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Abstract

Classic computer-generated imagery is produced by
modeling 3D scene geometry, the surrounding illumination,
and a virtual camera. As a result, rendered images accu-
rately capture the geometry and physics of natural scenes.
In contrast, AI-generated imagery is produced by learning
the statistical distribution of natural scenes from a large set
of real images. Without an explicit 3D model of the world,
we wondered how accurately synthesized content captures
the 3D geometric and photometric properties of natural
scenes. From a diverse set of real, GAN- and diffusion-
synthesized faces, we estimate a 3D geometric model of the
face, from which we estimate the surrounding 3D photomet-
ric environment. We also analyze 2D facial features – eyes
and mouth – that have been traditionally difficult to accu-
rately render. Using these models, we provide a quantitative
analysis of the 3D and 2D realism of synthesized faces.

1. Introduction

Following in the footsteps of computer-graphics giant
Ivan Sutherland, Martin Newell in 1975 created the now
inescapable 3D Utah Teapot that for decades served as
a benchmark in computer graphics [4]. Since this time,
computer-generated imagery (CGI) has perfected the pro-
cess of building 3D geometric models, texture-mapping
these models, illuminating them with complex lighting, and
rendering them to yield highly photo-realistic imagery.

The past few years have seen a radical revolution in
photo-realistic rendering. AI-synthesized content has jetti-
soned the explicit construction of 3D models, lighting, and
virtual cameras, and has instead leveraged massive 2D im-
age datasets to effectively learn the statistical distribution
of natural images. This type of neural-based rendering is
producing stunningly realistic images.

The first AI-generated art was created in 1975 when
Harold Cohen created the rule-based AARON program

for generating abstract paintings, often compared to the
drip paintings of Jackson Pollock [9]. In the intervening
decades, AI-generated art has moved away from the clas-
sic rule-based approach towards a machine-learning, data-
driven approach. This latest revolution in AI-generation
was spurred by the development of generative adversarial
networks (GANs) [18]. These neural-based computations
consist of two main components: a generator and a discrim-
inator. Tasked with, for example, synthesizing an image of a
person, the generator starts by laying down a random array
of pixels. If the discriminator can distinguish this proffer
from a large database of real faces, it provides feedback to
the generator for a second round. This process repeats un-
til the discriminator is unable to distinguish the generator’s
synthesized face from a real face.

Versions 1, 2, and 3 of StyleGAN [22–24] and its
precursor ProGAN [21] are some of the most successful
techniques for synthesizing realistic faces. Previous work
(e.g., [17]) has found that these types of synthesized im-
ages contain subtle spectral patterns not found in real pho-
tographs (e.g., [41]). While these properties can be foren-
sically exploited (albeit with some limits [12]), they don’t
impact the visual plausibility of the synthesized faces. And,
in fact, a recent set of perceptual studies [28] found that
StyleGAN2 faces are nearly indistinguishable from real
faces (and even slightly more trustworthy). By compari-
son, as late as 2016 – with decades longer to perfect photo-
realistic rendering – classic CGI-rendered faces were still
somewhat distinguishable (albeit not perfectly) from photo-
graphic faces [19].

Although highly realistic, StyleGAN does not afford
much control over the appearance or surroundings of the
synthesized face. By comparison, more recent diffusion-
based synthesis affords more rendering control [3, 30, 33].
Trained on hundreds of millions of images (and accompany-
ing text descriptions), each image is progressively corrupted
until only visual noise remains. The model then learns to
denoise each image by reversing this corruption. This dif-
fusion model can then conditioned to generate an image that
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Figure 1. Representative examples of (a) real; (b) GAN-generated; and (c) diffusion-generated faces.

is semantically consistent with a specified category (“cat,”
“dog,” “landscape,” etc.), or a more detailed description (“a
cat and dog riding a rainbow-colored unicorn on a rolling
green landscape”).

For example, Google’s Imagen1 is a 4.6-billion parame-
ter text-to-image diffusion model, OpenAI’s DALL-E2 is a
3.5-billion parameter model, and Stability AI’s open-source
Stable Diffusion3 with just under 1 billion parameters has
made text-to-image synthesis readily accessible.

Given the evolution in image rendering from detailed
modeling of 3D geometry and physics to 2D data-driven
approaches, we wondered if AI-synthesized images exhibit
the same veridicality as CGI images. We describe a series of
3D and 2D analyses of GAN- and diffusion-generated faces
in an initial exploration of the 3D geometric, 3D photomet-
ric (lighting), and 2D facial-feature – eyes (oculometric)
and mouth (oralmetric) – realism of AI-synthesized faces.
This study has implications for those on the synthesis side
(CGI and AI) and on the forensic side of this revolution in
image rendering.

Throughout our analysis we intentionally utilize un-
adorned computational machinery to analyze the 2D and 3D
structure of real and synthesized faces. The rationale for this
is that our focus is not to build robust forensic classifiers, but
rather to explore the underlying realism of AI-synthesized
content. By using basic – mostly linear – techniques, we
can discover underlying consistencies and inconsistencies
while avoiding latching onto more minor features that may
be useful for forensic classification, but are not the focus of
our analysis.

1https://imagen.research.google
2https://openai.com/blog/dall-e
3https://stability.ai/blog/stable- diffusion-

public-release

2. Related Work
We next review the most comparable works to ours as

described in a series of studies examining the semantic and
geometric plausibility of DALL-E 2 images.

