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Abstract

From speech to images, and videos, advances in machine
learning have led to dramatic improvements in the qual-
ity and realism of so-called AI-synthesized content. While
there are many exciting and interesting applications, this
type of content can also be used to create convincing and
dangerous fakes. We seek to develop forensic techniques
that can distinguish a real human voice from synthesized
voice. We observe that deep neural networks used to syn-
thesize speech introduce specific and unusual spectral cor-
relations not typically found in human speech. Although not
necessarily audible, these correlations can be measured us-
ing tools from bispectral analysis and used to distinguish
human from synthesized speech.

1. Introduction
Recent advances in AI-synthesized content-generation

are leading to the creation of highly realistic audio [11, 4],
image [6, 5], and video [10, 7, 14, 13, 1]. While there
are many interesting and artistic applications for this type
of synthesized content, these same techniques can also be
weaponized to, for example, create a video of a world leader
threatening another nation leading to an international cri-
sis, or a video of a presidential candidate saying something
inappropriate which, if released 24 hours before an elec-
tion, could lead to interference with a democratic election,
or a video of a CEO privately claiming that her company’s
profits are down leading to global stock manipulation. Ad-
vances in deep learning have led to the development of syn-
thesis tools for creating the video and audio that can create
these types of fakes.

As these synthesis tools become more powerful and
readily available, there is a growing need to develop foren-
sic techniques to detect the resulting synthesized content.
We describe a technique for distinguishing human speech
from synthesized speech that leverages higher-order spec-
tral correlations revealed by bispectral analysis. We show
that these correlations are not present in a wide variety of

recorded human speech, but are present in speech synthe-
sized with several state of the art AI systems. We also show
that these correlations are likely the result of fundamental
properties of the synthesis process, which would be diffi-
cult to eliminate as a counter measure.

In the general area of audio forensics, there are a num-
ber of techniques for detecting various forms of audio
spoofing [15]. These techniques, however, do not explic-
itly address the detection of synthesized speech. Previous
work [3] showed that certain forms of audio tampering can
introduce the same type of higher-order artifacts that we ex-
ploit here. This previous work, however, did not address the
issue of synthesized content.

In comparing different features and techniques for
synthetic-speech detection, the authors in [12] found that
features based on high-frequency spectral magnitudes and
phases are most effective for distinguishing human from
synthesized speech. These features are based on first-order
Fourier coefficients or their second-order power spectrum
correlations. In contrast to these first- and second-order
spectral features – which might be easy to adjust to match
human speech – we explore higher-order polyspectral fea-
tures which are both discriminating and should prove to be
more difficult to adjust by the synthesizer.

2. Methods
We begin by describing the data set of human and syn-

thesized content that we recorded and created. We then
describe the polyspectral analysis tools that underlie our
technique followed by a qualitative assessment of the dif-
ferences in the bispectral properties of human and synthe-
sized content. We conclude this section with a description
of a simple classifier that characterizes these differences for
the purposes of automatically distinguishing between hu-
man and synthesized speech.

2.1. Data set

We collected a data set consisting of 1, 845 human and
synthesized speech recordings. The human speech are ob-
tained from nine people (five male and four female). These
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recordings were extracted from various high-quality pod-
casts. Each recording averaged 10.5 seconds in length.

The same texts spoken by the human subjects (tran-
scribed from the recordings) were used to synthesize au-
dio samples using various automatic text-to-speech synthe-
sis methods including Amazon Polly, Apple text-to-speech,
Baidu DeepVoice, and Google WaveNet1. We also include
samples generated using the Lyrebird.ai API, which, un-
like other synthesis methods, generates personalized speech
styles (because of limited access to this API, the texts
spoken were not matched to the human and other synthe-
sized speech). In synthesizing these recordings, a range of
speaker profiles was selected to increase the diversity of the
synthesized voices.

2.2. Bispectral Analysis

In this section, we describe the basic statistical tools used
to analyze audio recordings. The bispectrum of a signal
represents higher-order correlations in the Fourier domain.

