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Abstract

A face-swap deep fake replaces a person’s face – from
eyebrows to chin – with another face. A lip-sync deep fake
replaces a person’s mouth region to be consistent with an
impersonated or synthesized audio track. An overlooked
aspect in the creation of these deep-fake videos is the human
ear. Statically, the shape of the human ear has been shown
to provide a biometric signal. Dynamically, movement of
the mandible (lower jaw) causes changes in the shape of
the ear and ear canal. While the facial identity in a face-
swap deep fake may accurately depict the co-opted identity,
the ears belong to the original identity. While the mouth in a
lip-sync deep fake may be well synchronized with the audio,
the dynamics of the ear motion will be de-coupled from the
mouth and jaw motion. We describe a forensic technique
that exploits these static and dynamic aural properties.

1. Introduction
One of the earliest examples of what we now generically

call deep-fake videos dates back to 1997 [8]. In this sem-
inal work, video of a person mouthing words she did not
speak are synthesized by reordering the mouth region in
training video to match specific phonemes in a new audio
track (today, we would call this a lip-sync deep fake). The
intervening two decades has seen tremendous advances in
computer-graphics and -vision based rendering, synthesis,
and understanding.

The term “deep fake” emerged in 2017 when a Reddit
user named “deepfakes”, along with other Reddit users, be-
gan using advances in machine learning to digitally insert
celebrity faces into sexually explicit material. Over the in-
tervening few years, the sophistication, quality, and ease of
generating synthetic audio and video has accelerated lead-
ing today to commercially available apps that can be used
to more quickly and easily create compelling manipulated
video and audio. The general consensus today is, while
synthetic video can be entertaining, it can also easily be
weaponized in the form of non-consensual pornography,

Figure 1. The human ear and a few of its parts.

fraud, misinformation, and may lead to a general lack of
trust in what we see and hear online.

In response to deep fakes and, more generally, ma-
nipulated content, several authentication techniques have
emerged that can be roughly categorized into one of three
categories:

1. Forensic Analysis: based on the assumption that ma-
nipulation or synthesis will leave behind some statis-
tical, geometric, or physical artifact, this class of ap-
proaches analyzes content for explicit traces of manip-
ulation or synthesis [18]. The benefit of this approach
is it can be applied to a broad class of content and re-
quires little to no prior assumptions. The drawback is,
to date, most forensic techniques cannot operate at a
speed or accuracy for deployment at an internet scale
of billions of daily uploads.

2. Digital Signatures: this class of approaches tackles
the authentication from a different direction, focusing
on authenticating content at the point of recording [1].
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Figure 2. Shown in the first two rows are three equally-spaced frames in which the subject is speaking. Shown in each panel is a tracked
Bezier curve corresponding to the ear’s helix and lobule (larger outer curve) and tragus (smaller inner curve). The small vectors along
each curve correspond to the estimated local motion (scaled by 5x), revealing how the ear moves during speech. Facial expressions such
as raised eyebrows, smiling, and surprise induce similar aural motion. Shown in the lower panel is the measured horizontal lobule motion
(red, dashed) and vertical lip distance (black, solid), revealing a correlation (r = 0.34) between these two signals.

In either software or hardware, a specialized camera
app extracts date/time, geo-location, and pixel data at
the point of recording, and hashes and cryptographi-
cally signs this data. The resulting digital signature can
be used downstream to verify that the content has not
been altered from the time of recording, and localize
where and when the content was recorded. The ben-
efit of this approach is it can, at internet-scale, verify
recorded content quickly and accurately. The draw-
back of this approach is it requires a specialized cam-
era app and is unable to verify content not recorded
through such an app.

3. Digital Watermarks: this class of approaches incor-
porates directly into a synthesis pipeline a digital wa-

termark that can be used downstream to identify deep-
fake content [39, 38]. The benefit of this approach is
it can quickly and accurately identify deep-fake con-
tent. The drawback is it requires a specific infrastruc-
ture incorporated into all synthesis pipelines and is vul-
nerable to attacks designed to remove (or add) water-
marks [33].

Here we describe a forensic technique falling into cat-
egory 1. Most of the focus on creating deep-fake videos
has been on facial expressions, the mouth, and audio-video
synchronization. The creation of a lip-sync deep fake,
for example, requires a detailed synthesis of the mouth
region, teeth, and tongue, all the while making sure the
mouth is properly synthesized with the audio and spoken



Figure 3. The right ear of the real Tom Cruise (left) and @deep-
tomcruise of TikTok fame [16] (right), from which we see signif-
icant differences to the overall shape and earlobe connectivity to
the upper jaw.

phonemes [5]. An overlooked aspect in the creation of these
deep-fake videos is the human ear.

