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Abstract

Photo-based forensic identification can be critical in
the prosecution of, and defense against, criminal charges.
Identification techniques range from the specific biometric-
based to the more generic, based on height, weight, gen-
der, and race. Although fairly basic, accurate height and
weight estimation remains challenging due to physiological
factors, concealing clothing, body pose, and the scale am-
biguity inherent to the photographic process. We describe
an extension to 3D body-pose estimation that more accu-
rately estimates body shape across a broader range of body
sizes. We evaluate the reliability of this technique in making
metric estimates of height and weight, and in making non-
metric categorization of people based on a scale-agnostic
measure of body shape. Although this approach improves
on previous efforts, we find that accurate body-shape iden-
tification from a single, reference-free image remains chal-
lenging.

1. Introduction
On January 6, 2021 a mob of some 2, 000 attacked the

Capitol Building in Washington D.C. seeking to disrupt the
congressional confirmation of President-elect Joe Biden’s
electoral victory. In the aftermath, five lay dead and hun-
dreds were injured. In the weeks and months that followed,
federal and state law enforcement asked the public for help
in identifying those involved in the assault, including an
FBI tipline (https://www.fbi.gov/uscapitol1)
asking members of the public to submit photos and videos
of the violence. In some cases, those involved were read-
ily recognizable from their unmasked faces in the photos
and videos. In other cases, however, those involved were
masked or obscured in a larger crowd, Figure 1.

With a camera in most pockets, the average citizen is in-
creasingly likely to document everything from street-level
crime to large-scale protests and riots. At the same time,
photographic identification from images – beyond well-

Figure 1. How reliably can identifying information be extracted
from this photo of masked Capitol Hill rioters? [source: Getty
Images]

studied techniques for face recognition [21] – can still pose
significant challenges. Determining something as basic as
a person’s height and weight, for example, is riddled with
complexity due to the inherent loss of information result-
ing from the 3D to 2D image projection and the resulting
scale ambiguity. Additional complicating factors arise from
natural daily fluctuations in height and weight: spinal com-
pression results in a daily change in height by as much as
2 cm [16], and body weight similarly fluctuates daily by as
much as ±2.25 kg in a single day [5]. Differences in body
pose add further complications: slouching or walking, for
example, can result in an apparent change in height by as
much as 6 cm [11].

While height and weight alone are not sufficient to
uniquely identify a person, these basic measurements (along
with race, gender, and age) can be useful in narrowing the
field of potential suspects, or eliminating a suspect from
consideration.

Building on recent advances in 3D human modeling [20,
24, 26, 30], recent work [31] investigated if 3D human
modeling can reduce some of the ambiguities and uncer-
tainty in forensic height and weight estimation from a sin-
gle, reference-free image. This work showed that by ad-
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justing for 3D pose, height estimation can be significantly
improved. At the same time, however, 3D modeling did
not improve weight estimation beyond guessing a gender-
specific average weight. The authors cite two primary lim-
itations to height and weight estimation: (1) for height and
weight estimation, resolving the scale ambiguity in the ab-
sence of known reference objects in the scene; and (2) for
weight estimation, the human 3D modeling is not able to
estimate the shape of below or above average-sized bodies,
even while accurately estimating body pose. In our work,
we seek to address these two limitations to determine if
more accurate 3D modeling will yield a sufficiently accu-
rate tool for forensic identification.

In the first part of our work (Section 3), we augment
the 3D modeling of [30] to more accurately estimate body
shape across a range of body sizes, and show how this aug-
mented modeling improves height and weight identification
(Section 4). Despite these improvements, we find that re-
solving the scale ambiguity from a single, reference-free
image remains a significant challenge for accurate forensic
identification.

In the second part of our work (Section 5), we propose a
scale-agnostic classification of body shape as an alternative
to the classic measurements of height and weight. In partic-
ular, we evaluate the reliability and distinctiveness of the es-
timated low-dimensional, body-shape parameterization for
use in forensic identification.

2. Related Work

2.1. Height and Weight

Classic approaches to height estimation require the per-
son in question to be standing upright and next to an object
of known size [10, 11]. These approaches, however, are un-
able to contend with different body poses or reference-free
scenes that often arise in forensic settings.

