
Robust Homomorphic Image Hashing

Priyanka Singh
Dhirubhai Ambani Institute of Information and Communication Technology

Gandhinagar, Gujarat, India
Priyanka Singh@daiict.ac.in

Hany Farid
University of California, Berkeley

Berkeley CA, USA
hfarid@berkeley.edu

Abstract

Most image forensic techniques are concerned with au-
thenticating the contents of an image, linking an image to a
device or class of devices, or extracting forensically useful
information from an image. Another aspect of image foren-
sics is the identification of previously identified content, par-
ticularly in the face of simple image modifications. Such
so-called robust image hashing techniques can be highly ef-
fective at finding child sexual abuse material, revenge porn,
terrorism-related material, and dangerous or hateful con-
spiracy material. The growing use of end-to-end encryption
on commercial platforms makes identification of such ma-
terial significantly more challenging. We describe a robust
image hashing algorithm that is both robust to simple image
manipulations and that can operate on an encrypted image,
without the need or even ability to decipher the underlying
encrypted image.

1. Introduction
In 2017 Facebook announced a trial program to com-

bat the growing and troubling problem of revenge porn [7].
Facebook users wishing to remove and prevent future up-
load of personal and potentially embarrassing images of
themselves were asked to send these images to Facebook.
Facebook would in turn extract a distinct signature (a hash
or robust hash) from this content, allowing the platform to
eliminate a specific image from future upload. A similar
technology – photoDNA – has been in use on Facebook and
other platforms to prevent the upload of known child sexual
abuse material [10].

Although well-intentioned, this program was met with
some skepticism and ridicule. At a time when Facebook,
and social media in general, is under intense scrutiny for

their failure to protect user data and privacy, it seemed un-
reasonable to ask users to trust Facebook with some of their
most personal and intimate images.

More recently, Facebook announced plans to move all
messaging services within the Facebook ecosystem to use
end-to-end encryption [6]. Without proper safeguards, it
will be nearly impossible to contend with the trafficking
of child sexual abuse, terrorism, and dangerous conspiracy
material.

We propose that a balance can be found between pri-
vacy and security. Users should be able to communicate
without fear of corporate or government interference, but at
the same time, platforms should have safeguards in place to
contend with the most abusive and dangerous content mak-
ing its way through their platforms.

To this end, we describe a secure robust image hash-
ing algorithm that extracts a distinct but stable (to some
common image manipulations) signature that can be used
to quickly and reliably identify a specific piece of content.
The hash is designed to be distinct, stable, efficient, and
amenable to being implemented within a partially homo-
morphic encryption system. In particular, by restricting the
computations to addition and scalar multiplication of un-
encrypted pixel values (plaintext), we can extract the hash
from an encrypted version (ciphertext) of the image, with-
out requiring or even being able to decrypt the image.

We will show through large-scale experiments that the
robust image hash is highly distinct and stable to a broad
range of non-linear intensity adjustments (gamma correc-
tion), additive noise, compression quality, and re-scaling.

1.1. Related Work

There is a significant body of literature on so-called
content-based image retrieval (CBIR) techniques [16, 8]
Within this literature, there has also been some efforts on

1

developing secure or privacy-preserving CBIR techniques.
We briefly review this literature and place our work in the
context of these techniques.

Secure CBIR techniques consist of two basic steps con-
sisting of the extraction of a distinct signature and compar-
ison of that signature to a pre-computed database of image
signatures.

Several specialized secure CBIR schemes have been pro-
posed. For example, Erkin et al. [3] proposed a technique
that allows for server-side facial recognition without having
to transmit or store sensitive facial biometric information
in an unencrypted format. Like our approach, this tech-
nique exploits the homomorphic properties of the Paillier
encryption algorithm, but unlike our approach, only applies
to facial recognition. Rahulamathavan et al. [14] proposed
a similar secure facial recognition system. Both of these
techniques require multiple client-server communications.
In contrast, in our approach, we require only a single client-
server communication.