The reason for this is probably two-fold. The structure
and movement of the human ear is complex, and it is likely
our attention is not drawn to a person’s ear when they are
talking. Eye tracking studies on face perception have con-
sistently revealed a Y-shaped pattern of fixations over the
eye, nose and mouth regions [34, 21]. Janik et al. [22] found
subjects spend 40% of the time looking at the eyes while
free viewing facial photographs.

Both statically – the shape of the human ear provides
a biometric signal [9, 10, 32, 3, 17] – and dynamically –
movement of the mandible (lower jaw) causes changes in
the shape of the ear and ear canal [28, 19, 15] – the human
ear provides a rich source of forensic information. Specifi-
cally, while the facial identity in a face-swap deep fake may
accurately depict the co-opted identity, the ears belong to
the original identity. And, while the mouth in a lip-sync
deep fake may be well synchronized with the audio, the dy-
namics of the ear motion will be de-coupled from the mouth
and jaw motion. We describe a forensic technique that ex-
ploits these static and dynamic aural properties.

In the next section, we place our work in context rela-
tive to previous forensic techniques. We then describe our
underlying methodology and show the efficacy of our ap-
proach across simulated lip-sync deep fakes, production-
quality deep fakes, and in-the-wild deep fakes.

2. Related Work
Forensic techniques for detecting deep fakes can be

broadly categorized into low- and high-level approaches.
Low-level techniques detect pixel-level, synthesis artifacts,
including generic artifacts [41, 37, 40, 35], warping arti-
facts [26], and blending artifacts [24]. These low-level tech-
niques are attractive because they can detect a variety of
fakes with relatively high accuracy. The drawback, how-
ever, is they can be sensitive to unintentional laundering
(e.g., transcoding or resizing) or intentional adversarial at-

tacks (e.g., [12, 11]).
High-level approaches, in contrast, tend to be more re-

silient to laundering and adversarial attacks. These tech-
niques focus on semantically meaningful features including
inconsistencies in eye blinks [25], head-pose [36], physio-
logical signals [13], mouth shape and movement [5], and
distinct mannerisms [6, 4]. Because current synthesis tech-
niques are frame-based, incorporating these types of seman-
tic and temporal dynamics is essential to staying ahead of
the synthesis-and-detection, cat-and-mouse game.

Biometric identification based on aural features has a
well-established literature dating back as far as the 1890s [9,
10, 32, 3, 17]. The general, albeit not unanimous, conclu-
sions today is certain aural features are distinct and stable
over a person’s lifetime. It remains unclear, however, if
these aural features are distinct enough to work on a large
scale, and if extraction of these features is sufficiently ro-
bust to work in the wild. For our purposes of deep-fake
detection, however, the demands of distinctiveness are sig-
nificantly less than in a biometric setting, and with our fo-
cus on video, feature extraction should be more robust than
from only a single image.

3. Methods
We describe the aural dynamics methodology and data

set, followed by the aural biometric methodology.

3.1. Aural Dynamics

The human ear has three primary sections: the inner- and
middle-ear, and the outer-ear consisting of visible features
like the lobule, tragus, and helix, Figure 1. Movement in
the ear canal – connecting the outer-ear and middle-ear –
has been studied in relationship with the movement of the
mandible (lower jaw) [28, 19, 15]. Additional studies re-
veal the middle ear muscles to be responsive to face and
head movements, onset of vocalization, yawning, swallow-
ing, coughing, and laughing [30].

We observe such physiological movements in the mid-
dle ear can also be observed in movements of the outer-
ear’s lobule, tragus, and helix, Figure 2. We hypothesize
that because deep fakes focus on the synthesis of the face,
these aural movements will be absent or disrupted in deep
fakes. We next describe techniques for measuring aural mo-
tion and correlating this motion to oral signals consisting of
facial movements and auditory signals.

We describe the estimation of aural motion in a video
in which it is assumed a single person is talking with their
left or right ear visible throughout the video segment. This
estimation is composed of four parts, as enumerated below.