Among different approaches to height estimation [2, 8,
25, 29], BenAbdelkader et al. [4] proposed a reference-free
approach to estimating human height that combines clas-
sic single-view metrology with statistical knowledge of hu-
man anatomy. The accuracy of this approach, however, is
only slightly better than guessing a gender-specific average
height [31]. Similarly, Zhu et al. [34] use priors learned by
a neural network to recover the absolute scale of a scene
from a single image. This approach is worse than guess-
ing a gender-specific average height [31]. And, Bieler et
al. [6] use explicit knowledge of gravity to measure a per-
son’s height from a video sequence. While more accurate
than the two previous approaches, this approach is limited
to video in which the person being measured is in free fall.

As compared to height estimation, there are fewer ap-
proaches to estimating body weight. Velardo and Duge-
lay [32] estimate weight from manually-extracted body

Figure 2. An input image and manually extracted binary silhouette
(top row). A fitted 3D SMPLX model without (bottom left) and
with (bottom right) the additional silhouette-based, body-shape
constraint. Although body pose is well estimated in both cases,
the additional constraint yields a more accurate estimate of body
shape. [photo source: Official White House Photo by Shealah
Craighead]

measurements extracted from a frontal and side view image
containing a reference object, achieving a mean average er-
ror (MAE) of 7.2 kg. By comparison, Arigbabu et al. [3]
estimate weight by training a neural network with 13 mea-
surements of the human body across multiple video frames,
yielding a MAE of 6.4 kg. And, Nguyen et al. [28] esti-
mate weight from a single color and depth image, yielding
a MAE of 4.6 kg. These approaches perform better than
guessing a gender-specific average weight, which would
yield an average error of 15.8 kg. In contrast to these ap-
proaches, our method requires only a single image and does
not assume the presence of a reference object.



2.2. Body Shape

Prior approaches have considered the use of anthropo-
metric measurements as a biometric. Godil et al. [17] ex-
plored the use of anthropometric measurements, including,
for example, the 3D lengths of the wrist to elbow, elbow to
shoulder, and hip to knee. Other works have investigated
the feasibility of using the shape of specific body parts as
a biometric, including hand shape [14], ear shape [33], lip
shape [18], and eyebrow shape [13]. These techniques are
concerned with identifying individuals from distinct bio-
metric features. In contrast, we focus on a more generic
forensic identification based on height, weight, and overall
body shape.

A few approaches have explored the use of body-shape
identification. Using millimeter wave imaging, Gonzalez
et al. [19] extract body shape in a fixed neutral position,
from which they characterize the 2D shape of the human
body. The benefit of this approach is that the millimeter
wave imaging penetrates any obscuring clothing. In related
work, Kalyanaraman et al. [22] extract body shape from a
radar sensor for the purposes of in-home soft biometrics
(i.e., distinguishing someone from a relatively small sam-
ple size). The drawback of both of these approaches is they
require specialized imaging hardware and operate in 2D. In
contrast, we extract 3D body models from a single, standard
RGB image.

3. Human 3D modeling
3.1. SMPLify-X

We employ SMPLify-X [30] to estimate 3D body pose
from a single image. This model fitting approach uses a
3D SMPLX model of the human body, M(θ, β, ψ), param-
eterized by body pose, θ, body shape, β, and facial expres-
sion ψ. The SMPLX model extends the popular SMPL
model [26], allowing for articulated hands and more ac-
curate and detailed facial expression modeling. A speci-
fied body shape β can be rendered in one of three user-
selected styles: feminine, masculine, or neutral, each of
which adopts somewhat conventional, gender-based body
shapes. Importantly, the same β representation rendered un-
der different styles will yield different body shapes. That is,
the β parameters alone do not uniquely define body shape.

This 3D model fitting consists of two basic steps: (1)
from a single image, use OpenPose [7] to detect 2D key-
points from the body, face, hand, and feet; and (2) from the
2D keypoints, simultaneously estimate the 3D body param-
eters θ, β, ψ and the camera extrinsic parameters, by min-
imizing the difference between the detected 2D keypoints
and the 3D keypoints reprojected into the image plane [30].

Importantly, the 3D model estimation does not consider
the original shape of the body in the image, and incorpo-
rates several priors on human-body shape. This model es-

Figure 3. Examples from the simulated data set of neutral (top)
and action (bottom) poses [31].

timation, therefore, struggles to estimate the body shape of
below or above average-sized bodies, even while estimat-
ing accurate body pose, Figure 2 (bottom left). As a re-
sult, weight estimation is severely hampered as compared
to height estimation [31].