Lu et al. [9] proposed a secure CBIR scheme to en-
able search over encrypted multimedia databases. In this
scheme, a signature is extracted prior to encryption, the
multimedia content is encrypted with a traditional algorithm
(e.g., AES, DES), and this signature and encrypted data are
sent to the server. Xia et al. [19] proposed a secure CBIR
scheme that employs an encrypted stream cipher approach.
While effective at preserving privacy, these approaches are
not robust to simple image manipulations, whereas our
approach is robust to luminance non-linearities, additive
noise, re-compression, and re-scaling.

Several feature-based privacy-preserving transforms
have previously been proposed [17, 5, 15, 1, 2]. These ap-
proaches generally do not reach the accuracies needed to
operate on a large social-media platform like Facebook, that
routinely sees billions of uploads per day. To this end, we
seek detection accuracies in the mid to high 90-percentiles
with false alarms on the order of 1 in ten million. Com-
peting approaches to these feature-based approaches have
also been proposed [12, 13, 18], but these techniques cannot
compete with the computational efficiency of the feature-
based approaches.

In summary, unlike previous approaches, our technique
is applicable to all images, is robust to common image ma-
nipulations, achieves a high degree of matching even with
false matches on the order of 1 in 10 million, requires only a
single client-to-server message, and is computationally ef-
ficient.

Our robust and secure CBIR leverages the properties of
homomorphic encryption within the Paillier cryptosystem,
but is not critically dependent on it. We begin with an
overview of this encryption scheme and then describe the
details of our technique.

2. Paillier Cryptosystem
The Paillier cryptosystem is a partially homomorphic,

asymmetric encryption scheme [11]. We briefly describe
this cryptosystem and then enumerate its homomorphic
properties.

A public-private key pair is computed by first generating
two large prime numbers p and q, from which the public
keys n and g are computed as:

n = p× q (1)
g = n+ 1. (2)

The private keys λ and µ are computed as:

λ = lcm(p− 1, q − 1) (3)
µ = mod(α, n), (4)

where lcm(·) denotes the least common multiple operator,
mod(·) is the modulo operator, and α is computed by the
extended Euclidean algorithm. Specifically, γ is first com-
puted as follows:

γ = gcd
(

mod(gλ, n2)− 1

n
, n

)
, (5)

where gcd(·) is the greatest common divisor operator. The
Bézout coefficients α and β satisfy:

γ = α× mod(gλ, n2)− 1

n
+ β × n. (6)

With the public (n, g) and private (λ, µ) keys generated,
we next describe how to encrypt and decrypt a message.

A plaintext message m can be encrypted to ciphertext c
as follows:

c = E(m, r; g, n) = mod(gm × rn, n2), (7)

where r is a random integer satisfying 0 < r < n. The
incorporation of this random value ensures that the same
plaintext is encoded as different ciphertexts under the same
public key.

A ciphertext message c is decrypted as follows:

D(c;λ, µ, n) = mod
(

mod(cλ, n2)− 1

n
× µ, n

)
. (8)

The Paillier cryptosystem is partially homomorphic, sat-
isfying multiplicative and exponentiation identities. Let ci-
phertexts c1 and c2 be the encrypted version of messages
m1 and m2. The homomorphic properties are as follows:

• Under the appropriate modular arithmetic, the de-
crypted product of two ciphertexts is equal to the sum
of their corresponding plaintexts:

D(mod(c1 × c2, n2);λ, µ, n) = mod(m1 +m2, n). (9)

• Under the appropriate modular arithmetic, the de-
crypted exponentiation of a ciphertext by a scalar value
s is equal to the product of the scalar and correspond-
ing plaintext:

D(mod(cs1, n
2);λ, µ, n) = mod(s×m1, n). (10)

Although these homomorphic properties are fairly lim-
ited, we will describe a robust image hashing scheme (ex-
traction and comparison) that requires only addition and
scalar multiplication in the plaintext domain, meaning that
it can be fully implemented in the encrypted domain.