Face Alignment: For each video frame, 68, 2D facial land-
marks are extracted using Dlib [23]. Using these landmarks,
the face in each frame is aligned such that the endpoints of
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Figure 4. Shown are (a) a single video frame where the face has been tracked, aligned, and cropped; (b) 35 manually annotated aural
landmarks; (c) 100 points on each of two Bezier fitted curves; (d) rotated and cropped ear; and (e) three regions from which local aural
motion are averaged.

the jaw (landmarks 0 and 16) lie on a horizontal line, are
scaled to have a fixed distance of 164 pixels, and translated
to a fixed location (pixel locations (46, 90) and (210, 90)).
After this alignment, a 256 × 256 pixel region is cropped
around the face and ears, Figure 4(a).

Feature Tracking: In order to localize the ears in each
frame, we begin by manually annotating 35 aural landmarks
on the first aligned video-frame. The first set of 20 land-
marks are on the outer portion of the ear, from the helix
to the lobule, and the remaining set of 15 landmarks are
around the tragus, Figure 4(b). We fit to each of these sets
of landmarks, a Bezier curve of order 8 and 10, respectively.
A total of 100 points are uniformly sampled from each of
these curves, Figure 4(c). Lastly, the 200 Bezier points are
tracked across all frames using the Kanade-Lucas-Tomasi
(KLT) tracker [31].

Aural Alignment: In order to measure the local aural mo-
tion due to facial expressions and speech, we first eliminate
the global motion due to head movements. In each frame,
the tracked aural landmarks are affine-aligned to the land-
marks in the previous frame. Each frame is then rotated
such that the axes of the bounding box containing all of the
aural landmarks are parallel to the image axes, Figure 4(d).

Motion Estimation: The local aural motion due to facial
expressions and speech is estimated using dense optical
flow between each consecutive aligned frames. The aver-
age 2D motion in the horizontal and vertical directions is
computed in three aural regions around the helix, tragus,
and lobule, Figure 4(e), yielding a total of six estimated au-
ral motions. We next describe how these motions are cor-
related to oral signals consisting of facial expressions and
speech.

Aural/Oral Correlations: We observe the per-frame aural
movements are correlated to the per-frame vertical distance

between the lips (i.e., the openness of the mouth) and audio
root mean square energy (RMSE) (i.e., the loudness of the
speech). While there are other facial and auditory correla-
tions, we focus here on just these two. For each video frame,
68, 3D facial landmarks are estimated using the OpenFace
toolkit [7]. The landmarks corresponding to the center of
the top and bottom lip (landmarks 51 and 57) are used to
compute vertical distance between the lips.

The audio RMSE is measured using the open-source
python package LibROSA [27] over a sliding 0.032-second
window and a hop length of 0.033 seconds. Given an audio
with 16kHz sampling rate and a corresponding video of 30
fps, this yields a single audio RMSE value for each video
frame.

The Pearson correlation between the horizontal and ver-
tical aural motion in each of three ear regions and the above
two oral signals is computed over a sliding 10-second seg-
ment with a 0.033-second shift. This yields a total of 12
correlations per each video segment. Shown in Figure 2
(bottom panel) is a representative example of the measured
tragus horizontal movement (red) and lip vertical distance
(black), from which the correlation is computed.

3.2. Data Set

A total of 64 videos were downloaded from YouTube
of Joe Biden, Angela Merkel, Donald Trump, and Mark
Zuckerberg. These videos spanned in length between 12
and 59 seconds, Table 1. We ensured the left or right
ear was visible throughout each video. For each frame of
each video, we measured the aural motion, the vertical dis-
tance between the lips, and the audio RMSE. Due to large
head movements, the feature tracking occasionally failed
(4-5 times per video) and was corrected by manually re-
annotating the necessary features.

In a lip-sync deep fake, the mouth movements of an ex-
isting video are modified to match a new audio. We used
the following three strategies to generate such lip-sync deep



video total minimum maximum
(count) (seconds) (seconds) (seconds)

Joe Biden 21 769 12 59
Angel Merkel 10 228 12 42

Donald Trump 16 547 16 54
Mark Zuckerberg 17 484 20 29

Table 1. The number of videos in our data set, along with the total,
minimum, and maximum video duration for each of four individ-
uals.

fakes: (1) a lip-sync deep fake is simulated by simply corre-
lating the aural movements from one video segment to the
oral signal from a randomly selected segment of the same
length; (2) visually compelling lip-sync deep fakes were
generated for Biden, Merkel, Trump, and Zuckerberg, in
which the mouth region is GAN-synthesized to be consis-
tent with a new audio and optimized for visual quality and
temporal coherence (courtesy of Kristof Szabo, Zoltan Ko-
vacs, and Dominik Mate Kovacs). A total of six fakes were
created for each of the four identities by swapping the origi-
nal audio with a randomly selected audio from the same in-
dividual; and (3) three in-the-wild lip-sync deep fakes were
downloaded from YouTube and Instagram, two for Donald
Trump 1 and one for Mark Zuckerberg 2.