3.2. SMPLify-X with Improved Body Shape

The original SMPLify-X pipeline [30] optimizes the fol-
lowing objective function:

E(β, θ, ψ) = EJ + γθbEθb + γmh
Emh

+ γθfEθf
+ γαEα + γβEβ + γCEC + γψEψ, (1)

where EJ is a joint re-projection loss, Eθb is a variational-
autoencoder (VAE) based body-pose prior, and where the
other terms represent L2 penalties on hand pose (Emh

), fa-
cial pose (Eθf ), extreme bending of elbows and knees (Eα),
body shape (Eβ), interpenetration (EC), and facial expres-
sion (Eψ), each with hand-tuned scalar weights γ∗.

We next describe an extension of the SMPLify-X 3D
body estimation that incorporates explicit knowledge of the
2D body silhouette in the original image. Because even
modern techniques are not able to reliably perform figure-
ground segmentation, and because in our forensic applica-
tion it is permissible to have a human in the loop, we allow
for an analyst to manually segment the person of interest
from the background. From the original image, we begin by
manually extracting a binary-valued mask segmenting the
entire body from the background, Figure 2. On each step
of the iterative optimization, a differentiable renderer [23]
is used to generate a binary-valued mask of the current ver-
sion of the 3D model reprojected into the 2D image plane.

The objective function, Equation (1) is augmented with
the L2 norm of the difference between the silhouette (Fig-
ure 2) and the 2D reprojection of the 3D model. Specifi-
cally, to the original objective function, a new shape term,



γSES , is added, where γS = 3000. In addition, the shape
prior weight γβ is reduced by a factor of 10, to allow for
more deviation from the prior and increased reliance on the
silhouette.

Shown in Figure 2 is an example of the 3D body model-
ing without (bottom left) and with (bottom right) the addi-
tional constraint. Here we see that the additional constraint
leads to more accurate body-shape modeling.

4. Height and Weight Identification
4.1. Data Set

In order to evaluate the accuracy of height and weight es-
timation, we create a simulated dataset of 3D SMPLX mod-
els. This dataset allows us to evaluate our method across
a variety of body shapes, camera angles, and poses. This
dataset is generated by first sampling three body shapes of
neutral gender from the SMPLX β-space, corresponding to
a small, medium, and large body shape. These models are
then posed into one of 12 different poses, ranging from neu-
tral to action poses, Figure 3. Each shape in each pose is
rendered with a virtual camera in one of two elevations (0
or 18 degrees) and three azimuths (−30, 0, or 30 degrees),
yielding a total of 216, 800× 800 pixel images.

4.2. Measurement

Each of the 3D models described above is subjected
to the original and augmented body-fitting procedure de-
scribed in the previous section. Then, starting with the es-
timated body pose θ – specified as a 32D latent vector –
VPoser [30] is used to first repose the estimated 3D model
into a neutral standing pose. Once reposed, height is mea-
sured as the distance from the top of the head to the plane
formed by three points on the bottom of the feet. The in-
terior volume of a 3D model is measured as a proxy for
weight.

While these height and weight calculations are straight-
forward, they require that the 3D model be specified in real-
world units. Although the fitted 3D SMPLX model is esti-
mated in real-world units, this metric reconstruction is not
accurate enough to support accurate height and weight esti-
mation [31]. We, therefore, adopt two alternate approaches
to estimating absolute scale as described in [31].

First, because the adult inter-pupillary distance (IPD) –
measured as the distance between the center of the two
pupils – is relatively similar for women and men [12], ei-
ther the average IPD or a known person-specific IPD can be
used to scale the full 3D model. Second, in order to disen-
tangle the impact of the underlying 3D pose and shape esti-
mation from the scale ambiguity, we align the estimated 3D
model to the ground-truth 3D model using coherent point
drift (CPD) [27]. CPD is a point-set registration algorithm
that estimates the 3D rotation, isotropic scaling, and trans-

Table 1. Mean (variance) height and weight estimation errors re-
ported as percent error relative to ground truth, corresponding to
CPD- or IPD-based scale disambiguation, without (γS = 0) or
with (γS > 0) the additional body-shape constraint.

condition height weight
γS = 0, CPD 0.75 (0.50) 21.28 (157.00)
γS = 0, IPD 5.01 (28.52) 33.51 (294.47)
γS > 0, CPD 0.78 (0.69) 8.07 (41.34)
γS > 0, IPD 3.24 (7.90) 17.45 (124.3)

lation between two arbitrary point clouds (in our case, the
point clouds correspond to the vertices of the underlying
3D models). After alignment, the height and weight are es-
timated in the units of the ground-truth model. This CPD-
based approach is, of course, only applicable in simulation
and not in real-world scenarios.