3. Robust Image Hashing

We describe a robust image hashing algorithm that ex-
tracts a compact, distinct, and robust (to common image
manipulations) signature. In addition to these typical re-
quirements, we seek a hashing algorithm that lends itself to
computation on the corresponding ciphertext as described in
the previous section. This limitation requires us to rely only
on addition and scalar multiplication in the plaintext do-
main. We also seek to bundle all of the information needed
to perform the hashing in the ciphertext domain into a sin-
gle payload which, as we will see below, requires encoding
additional information beyond the image pixels. We first
describe this algorithm in the plaintext domain, and then in
the ciphertext domain.

3.1. Plaintext domain

We begin by performing a series of simple pre-
processing steps that collectively reduce the complexity of
extracting a hash, reduces the length of the extracted hash,
and increases its robustness to image modifications. These
steps are not expected to be performed on the ciphertext and
so need not conform to the homomorphic computation lim-
itations.

The first pre-processing step converts a three-channel
(RGB) color image to grayscale using a standard conver-
sion of I = 0.2989R + 0.5870G + 0.1140B (if the image
is already grayscale, then this step is not performed). The
grayscale image is then down-sized (or up-sized) to a fixed
resolution of 302× 302 pixels using bicubic (or similar) in-
terpolation so as to minimize spatial aliasing (because we
will eventually trim a one-pixel border, the final image size
will be 300 × 300). These first two pre-processing steps
serve to reduce the complexity of extracting a hash, reduce
the length of the extracted hash, and make the hash robust to
minor modifications that will be (typically) lost when down-
sizing the image to a relatively low resolution. The rescaled
grayscale image is then subjected to histogram equalization
in which the grayscale image is adjusted to have a (nearly)
uniform intensity distribution. This final pre-processing

step improves the robustness of the hash to simple inten-
sity/color modifications.

The hash is extracted from the pre-processed image
I(x, y) as follows. The image is first convolved with a pair
of 1-D separable derivative filters to yield the following par-
tial derivative images:

Ix(x, y) = I(x, y) ? d(x) (11)
Iy(x, y) = I(x, y) ? d(y), (12)

where ? denotes convolution with the filter d = [−1 1]
applied in the horizontal (x) and vertical (y) directions. Ac-
curate discrete differentiation requires a pair of 1-D convo-
lutions with a matched derivative- and pre-filters [4]. We
jettison the pre-filter, sacrificing more accurate derivative
measurements in favor of a significantly simplified cipher-
domain convolution with no loss of distinctiveness or ro-
bustness of the underlying hash.

To avoid edge artifacts that arise due to the convolution,
a one-pixel border around the entire image is removed prior
to subsequent processing. This yields a final image size of
300× 300.

Recall that the homomorphic properties in Equations (9)
and (10) hold under the appropriate modular division with
n = p × q. Because p and q will be large values, their
product will also be large and so it is not likely that the con-
volution of pixels values, on a scale of [0, 255], will exceed
n in size. We need not, therefore, concern ourselves with
the modular division.

Each partial derivative image Ix(·) and Iy(·) is parti-
tioned into 5 × 5 blocks each of size 60 × 60 pixels. A
partial hash is extracted from each of these 25 blocks in the
same way. The final hash is the concatenation of each of
these partial hashes.

Consider a single 60 × 60 pixel block with correspond-
ing original intensity values I(x, y) and partial derivatives
Ix(x, y) and Iy(x, y). A 2-D histogram is computed from
these triple of values. The horizontal axis of this histogram
corresponds to the original intensity values I(·) quantized
into B bins. The vertical axis of this histogram corre-
sponds to one of 4 bins corresponding to a positive hori-
zontal derivative (Ix(·) ≥ 0), negative horizontal derivative
(Ix(·) < 0), positive vertical derivative (Iy(·) ≥ 0), and
negative vertical derivative (Iy(·) < 0).