An audio signal y(k) is first decomposed according to
the Fourier transform:

Y (ω) =

∞∑
k=−∞

y(k)e−ikω, (1)

with ω ∈ [−π, π]. It is common practice to use the
power spectrum of the signal P (ω) to detect the presence
of second-order correlations, which is defined as:

P (ω) = Y (ω)Y ∗(ω), (2)

where ∗ denotes complex conjugate. The power spectrum
is blind to higher-order correlations, which are of primary
interest to us. These correlations can, however, be detected
by turning to higher-order spectral analysis [9]. The bispec-
trum, for example, is used to detect the presence of third-
order correlations:

B(ω1, ω2) = Y (ω1)Y (ω2)Y
∗(ω1 + ω2). (3)

Unlike the power spectrum, the bispectral response reveals
correlations between the triple of harmonics [ω1, ω1, ω1 +
ω1], [ω2, ω2, ω2+ω2], [ω1, ω2, ω1+ω2], and [ω1,−ω2, ω1−
ω2]. Note that, unlike the power spectrum, the bispectrum
in Equation (3) is a complex-valued quantity. From an inter-
pretive stance it will be convenient to express the complex
bispectrum with respect to its magnitude:

|B(ω1, ω2)| = |Y (ω1)| · |Y (ω2)| · |Y (ω1 + ω2)|, (4)

1Sources: Amazon Polly aws.amazon.com/polly/, Apple
text-to-speech API developer.apple.com/documentation/
appkit/nsspeechsynthesizer, Baidu DeepVoice r9y9.
github.io/deepvoice3_pytorch/, and Google WaveNet
r9y9.github.io/wavenet_vocoder/.

and phase:

∠B(ω1, ω2) = ∠Y (ω1)+∠Y (ω2)−∠Y (ω1 +ω2). (5)

Also from an interpretive stance it is helpful to work with
the normalized bispectrum [2], the bicoherence:

Bc(ω1, ω2) =
Y (ω1)Y (ω2)Y

∗(ω1 + ω2)√
|Y (ω1)Y (ω2)|2|Y (ω1 + ω2)|2

. (6)

This normalized bispectrum yields magnitudes in the range
[0, 1]. Throughout, we compute the bicoherence with a seg-
ment length of N = 64 with an overlap of 32 samples.

In the absence of noise, the bicoherence can be estimated
from a single realization as in Equation (6). However in the
presence of noise some form of averaging is required to en-
sure stable estimates. A common form of averaging is to
divide the signal into multiple segments. For example the
signal y(n) with n ∈ [1, N ] can be divided into K seg-
ments of length M = N/K, or K overlapping segments
with M > N/K. The bicoherence is then estimated from
the average of each segment’s bicoherence spectrum:

B̂c(ω1, ω2) =
1
K

∑
k Yk(ω1)Yk(ω2)Y ∗

k (ω1 + ω2)√
1
K

∑
k |Yk(ω1)Yk(ω2)|2 1

K

∑
k |Yk(ω1 + ω2)|2

.

(7)

2.3. Bispectral Artifacts

Shown in Figure 1 is the bicoherent magnitude and phase
for three different human speakers. Shown in the second
to the sixth rows are the bicoherent magnitude and phase
for five different synthesized voices, as described in Sec-
tion 2.1. Each bicoherent magnitude and phase panel are
displayed on the same intensity scale. At first glance, there
are some glaring differences in the bicoherent magnitude
(with the exception of Apple) between the human and syn-
thesized speech. There are also strong differences in the
bicoherent phases across all synthesized speech.

As most of the synthesis methods use certain types of
deep neural networks as underlying model, we hypothesize
that these bicoherence differences are due to the underly-
ing speech-synthesis network architecture and, in particu-
lar, that long-range temporal connections give rise to the un-
usual spectral correlations. To determine if this might be the
case, we created three “clipped” WaveNet network archi-
tectures in which the network connectivity was effectively
reduced. This was done by first noticing that WaveNet em-
ploys 3-tap filters in its convolutional layers. We, therefore,
truncate the full WaveNet models in which the left-most
value of the convolution filter in one of three layers was
fixed at a value of zero2. With a total of 24 convolutional

2A more direct approach is to use simply use a 2-tap filter. This, how-
ever, would require retraining the entire model and so we adopted the sim-
pler approach of zeroing out one of the filter values.