3.3. Aural Biometrics

The aural dynamics described above are designed to de-
tect lip-sync deep fakes in which the aural and oral signals
are desynchronized. In a face-swap deep fake, however,
these signals are likely to be consistent with the original
speaker. But, in a face-swap deep fake the ears in the video
belong to the original identity and not to the person it pur-
ports to depict. As a result, we can leverage aural biometrics
to verify the true identity in the video. There is a significant
literature on aural biometrics including 2D, image-based
features [42], 3D model-based features [14], and learned
features [29].

Here we adopt a simple approach based on 2D, image-
based features which capture the general shape of the ear.
Any of a number of other techniques would be equally vi-
able. In our approach, we first manually annotate 20 land-
marks equally spaced from the helix to the lobule, and an-
other 15 landmarks equally spaced around the tragus, Fig-
ure 7(c). The overall shape of the helix and tragus are char-
acterized using two Bezier curves of order 8 and 10.

The shape of an ear is compared for similarity to a ref-
erence ear by first aligning the 35 aural landmarks, as de-
scribed in the previous section. Because the ear may be
imaged from any camera angle, the resulting perspective
projection can significantly alter its appearance in the im-

1www.instagram.com/p/ByPhCKuF22h/, youtu.be/
VWMEDacz3L4

2youtu.be/cnUd0TpuoXI

Biden Merkel Trump Zuckerberg
training (all) 0.97 0.90 0.93 0.87

simulated 0.97 0.82 0.93 0.87
GAN-generated 0.78 0.90 0.98 0.78

in-the-wild − − 0.70 0.71

training (ind) 0.99 0.96 0.99 0.97
simulated 0.96 0.80 0.98 0.86

GAN-generated 0.97 0.85 0.97 0.82
in-the-wild − − 0.76 0.77

Table 2. The performance (reported as area under the curve, AUC)
for a single model trained on all four individuals (top), and sep-
arate models trained on each individual (bottom). All video seg-
ments are 10 seconds in length. Results are reported for the train-
ing dataset, and three different types of fakes: simulated, GAN-
generated, and in-the-wild.

age. We assume, therefore, a reference ear in which the ear
is parallel to the imaging plane, thus minimizing any per-
spective distortion. The comparison ear is then aligned to
this reference ear using a planar homography [20] applied
to the 35 aural landmarks. Although the ear is not perfectly
planar, this homography is reasonable given the relatively
small depth change along the ear as compared to a typical
distance to the camera.

Once aligned, two ears are compared for similarity by
measuring the average Euclidean distance between 100
equally sampled points on each of two Bezier curves and
their closest point in the reference ear. This average distance
is used as our measure of biometric similarity between two
ears.

4. Results

For all Biden, Merkel, Trump, and Zuckerberg videos,
the distribution of audio, facial, and aural correlations are
shown in Figures 5 and 6. These correlations are computed
between the horizontal (Figure 5) and vertical (Figure 6)
motion in the helix, tragus, or lobule with the facial (lip
vertical) or audio (RMSE) signal. Shown in the last row
of these figures are the correlations for simulated fakes in
which the aural movements from one video segment are
paired to the oral signal from a randomly selected video
segment.

The nature of the correlations are somewhat person-
specific. For horizontal aural motion, for example, the tra-
gus motion is strongly positively correlated with audio for
Trump, but weakly negatively correlated for Biden, Merkel,
and Zuckerberg. Similarly, the horizontal lobule motion
is strongly negatively correlated for Trump, but not for
the others. Additionally, the horizontal tragus motion is
positively correlated to the lip vertical distance for Biden,
Merkel, and Zuckerberg, but not Trump. For vertical aural
motion, this basic pattern continues. The tragus motion is

www.instagram.com/p/ByPhCKuF22h/
youtu.be/VWMEDacz3L4
youtu.be/VWMEDacz3L4
youtu.be/cnUd0TpuoXI
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Figure 5. Shown are the distribution of correlations between audio (left) and lip vertical distance (right) and the horizontal motion of three
aural areas. From top to bottom are the results for four individuals, and simulated fakes. While the fakes have no correlation, we see strong,
but not necessarily consistent, correlations across individuals.

strongly negatively correlated with audio for Trump, but not
for the others.