Consider, for example, the 4 × 4 histogram in Fig-
ure 1. The columns in this histogram correspond to an in-
tensity value in the range [0, 64), [64, 128), [128, 192), or
[192, 255]. The rows correspond to the positive/negative,
horizontal/vertical derivatives. For example, a pixel (x0, y0)
with intensity value I(x0, y0) = 56 and a corresponding
negative horizontal derivative Ix(x0, y0) and negative verti-
cal derivative Iy(x0, y0) results in the bins in column 1 and
row 2 and 4 to each be incremented by one. That is, each
pixel is counted in two bins corresponding to the sign of its

Figure 1. A 2-D histogram of intensities (columns) and derivatives
(rows) used to construct an image hash. The numeric values in
each cell correspond to the histogram count and each cell’s color
saturation is proportional to this count. Note that the values in this
histogram, constructed for a single 60 × 60 pixel block, sum to
7, 200 – two values for each of 60× 60 = 3, 600 pixels.

horizontal and vertical derivative. This 2-D histogram em-
bodies both the underlying appearance (intensity) and struc-
ture (derivative) of the image.

Denote the partial hash, of length 4B, where B is the
number of intensity bins, of each 60× 60 pixel block as ~hi,
i = 1, . . . , 25, enumerated in column-order. The final hash,
of length 25 × 4B = 100B, is the concatenation of these
hashes:

~H = [~h1 ~h2 · · · ~h25]. (13)

Note that since the hash is constructed from a histogram
of intensity/derivative values, it can be encoded as positive
integers.

The difference between two hashes ~H1 and ~H2 is mea-
sured using an L1-norm:

∆ =

100B∑
i=1

|H1(i)−H2(i)| (14)

where the index i corresponds to the ith vector component.
This distance ∆ can then be compared against a specified
threshold to determine if the two images are similar or not.

Because the convolution in Equations (11) and (12) re-
quire only the addition of scalar weighted pixel values, this
computation can be performed on the corresponding cipher-
text. The construction of the intensity/derivative histogram,
of course, does not require any explicit computation. The
histogram construction does, however, require comparing
intensity/derivative values to place them in the appropriate

histogram bin. As we will see in the next section, in order
to perform this comparison on the corresponding ciphertext,
additional information needs to be encoded alongside the
encrypted image pixels. Because the final hash ~H will be
computed in plaintext, the comparison of two hashes can be
performed without relying on any homomorphic computa-
tions.

3.2. Ciphertext domain

In Section 3.1 we described a robust image hashing al-
gorithm in the plaintext domain. Because all computations
after the pre-processing stage consist entirely of addition
and scalar multiplication, this hashing can be performed
in the Paillier cryptosystem (Section 2). Specifically, we
will show that it is possible to extract a hash from a pre-
processed image encrypted under Paillier encryption that is
equivalent to the plaintext hash.

To begin, each pixel of a pre-processed image I(x, y)
is independently encrypted using a random value r(x, y)
to yield an encrypted pixel Ĩ(x, y), Equation (7). The
2-D intensity/derivative histogram is constructed from this
pre-processed image. We will first describe the required
intensity-based calculations followed by the derivative-
based calculations.

In order to determine the corresponding intensity bin for
each pixel, Figure 1, the encrypted intensity values are com-
pared against the encrypted bin centers. Specifically, the in-
tensity bin centers bi i = 1, . . . , B, are encrypted to yield
b̃i. Recall that each pixel value is encrypted with a differ-
ent random value r, Equation (7). As such, the bin centers
must be encrypted with the random values for each pixel in
the 300× 300 pre-processed image.

In plaintext, an intensity value I(x, y) is placed in the
closest bin bk where:

k = argmin
i
|(I(x, y)− bi)| . (15)

This difference can be computed in ciphertext by leveraging
the homomorophic properties described in Section 2. Note,
however, that only the difference I(x, y)− bi modulo n can
be computed, Equation (9). By exploiting the properties of
modulo division, the desired bin k under modulo division
can be computed as follows:

k = argmin
i

[
min(∆l

i,∆
r
i)
]
, (16)

where:

∆l
i = mod(I(x, y)− bi, n) (17)

∆r
i = mod(bi − I(x, y), n), (18)

where we have replaced the absolute value operator with
the minimum between the left and right distance between a
pixel value and a histogram bin center.