aws.amazon.com/polly/
developer.apple.com/documentation/appkit/nsspeechsynthesizer
developer.apple.com/documentation/appkit/nsspeechsynthesizer
r9y9.github.io/deepvoice3_pytorch/
r9y9.github.io/deepvoice3_pytorch/
r9y9.github.io/wavenet_vocoder/
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Figure 1. Bicoherent magnitude and phase for three human speakers and five synthesized voices. Shown in the lower three rows are the
results for three different clipped versions of the WaveNet architecture. The magnitude plots are displayed on an intensity scale of [0, 1]
and the phase plots are displayed on a scale of [−π, π]. Note the generally larger magnitudes and the stronger phase correlations in the
synthesized speech as compared to the human speech, and the reduction in magnitude for the clipped WaveNet architectures.



layers we performed this manipulation at level 24 (closest to
the output level), 12, or 1 (closest to the input level). The ef-
fective network clipping was more pronounced for the low-
est level manipulations.

Shown in the last three rows of Figure 3 are the result-
ing bicoherence magnitudes and phases for three record-
ings synthesized with these three networks with increasing
amounts of “clipping”. As can be clearly seen, the bico-
herence magnitude reduces with an increasing reduction in
network connectivity, and begins to appear more like the
human speakers in the first row of Figure 3. At the same
time, there is little impact on the bicoherence phase, most
likely because our network manipulation did not remove
all of the long-range connections. Although this does not
prove that the network architecture is solely responsible for
the increased bicoherence properties, it provides prelimi-
nary evidence to suggest that this is the case. We note that
the artifacts from Apple are more subdued than others. This
may be related to the fact that the quality of speech is sig-
nificantly less realistic than Google and Amazon, possibly
because the underlying technique is not based on the same
type of network architecture that we believe is introducing
the polyspectral correlations.

Regardless of precisely why these correlations are intro-
duced, we next show that the bicoherence differences can be
used to automatically distinguish between human and syn-
thesized speeches.

2.4. Bispectral Classification

The bicohernece, Equation (7), is computed for each hu-
man and synthesized speeches, from which the bicoherence
magnitude and phase are computed. These two-dimensional
quantities are normalized such that the magnitude and phase
for each frequency ω1 are normalized into the range [0, 1] by
subtracting the minimum value and dividing by the result-
ing maximum value.

The normalized magnitude and phase are each character-
ized using the first four statistical moments. Let the random
variableM and P denote the underlying distribution for the
bicoherence magnitude and phase. The first four statistical
moments are given by:

• mean, µX = EX [X]

• variance, σX = EX [(X − µX)2]

• skewness, γX = EX

[(
X−µX

σX

)3]

• kurtosis, κX = EX

[(
X−µX

σX

)4]
where EX [·] is the expected-value operator with regards to
random variableX . From the magnitudeX =M and phase
X = P , these four moments are estimated by replacing the
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Figure 2. A 2-D slice of the full 8-D statistical characterization of
the bicoherence magnitude and phase. The open blue circles cor-
respond to human speech and the remaining filled colored circles
correspond to synthesized speech. Even in this reduced dimen-
sional space, the human speech is clearly distinct from the synthe-
sized speech.

expected-value operator with an average. With this statis-
tical characterization, each recording is reduced to an 8-D
feature vector.

Shown in Figure 2 is a scatter plot of the mean bicoher-
ence magnitude versus the mean bicoherence phase for the
human speech and each type of synthesized speech. This
figure illustrates some interesting aspects of the bicoherence
statistics of the human and synthesized recordings. Even in
this reduced-dimensional space that does not account for
variance, skewness, or kurtosis, each type of signal is well
clustered and (with the exception of Amazon and WaveNet)
distinct from the other types. This suggests that it will be
relatively straight-forward to distinguish between these dif-
ferent recordings.

Also shown in Figure 2 are six speech samples syn-
thesized with a more recent generative adversary network
(GAN) based model [8]3. Although the GAN-based model
has a different synthesis mechanism, the synthesized con-
tents still exhibit distinct bispectral statistics.