4.3. Evaluation

We report the accuracy of height and weight estimation
without (Section 3.1) and with (Section 3.2) the extension
of the 3D body modeling incorporating overall body shape.

Shown in Table 1 are the mean errors in height and
weight estimation averaged over all camera angles and body
poses. For the full-reference CPD scale disambiguation, the
addition of the body-shape constraint (γ > 0) has little im-
pact on height estimation, but leads to significant improve-
ment in weight estimation with a reduction in mean error
from 21.28% to 8.07%. For the IPD scale disambiguation,
the addition of the body-shape constraint leads to a slight
improvement in height estimation with a reduction in mean
error from 5.01% to 3.24%, and a significant improvement
in weight estimation with a reduction in mean error from
33.51% to 17.45%.

In both the case with (γ > 0) and without (γ = 0) the ad-
ditional body-shape constraint, estimation for neutral poses
is more accurate than for action poses. For γ > 0 and CPD-
based scale disambiguation, the mean height/weight error is
0.48%/6.86% for neutral poses compared to 1.21%/9.75%
for action poses; and for IPD-based scale disambiguation
the mean height/weight error is 2.63%/14.85% for neutral
poses compared to 4.11%/21.07% for action poses.

Average U.S. adult female/male heights are normally
distributed with a mean of 161/175 cm and a standard devi-
ation of 7.0/7.4 cm [1]. Similarly, average U.S. adult fe-
male/male weights are normally distributed with a mean
of 78.7/90.8 kg and a standard deviation of 19.7/19.8
kg [1]. If a person’s height is estimated to be the aver-
age, gender-specific height, the average height estimation
error for women/men would be 3.5%/3.2%. And, if a per-
son’s weight is estimated to be the average, gender-specific
weight, the average weight estimation error for women/men



feminine

1 2 3 4 5 6

7 8 9 10 11 12

masculine
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Figure 4. Representative views of the 12 feminine (top) and 12 masculine (bottom) equivalence classes.

would be 20.0%/17.3%.
By comparison to this baseline, 3D body pose and shape

estimation along with a perfect estimate of scale (CPD)
leads to reasonably accurate estimates of height and weight.
For purposes of identification, however, reliable estimation
of height and weight remains challenging. Assuming, for
example, a person of average height and weight of 175
cm (5’, 9”) and 90 kg (198 lb), with a 95% confidence1,
this person’s height can be estimated to within a range of
170− 177 cm (5’, 7” - 5’, 10”) and 69− 103 kg (152− 227
lb). Note that the height and weight are consistently un-
der reported due to a slight underestimation in body shape
estimation.

With a less precise estimate of scale (IPD), estimates of
height and weight are similar to guessing a gender-specific
average. These estimates, of course, could be made more

1Because the height and weight errors are normally distributed with
mean µ and standard deviation σ, the 95% confidence interval is specified
as µ± 2σ.

accurate with better estimates of scale. An accurate estimate
of absolute scale, however, is notoriously difficult, particu-
larly from a single reference-free image in uncontrolled en-
vironments. We, therefore, next propose a scale-agnostic
technique for classifying human shape and size, the details
of which are described next, along with a comparison of
identification distinctiveness relative to the classic height
and weight estimation.

5. Body-Shape Identification

5.1. Equivalence Classes

A data-driven approach is employed to automatically
discover the range of distinct body shapes – binned into
discrete equivalence classes – spanned by the SMPLX β-
space. The SMPLX model parameterizes body shape as a
10D, real-valued vector β⃗. In order to span a wide range
of shapes while avoiding an excessive number of monster-
sized or emaciated bodies, each component of a 10D vec-



tor, β⃗, is drawn randomly from the range [−3, 3], with a
randomly selected component of β⃗ drawn from the range
[−5, 5]. A total of 50, 000 body shapes are randomly gen-
erated, and the feminine, 3D model associated with each of
these body shapes is constructed in a neutral pose (recall
that SMPLX models are rendered as feminine, masculine,
or neutral). In order to compare body shape independent of
scale, each rendered body is aligned to a single reference
model using CPD.

These 50, 000 feminine body shapes are then iteratively
partitioned into a discrete number of equivalence classes.
To begin, a randomly selected body shape β⃗1 is assumed
to be the representative body shape for the first equivalence
class C1. Next, the similarity between the representative
body for C1 and the next body shape β⃗2 is computed using
the measure of intersection-over-union (IoU) applied to the
binary silhouette of the rendered body shapes in the same,
aligned, and neutral pose. If the IoU (with a maximum
value of 1 corresponding to identical shapes) is greater than
a specified threshold of 0.85, then β⃗2 joins class C1, other-
wise β⃗2 is distinct from β⃗1 and becomes the representative
shape for a new equivalence class C2. This process is re-
peated with each new body shape β⃗i being compared to the
representative body shape for each equivalence class, and
either added to an existing class (with the maximum IoU
above 0.85) or used to seed a new class (if the maximum
IoU is below 0.85).