In ciphertext, this desired bin is:

k = argmin
i

[
min(∆̃l

i, ∆̃
r
i)
]
, (19)

where:

∆̃l
i = mod(Ĩ(x, y)×mod(b̃−1

i , n2), n2) (20)

∆̃r
i = mod(b̃i ×mod(Ĩ(x, y)−1, n2), n2). (21)

In the calculation of ∆̃l
i, the inner term mod(b̃−1

i , n2) com-
putes the negative of b̃i using the scalar multiplicative ho-
momorphic property in Equation (10). The product of this
value and Ĩ(x, y) computes the difference between the in-
tensity value and bin center using the additive homomor-
phic property in Equation (9). The second term ∆̃r

i sim-
ilarly computes the difference between the bin center and
the intensity value.

The next step in the computation of the robust hash is
the calculation and binning of the partial image derivatives.
Because the computation of the derivatives, Equations (11)-
(12), requires only 1-D convolutions, we will formulate
their computation as 1-D convolutions:

Ix(x) = I(x) ? d(x). (22)

Consider now the derivative in the plaintext domain at pixel
location (x0):

Ix(x0) = I(x0 + 1)− I(x0). (23)

Because the homomorphic properties in Equations (9)
and (10) hold under the appropriate modular division with
n, we must consider this derivative calculation under modu-
lar division. But, because n, the product of two large prime
numbers, will be significantly larger than the convolution of
pixels values, on a scale of [0, 255], we need not concern
ourselves with the modular division.

Based on the homomorphic properties in Equations (9)-
(10), this derivative in the ciphertext domain is:

Ĩx(x0) = mod(Ĩ(x0 + 1)× (Ĩ(x0))−1, n2). (24)

Once computed, the horizontal and vertical derivative at
each pixel is binned based on whether it is greater than or
equal to, or less than 0, Figure 1. This comparison is per-
formed in the same way as with the intensity values where
the value of bi in Equations (15)-(21) is simply 0.

Recall that the intensity bin centers were encrypted with
the random values used to encrypt each pixel in the 300 ×
300. In the case of the derivative calculations, however, the
reference value 0, must be encrypted with the random value
r1×r−1

0 , where r−1
0 represents modular inverse of r0 under

modulo n2 and where r1 and r0 are the random numbers
used to encrypt pixel values I(x0 + 1) and I(x0), respec-
tively.

To see why the reference value of 0 must be encrypted
with this combination of random variables, consider first the
representation of the individual terms Ĩ(x0) and Ĩ(x0 + 1)
in ciphertext, as specified by Equation (7):

Ĩ(x0) = mod(gI(x0) × rn0 , n2) (25)

Ĩ(x0 + 1) = mod(gI(x0+1) × rn1 .n2). (26)

Substituting these two ciphertext-based derivatives into
Equation (24) yields:

Ĩx(x0) = mod(mod(gI(x0+1)×rn1 , n
2)×mod(gI(x0)×rn0 , n

2)−1.n2)
(27)

Using the modular exponent property1, this expression can
be rewritten as:

Ĩx(x0) = mod(mod(gI(x0+1)×rn1 , n
2)×mod((gI(x0)×rn0)

−1, n2).n2)
(28)

The inverse in the second term can be distributed as follows:

Ĩx(x0) = mod(mod(gI(x0+1)×rn1 , n
2)×mod((g−I(x0)×r−n

0), n2)n2).
(29)

Using the modular multiplicative property2, this expression
can be rewritten as:

Ĩx(x0) = mod((gI(x0+1) × rn1)× (g−I(x0) × r−n0), n2). (30)

The g− and r−terms can now be collected as follows:

Ĩx(x0) = mod((gI(x0+1) × g−I(x0) × rn1 × r−n0), n2)

= mod((gI(x0+1)−I(x0) × (r1 × r−1
0)n), n2)

= mod((gIx(x0) × (r1 × r−1
0)n), n2), (31)

from which we see that the random number that effectively
encodes the spatial derivative Ix(x0) is r1 × r−1

0 , which is
therefore the same value used to encrypt the reference value
0 to which spatial derivatives will be compared.