By comparison, in all cases, the simulated fakes (last row
of Figures 5 and 6), we see a complete lack of correlation
between these aural and oral signals.

In order to evaluate the efficacy of these dynamic aural
features to detect lip-sync deep fakes, a linear classifier is
trained as follows. For each individual, the available videos
are split into non-overlapping, 80%/20% training and test-
ing sets. A logistic regression model is trained on the 12
aural/oral correlations for the original videos and simulated-
fake videos. This model was then evaluated on the testing
original videos, and all three types of fake videos: simu-
lated, GAN-generated, and in-the-wild.

Shown in Table 2 (top), is the average accuracy reported
as the area under the curve (AUC) for 20 random train-
ing/testing splits. The average training AUC is 0.91, and
the average testing AUC is 0.84, ranging from a low of 0.70

for the Trump in-the-wild fakes, to a high of 0.98 for the
GAN-generated Trump fakes. This predictor was trained on
all four identities. As we saw in Figures 5 and 6, however,
the nature of the correlations is somewhat person-specific.

Shown in Table 2 (bottom) are the results of training
four separate logistic regression models, trained on original
and fake videos from one individual with, again, 20 random
training/testing splits. With this person-specific training, the
average training AUC increases from 0.91 to 0.98, and the
average testing accuracy increases from 0.84 to 0.87.

Despite only analyzing short 10-second segments, over-
all accuracy is fairly high. This accuracy can be improved
by integrating over an entire video with a simple majority
rule.

4.1. Aural Biometrics

We demonstrate the use of our aural shape features on
the TikTok viral, deep fake videos of Tom Cruise created
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Figure 6. Shown are the distribution of correlations between audio (left) and lip vertical distance (right) and the vertical motion of three
aural areas. From top to bottom are the results for four individuals, and simulated fakes. While the fakes have no correlation, we see strong,
but not necessarily consistent, correlations across individuals.

by @deeptomcruise [16]. We collected 13 images of Cruise
from various internet sources where the left or right ear was
visible. Although it has been shown that the left and right
ears exhibit some symmetry, there also exist some asymme-
tries [2]. Despite these asymmetries, we compare all ears to
a single right-ear reference, Figure 7(c).

Shown in Figure 7 (top), is the comparison of all 12 ears
to the reference ear. The average difference, as described
in Section 3.3, across all ears is 0.28 with a minimum and
maximum difference of 0.19 and 0.37 (these differences are
unitless because the aural landmarks are normalized into a
range of [−1, 1]).

By comparison, shown in Figure 7(a-b) is a compari-
son between the @deeptomcruise ears and the reference ear.
Here, the shape difference is 0.51 and 0.58, more than 35%
larger than the largest difference across authentic ears.

5. Discussion

TikTok’s @deeptomcruise recently produced what is ar-
guably some of the most compelling and sophisticated
deep-fake videos to date [16]. Beyond the excellent face-
swap synthesis, these videos also benefit from a talented
performer who resembles the real Tom Cruise and is ca-
pable of imitating his mannerisms and voice. The imper-
sonator, however, left behind biometric clues to his iden-
tity: the shape and structure of the ears and – not discussed
here, but worthy of further investigation – distinct charac-
teristics of the hands. Because deep-fake synthesis has un-
derstandably focused on the face, these additional biometric
signals should prove a useful addition to the forensic ana-
lyst’s toolkit.

Our methodology of exploiting aural biometrics and au-
ral and oral correlations are, however, not without limita-
tions. Long hair, for example, will impede any measure-



ments of the shape or dynamics of the ear; large head move-
ments make tracking and aural motion estimation challeng-
ing; large head movements may bring the ear into and out
of view; the static biometric analysis requires a reference
ear of the individual in question; and the dynamic aural mo-
tion analysis is most effective with video of the individual
in question. Lastly, accurate tracking of the ears has proven
to be challenging, requiring some human assistance to cor-
rect for tracking slippage. Our approach would benefit from
more robust tracking.

A benefit of our dynamic aural and oral analysis is the
measured signal unfolds over hundreds of frames, whereas
current synthesis techniques typically operate on one or
only a few video frames. In addition to the two oral cor-
relations explored here (mouth movement and audio), other
facial and audio signals can be exploited including raised
eyebrows, smiling, frowning, and audio pitch.

More generally, focusing on high-level, soft- and hard-
biometric signals such as the ear, hand, mannerisms, and
iris provide a rich forensic signal, striking at the heart of all
forms of deep fakes that simply don’t depict the person they
purport to be.
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