This iterative process yields a total of 19 feminine equiv-
alence classes from the initial 50, 000 body shapes. This
entire process was repeated with a new set of 50, 000 body
shapes rendered with a masculine style, yielding a total
of 15 equivalence classes (working within the gender con-
straints of the SMPLX model, we adopt this simplistic bi-
nary, gender categorization).

These 19 feminine, and 15 masculine equivalence
classes were then manually pruned to 12 each by removing
clearly emaciated or unrealistic body shapes, and (because
IoU is not a perfect measure of body similarity) collapsing
perceptually similar classes. Shown in Figure 4 and 4 are
the representative body shapes for the final feminine (top)
and masculine (bottom) equivalence classes.

5.2. Distinctiveness

The distinctiveness of the feminine and masculine equiv-
alence classes is evaluated by building a pair of 12-way lo-
gistic regression models. The process in the previous sec-
tion yielded a minimum of 1000 body shapes per equiva-
lence class (any class with more than 1000 shapes was ran-
domly pruned down to 1000 shapes). These shapes were
randomly split into a 80/20 training/testing dataset, from
which a logistic regression model was trained to predict the
gender-specific, body class from the underlying body-shape
beta parameterization.

(a)

(b)

(c)

(d)

Figure 5. Confusion matrices evaluating body shape distinctive-
ness for (a,c) feminine and (b,d) masculine, for the (a,b) original
and (c,d) augmented classifier. Values are reported as percentages
(values less than 0.5% are rounded down to 0). Each class label
refers to one of 12 body shapes shown in Figure 4.



The testing accuracy of these classifiers is 94.1% (fem-
inine) and 95.0% (masculine). We see that although some
of the shapes in Figures 4 are perceptually similar, their un-
derlying beta parameterizations are distinct, suggesting that
these shapes can be used for forensic identification. In or-
der to be applicable in a general forensic setting, however,
we must determine if the body-shape parameters can be re-
liably estimated from images depicting a range of different
body poses and camera angles.

The representative body shape for each equivalence class
was rendered in one of 12 neutral and action poses, Figure 3,
and with the virtual camera in one of two elevations (0 or 18
degrees) and three azimuths (−30, 0, or 30 degrees). This
yielded a total of 864, 800× 800 pixel images per gender.

As described in Section 3.2, a SMPLX model was fit
to each image to yield an estimated body shape β⃗. Each of
these body-shape parameterizations (with, of course, known
ground truth) were classified by the gender-specific logistic
classifier described above. Shown in Figure 5(a-b) are the
resulting confusion matrices. The average accuracy of clas-
sifying a feminine body is 45.9%, as compared to 36.8%
for masculine bodies. This classification accuracy stands in
stark contrast to the 95% accuracy for the default neutral
poses.

In an effort to make the classifiers more resilient to the
3D modeling errors, an augmented classifier, trained on
both the neutral body shapes and half of the newly estimated
body shapes, yields a bump in testing accuracy to 52.1%
(feminine) and 46.1% (masculine). The corresponding con-
fusion matrices are shown in Figure 5(c-d). By comparison,
chance accuracy for a 12-way classifier is 8.3%.

Because of the discrete nature of this classifier, the class-
based accuracy may not necessarily reflect the practical util-
ity of this approach. For feminine body shapes, for exam-
ple, body-shape 1 is never confused with much smaller body
shapes, such as 6, 8, or 12. On the other hand, perceptually
similar body shapes are likely to be confused, such as 4 be-
ing confused with 7 (57% of the time), or 6 being confused
with 8 (56% of the time).

Although not a perfect comparison, we next evaluate
the distinctiveness of this body-shape categorization with
a similar 12-way height/weight classification. We begin by
partitioning heights between 149 and 191 cm (4’11” and
6’3”), and weights between 41 and 113 kg (90 and 250 lbs)
into three height categories (small [149-163 cm], medium
[163-177 cm], large [177-191 cm]), and four weight cate-
gories (small [41-59 kg], medium [59-77 kg], large [77-95
kg], and x-large [95-113 kg]).