To summarize, the desired intensity/derivative histogram
is computed by first placing each encrypted intensity pixel
value into one of B intensity bins, Equation (19). The
horizontal and vertical derivatives are then computed from
the encrypted pixel values, Equation (24). These encrypted
derivative values are then each placed into two of four bins
depending on the sign of the horizontal and vertical deriva-
tive. The 2-D histogram is computed by simply counting the
encrypted pixels that occupy each bin. This resulting plain-
text histogram (hash) can then be directly compared against
a database of hashes using the L1-norm in Equation (14).

Because the intensity and derivative histogram compar-
isons require encryption of the reference values with the
appropriate pixel-level random numbers, Equation (7), the

1(a mod b)p = ap mod b
2((a mod c)× (b mod c)) mod c = (a× b) mod c

Figure 2. A 4 × 4 pixel image is partitioned into non-overlapping
regions of size 2×2. These regions are scrambled while preserving
the pixel-ordering within each region.

following information must be provided alongside the en-
crypted values: (1) each of B intensity bin centers en-
crypted with the random value r for each of 300× 300 pix-
els; and (2) the value 0 encrypted with the “convolved” ran-
dom value, for each of 300× 300 pixels. With B = 4 as in
Figure 1, the final payload of encrypted pixel and reference
values is 540, 000 values or the equivalent of a 900 × 600
raw grayscale image.

3.3. Obfuscation

We encode and transmit the reference intensity values so
that each pixel value can be placed in the appropriate inten-
sity histogram bin. An obvious undesirable side-effect of
this is that the server can reconstruct a log(B)-bit grayscale
version of the image, where B is the number of intensity
bins used to create the image hash. To contend with this, we
propose that within each 5 × 5 block (each of size 60 × 60
pixels), the client partitions each block into non-overlapping
regions of size 2×2 pixels. These regions are then randomly
scrambled within each block prior to transmission, Figure 2.

When the server receives this scrambled image, the in-
tensity histogram is unaffected as is the partial derivative
histograms computed at only the top-left pixel in each 2×2
region. At the same time, the server will be unable to re-
construct the original intensity image. The only cost of this
scrambling is that the 2-D intensity/derivative hash, Fig-
ure 1, is computed from 1/4 of the pixels. We have found,
however, that this has no impact on the distinctiveness or
robustness of the hash.

One could argue that this obfuscation should be enough
to conceal the contents of the image. Given the sensitiv-
ity and even illegality (e.g., child sexual abuse imagery) of
some material that may be hashed, it is critical to ensure that
the image cannot be reconstructed. The added level of se-
curity offered by encrypting the scrambled pixels virtually
guarantees that this would be impossible.

3.4. Validation and Robustness

We constructed a dataset of approximately 15, 000 im-
ages of randomly downloaded flickr images. Using the

Figure 3. Accuracy of classifying similar (solid-blue) and different
(dashed-red) images as a function of the threshold on L1-norm
between two hashes. The cross-over point is 99.1%. See also
Figure 4.

plaintext image hashing described above, we hashed all of
these images and computed a pairwise comparison of all
images to remove any duplicates. Any image pairs with
an L1-norm below a specified threshold were manually re-
viewed to determine if they were duplicates. One of the pair
of any confirmed duplicates was removed from our dataset
yielding a final image count of 14, 685.

We validated the robust hashing by confirming that
the plaintext and ciphertext version as extracted from all
14, 685× 25 = 367, 125, 30× 30 pixel blocks were identi-
cal.

