and H. Farid. Exposing digital forgeries by
detecting duplicated image regions. Technical Report
TR2004-515, Department of Computer Science,
Dartmouth College, 2004.

[6] W. Wang and H. Farid. Exposing digital forgeries in
video by detecting double MPEG compression. In ACM
Multimedia and Security Workshop, Geneva,
Switzerland, 2006.

[7] W. Wang and H. Farid. Exposing digital forgeries in
interlaced and de-interlaced video. IEEE Transactions
on Information Forensics and Security, 2007 (in press).

Figure 9: Shown are an original image (left) and
the result of tampering by duplication (right), and
the results of detecting duplication for two JPEG
qualities of 100 (left) and 50 (right). The example in
the last row has two different duplications.