The distinctiveness of these twelve categories is evalu-
ated as follows. A random ground-truth height and weight
is drawn from the above ranges from which measurement
noise is added to yield a measured height and weight. This
measurement noise is drawn from a Gaussian distribution

(a)

(b)

Figure 6. Confusion matrices evaluating weight/height distinctive-
ness using (a) CPD and (b) IPD scale disambiguation. Values are
reported as percentages (values less than 0.5% are rounded down
to 0). Class labels S,M,L refer to one of three height classes, and
class labels S, M, L, X refer to one of four weight classes.

with mean and variance measured from our expected error
in measuring height and weight, assuming a CPD or IPD
scale disambiguation (see Section 4.3). The resulting mea-
sured height and weight is then classified based on the above
12-way categorization, and compared to ground-truth.

Shown in Figure 6 are the confusion matrices for CPD
and IPD scale disambiguation. For the more accurate CPD,
the average classification accuracy is 66.6%, as compared
to 46.5% for IPD. By comparison, chance accuracy for a
12-way classifier is 8.3%. With perfect scale (CPD), this
classification accuracy is significantly better than the body-
shape classification. With imperfect scale, however, this ac-
curacy is similar to the body-shape classification.



6. Discussion

Although our results suggest a comparable reliability for
the scale-dependent height/weight and the scale-agnostic
body-shape forensic identification, a truly direct compar-
ison is nontrivial. First, as compared to the body-shape
estimation, measurements of height/weight require an es-
timation of absolute scale, the accuracy of which can be
highly variable. Second, due to the constraints of the SM-
PLX modeling, body-shape estimation requires knowledge
of perceived gender. And third, the real-world distribution
of body shapes is unknown, and therefore we don’t know
how the confusion of certain body shapes will translate into
a real-world forensic setting. On balance, however, it ap-
pears that the these two techniques provide a similar – al-
beit imperfect – level of discrimination. It remains to be
seen if a combination of these two techniques can provide
more reliable identification.

We only evaluated these forensic identification tech-
niques in simulation. Our expectation, however, is that re-
liability will only decrease in real-world scenarios. Addi-
tional complexities will include converting from 3D model
volume to weight in kilograms, and to determining a per-
son’s ground-truth body shape. Until reliability can be sig-
nificantly improved in simulation, it is reasonable to con-
clude that these techniques are not yet equipped to handle
more complex real-world scenarios.

Many factors impact how these techniques will operate
in practice. The human body, for example, is often obscured
by clothing, making all measurements more difficult. It is
also not clear if a different approach to building the body-
shape equivalence classes could, in practice, lead to more
distinctiveness. For example, a more fine-grained metric
than IoU or a metric based on human perception of body
shape, may yield more distinct body-shape categories. And,
the presence of multiple images from different cameras or a
video sequence could lead to improved accuracy.

In its current form, however, it would appear that accu-
rate estimation of height, weight, and body shape remains
a challenging problem, particularly for the purpose of an
often high-stakes forensic identification.

7. Broader Implications

In 2006, the National Academy of Sciences (NAS)
launched a large-scale analysis of the state of forensic sci-
ence. Published three years later, the far-reaching 328-
page report [9] called for a fundamental restructuring of
how forensic techniques are validated and applied, and how
forensic analysts are trained and accredited. One of the re-
port’s key findings was that “[w]ith the exception of nuclear
DNA analysis, however, no forensic method has been rigor-
ously shown to have the capacity to consistently, and with a
high degree of certainty, demonstrate a connection between

evidence and a specific individual or source.” The report ar-
gued that forensic practitioners too often offered evidence
based on forensic techniques that had been shown to be in-
valid or unreliable, and that many forensic examiners ex-
aggerated their testimony, inflating the reliability of their
methods and conclusions.

A decade after the report’s release, Judge Harry Ed-
wards, co-chair of the original committee, wrote “we are
still struggling with the inability of courts to assess the effi-
cacy of forensic evidence. When a forensic expert testifies
about a method that has not been found to be valid and reli-
able, the expert does not know what he does not know and
cannot explain the limits of the evidence. This is unaccept-
able.” [15]

As noted by the NAS, flawed forensic science can have
severe consequences. the National Registry of Exonera-
tions, for example, identified that, between 1989 and 2019,
flawed or misleading evidence gathered using forensic tech-
niques contributed to almost a quarter of wrongful convic-
tions in the U.S. We contend, therefore, that significantly
more attention should be paid to understanding the limits
of, and improving the reliability of, forensic identification
techniques.
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