In order to determine the robustness of our hash to com-
mon image manipulations, we generated 7, 500 variations
of each image with varying and random amounts of gamma
correction Iγ(x, y) with γ ∈ [0.5, 2], additive Gaussian
noise with SNR in the range [15, 60] (db), JPEG compres-
sion with quality in the range [70, 100] (%), and scaling by
an amount in the range [0.25, 1]. These manipulations were
applied to the image prior to the pre-processing stage of
converting to grayscale, down-sizing, and histogram equal-
izing. We computed the L1-norm between the original im-
age and each of its variants, yielding a total of over 110
million (“similar”) comparisons. We also computed the L1-
norm between the hash of each of the original images and
the remaining 14685−1 images, yielding a total of over 107
million (“different”) comparisons.

A robust hash should have relatively small “similar” dis-
tances and large “different” distances. The receiver operat-
ing characteristic (ROC) curve in Figure 3 reports the accu-
racy of correctly classifying “similar” (solid-blue) and “dif-
ferent” (dashed-red) images as a function of the L1-norm

Figure 4. Accuracy of classifying similar images as a function of
gamma correction, additive noise, JPEG quality, and scaling, for a
fixed false alarm rate of 0.001%. See also Figure 3.

threshold. The cross-over point of these curves is at 99.1%
accuracy. With a false positive rate (incorrectly identify-
ing different images as the same) of 1%, 0.1%, 0.01%, and
0.001% the true positive rate (correctly identifying similar
images as similar) is 99.1%, 98.4%, 97.4%, and 95.9%. At
a false positive rate of 1 in 10 million, the true positive rate
remains relatively high at 93.5%.

Shown in Figure 4, from top to bottom, is the true pos-
itive rate (with a fixed false positive rate of 0.001%) as a
function of the amount of gamma correction, additive noise,
JPEG quality, and scaling. Each data point in each panel
corresponds to all images with the specified distortion and
integrated across all other distortions. For example, the
data point with an SNR of 30db corresponds to all images
with this much noise and a random and varying amount of
gamma correction, JPEG compression, and scaling. From
top to bottom, we see that: (1) the sensitivity to gamma
correction is asymmetric with slightly lower robustness to
gamma values greater than 1.0; (2) the hash is robust to
SNR larger than 25 db; and (3) the hash is robust to a range
of compression qualities and scalings.

3.5. Efficiency

Because of the pre-processing step, the run-time effi-
ciency will depend on the original image resolution. Nev-
ertheless, averaged over the 15K images in our dataset, the
average run-time of extracting our robust hash in plaintext
is 0.03 seconds. In ciphertext, the average run-time is 10.2
seconds. The plaintext robust hash is implemented in Mat-
Lab and the ciphertext version is implemented in Java. All
run-times are reported for a laptop running macOS with an
Intel Core i5, 2.3 GHz.

4. Discussion

We believe that, although not without its challenges, a
balance can be found between privacy and security. We be-
lieve that some material is so horrific or dangerous that all
effort should be made to eliminate it from our online com-
munities.

The type of privacy-preserving robust image matching
described here finds just this balance. This approach allows
users to share encrypted images without fear of corporate
or government oversight while at the same time allowing
online platforms the ability to eliminate the transmission of
previously identified illegal or dangerous content.

Although we have only described an image matching
technique, this basic approach extends to video, albeit with
higher bandwidth and computational requirements. We are
currently refining this approach.

Acknowledgment
This research was developed with funding from Google,

Microsoft Corporation, and the Defense Advanced Re-
search Projects Agency (DARPA FA8750-16-C-0166). The
views, opinions, and findings expressed are those of the au-
thors and should not be interpreted as representing the offi-
cial views or policies of the Department of Defense or the
U.S. Government.