The scatter plot in Figure 2 suggests two possible ap-
proaches to building a classifier. A one-class non-linear
support vector machine (SVM) or a collection of linear clas-
sifiers. We, primarily for simplicity, choose the latter. In
particular, we train a linear classifier to distinguish each
category of recording – human, Amazon, Apple, Baidu,

3There is no code publicly available and the six samples were down-
loaded from fangfm.github.io/crosslingualvc.html.

fangfm.github.io/crosslingualvc.html
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Figure 3. ROC curve for binary classification of human versus syn-
thetic speech (solid red line). The dashed and dotted lines corre-
spond to the accuracies for these same recordings with varying
amounts of additive noise. See also Figure 4.

Google, and Lyrebird – from all other recordings. Fol-
lowing this strategy, five separate logistic regression clas-
sifiers are trained to distinguish each synthesized audio
from all other categories. For example, the first classifier
is trained to distinguish Amazon recordings from Apple,
Baidu, Google, Lyrebird, and human recordings. Our full
data set consists of 100 human recordings, and 800 Ama-
zon (8 speaker profiles), 400 Apple (4 speaker profiles),
100 Baidu (1 speaker profile), 400 Google (4 speaker pro-
files), and 45 Lyrebird recordings (5 recordings for each of
9 speaker profiles). Because of the across class imbalance,
the training data set consisted of 70% of these samples with
a maximum of 90 samples per category, with the remaining
data used for testing.

The logistic regression classifier is implemented using
scikit-learn4. At testing, a speech sample is clas-
sified by each classifier (Amazon, Apple, Baidu, Google,
and Lyrebird). If the maximum classification score across
all five classifiers is above a specified threshold, then the
recording is classified as synthesized, otherwise it is classi-
fied as human.

3. Results
We test the performance of distinguishing human speech

from synthesized speech based on the 8-D summary bico-
herence statistics. Shown in Figure 3 are the receiver opera-
tor characteristic (ROC) curves for this binary classification.

4scikit-learn.org
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Figure 4. Confusion matrix for classifying a recording as human
or as synthesized by one of five techniques. See also Figure 3.

The solid curve with an area under the curve (AUC) of 0.99
corresponds to the original quality recordings. The remain-
ing dashed/dotted colored curves correspond to the record-
ings that were laundered with varying amounts of additive
noise (with a signal-to-noise ratio (SNR) between 20 and 40
db) followed by re-compression at a quality of 128 kilobits
per second (kbit/s). At high SNR, the AUC remains above
0.98, and the AUC decreases with increasing amounts of
additive noise.

When the original recordings are recompressed at a
lower quality of 64 kbit/s, the overall AUC remains high
at 0.99 suggesting that the bispectral statistics are robust to
recompression.

Shown in Figure 4 is the confusion matrix for the multi-
class classification showing that the differences in bicoher-
ence statistics are sufficient not only to distinguish human
from synthesized speeches but also, with a reasonable de-
gree of accuracy, to distinguish between different types of
synthesized speech.

4. Discussion
We have developed a forensic technique that can distin-

guish human from synthesized speech. This technique is
based on the observation that current speech-synthesis al-
gorithms introduce specific and unusual higher-order bis-
pectral correlations that are not typically found in human
speech. We have provided preliminary evidence that these
correlations are the result of the long-range correlations in-
troduced by the underlying network architectures used to

scikit-learn.org


synthesize speech. This bodes well for us in the forensic
community as it appears that these network architectures are
also what is giving rise to more realistic sounding speech
(despite the unusual bispectral correlations). More work,
however, remains to be done to more precisely understand
the specific source of the unusual bispectral correlations.

As with any forensic technique, thought must be given
to counter-measures that our adversary might adopt. While
it would be straight-forward to match first-order spectral
correlations between human and synthesized speech, the
higher-order spectral correlations are not so easily matched.
In particular, we know of no closed-form solution for invert-
ing the bispectrum or bicoherence. It remains to be seen if
other techniques like generative adversarial networks can
synthesize audio while matching the bispectral artifacts that
currently can be used to distinguish human from synthe-
sized speech.
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Pérez, Christian Richardt, Michael Zollhöfer, and
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