References
[1] Yu Bai, Li Zhuo, Bo Cheng, and Yuan Fan Peng. Surf

feature extraction in encrypted domain. In IEEE Inter-
national Conference on Multimedia and Expo, pages
1–6, 2014. 2

[2] Reda Bellafqira, Gouenou Coatrieux, Dalel Bouslimi,
and Gwénolé Quellec. Content-based image retrieval
in homomorphic encryption domain. In Engineering
in Medicine and Biology Society, 2015 37th Annual
International Conference of the IEEE, pages 2944–
2947, 2015. 2

[3] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Ste-
fan Katzenbeisser, Inald Lagendijk, and Tomas Toft.
Privacy-preserving face recognition. In International
Symposium on Privacy Enhancing Technologies Sym-
posium, pages 235–253, 2009. 2

[4] Hany Farid and Eero Simoncelli. Differentiation of
discrete multi-dimensional signals. IEEE Transac-
tions on Image Processing, 13(4):496–508, 2004. 3

[5] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei.
Image feature extraction in encrypted domain with
privacy-preserving SIFT. IEEE Transactions on Im-
age Processing, 21(11):4593–4607, 2012. 2

[6] Mike Isaac. Facebook’s Mark Zuckerberg says he’ll
shift focus to users’ privacy. March 6, 2019. 1

[7] Katie Kim and Lisa Capitanini. Facebook’s new pro-
gram fighting ‘revenge porn’ stirs controversy. June
27, 2018. 1

[8] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-
Ying Ma. A survey of content-based image re-
trieval with high-level semantics. Pattern recognition,
40(1):262–282, 2007. 1

[9] Wenjun Lu, Ashwin Swaminathan, Avinash L Varna,
and Min Wu. Enabling search over encrypted mul-
timedia databases. In Media Forensics and Security,
volume 7254, page 725418, 2009. 2

[10] Jeff Meisner. Facebook to use Microsoft’s PhotoDNA
technology to combat child exploitation. May 19,
2011. 1

[11] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In International

Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 223–238. Springer, 1999.
2

[12] Zhan Qin, Jingbo Yan, Kui Ren, Chang Wen Chen,
and Cong Wang. Towards efficient privacy-preserving
image feature extraction in cloud computing. In 22nd
ACM International Conference on Multimedia, pages
497–506, 2014. 2

[13] Qin, Zhan and Yan, Jingbo and Ren, Kui and Chen,
Chang Wen and Wang, Cong. Secsift: Secure im-
age SIFT feature extraction in cloud computing. ACM
Transactions on Multimedia Computing, Communica-
tions, and Applications, 12(4s), 2016. 2

[14] Yogachandran Rahulamathavan, Raphael C-W Phan,
Jonathon A Chambers, and David J Parish. Facial ex-
pression recognition in the encrypted domain based on
local fisher discriminant analysis. IEEE Transactions
on Affective Computing, 4(1):83–92, 2013. 2

[15] Matthias Schneider and Thomas Schneider. Notes
on non-interactive secure comparison in image fea-
ture extraction in the encrypted domain with privacy-
preserving SIFT. In 2nd ACM workshop on Informa-
tion hiding and multimedia security, pages 135–140,
2014. 2

[16] Arnold WM Smeulders, Marcel Worring, Simone
Santini, Amarnath Gupta, and Ramesh Jain. Content-
based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis & Machine In-
telligence, (12):1349–1380, 2000. 1

[17] Daniel Wagner, Gerhard Reitmayr, Alessandro Mul-
loni, Tom Drummond, and Dieter Schmalstieg. Real-
time detection and tracking for augmented reality on
mobile phones. IEEE Transactions on Visualization
and Computer Graphics, 16(3):355–368, 2010. 2

[18] Q. Wang, S. Hu, K. Ren, J. Wang, Z. Wang, and
M. Du. Catch me in the dark: Effective privacy-
preserving outsourcing of feature extractions over im-
age data. In 35th Annual IEEE International Confer-
ence on Computer Communications, pages 1–9, 2016.
2

[19] Zhihua Xia, Xinhui Wang, Liangao Zhang, Zhan Qin,
Xingming Sun, and Kui Ren. A privacy-preserving
and copy-deterrence content-based image retrieval
scheme in cloud computing. IEEE Transactions on In-
formation Forensics and Security, 11(11):2594–2608,
2016. 2