The first study examined the ability of DALL-E 2 to cap-
ture basic relations between simple objects and agents [10].
The physical relations included terms like in, on, un-
der, near; the agentic relations included terms like push-
ing, pulling, touching, hitting; and the objects and agents
included terms like box, bowl, teacup and child, robot,
iguana. By mixing and matching these terms, sample
DALL-E 2 text prompts were created like “a child touch-
ing a bowl” and “a spoon in a teacup.” Based on percep-
tual judgements of synthesized images, the authors con-
clude that the models do not have a complete understanding
of basic relations between simple objects and agents.

A second study examined the ability of DALL-E 2 to
capture basic grammatical phenomena in human language
including coordination, comparative, negation [26]. Sam-
ple prompts include phrases like “The man is drinking wa-
ter and the woman is drinking orange juice,” “The bowl has
more cucumbers than strawberries,” “A tall woman with-
out a handbag.” The authors conclude that the models do
not have a complete understanding of these basic grammat-
ical structures that are generally well understood by young
children. A third study found similar gaps in semantic un-
derstanding in DALL-E 2 synthesized images [32].

Moving from the semantic to the geometric, a pair of
papers examining the consistency of perspective constructs
(vanishing points and cast shadows) [15] and lighting [14]
found that DALL-E 2 has some – albeit imperfect – un-
derstanding of basic geometric and photometric constructs.
In particular, it was found that the perspective geometry of
vanishing points on planar surfaces (a tiled kitchen floor and
counter) and cast shadows (from cubes on a sidewalk) are

https://imagen.research.google
https://openai.com/blog/dall-e
https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stable-diffusion-public-release


locally consistent, but globally (across the entire scene) in-
consistent. It was also found that 3D lighting environments
on rendered spheres in outdoor settings are again locally
consistent, but globally inconsistent.

Our analysis is related to these geometric analyses, but
here we focus exclusively on images of faces, arguably the
type of content that has raised most concern for potential
misuse [5, 6].

3. Datasets
Our dataset consists of 1200 facial images: 400 real; 400

GAN-generated; and 400 diffusion-generated. Shown in
Figure 1 are representative examples of these real and syn-
thesized faces.

The real and GAN-based (StyleGAN2 [24]) images are
taken from the perceptual study of [28]. The GAN-based
images are equally distributed (50 per category) across
two apparent genders (women and men) and four appar-
ent races (African American or Black, East Asian, and
South Asian, White). A latent representation (VGG [29])
was extracted from each GAN-generated face, from which
each synthetically-generated face was matched to a real face
(from the StyleGAN2 training dataset) with the closest la-
tent representation (in the ℓ2-norm sense). These synthe-
sized and real color images are of size 400× 400 pixels.

Adding to this dataset, we used Stable Diffusion
(v1.4) [34] to synthesize 50 faces for each of eight demo-
graphics with the prompts “a profile photo of a middle-aged
{Black, East-Asian, South-Asian, White} {Woman, Man}
with a solid background.” The images were synthesized at
a resolution of 512×512 pixels. We manually replaced any
obvious synthesis failures in which, for example, the face
was not visible or the face had obvious and significant ren-
dering artifacts.

4. Geometric
We employ the neural-based Detailed Expression Cap-

ture and Animation (DECA) model [16] to extract a 3D ge-
ometric model from a single RGB image (we also consid-
ered the more recent Metric Face (MICA) [43], but found
it did not impact our analyses). These models capture indi-
vidual facial structural differences and expressions. The 3D
model is parameterized as a standard mesh with n = 5023
vertices and m = 9976 faces connecting triples of vertices.
Shown in Figure 2 are representative examples of estimated
models from three images described in the previous section.

In order to explore possible 3D structural differences be-
tween real and synthesized faces, each 3D model is first
aligned to a single reference model. This is done by first
translating the model to the origin and isotropically scal-
ing it to fit within a unit sphere. The model is then rigidly
aligned (rotated and translated) to a specified reference

(a)

(b)

(c)

(d)

Figure 2. Representative examples of: (a) RGB input image;
(b) DECA-generated 3D model superimposed atop the input im-
age; (c) fully the texture-mapped model; and (d) partially texture-
mapped model with the portion of the facial texture used by the
photometric analysis.

model. Specifically, the 3D rotation matrix R and 3D trans-
lation vector t⃗ that align the 3D vertices (q⃗) of a model to
the corresponding reference vertices (p⃗) are determined by
minimizing the following quadratic error:

E(R, t⃗) =

n∑
i=1

(
p⃗i − (Rq⃗i + t⃗)

)2
. (1)

Note that because the underlying DECA model is derived
from a fixed 3D model with n vertices, the ith vertex of
the reference model (p⃗i) corresponds to the ith vertex of
the model to be aligned (q⃗i). By using quaternions to rep-
resent the transformation (R, t⃗), a standard least-squares
estimation can be used to estimate the optimal rigid align-
ment [20].

Once aligned, the set of 400 real and 400 GAN-
generated 3D models are subjected to a principal compo-
nent analysis (PCA) [1], where each model is represented
as a 3n × 1 vector corresponding to the n 3D coordinates
of the model’s vertices. We find that the top 15 principal
components (PCs) capture 99% of the variance of these 800
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Figure 3. A t-SNE representation of the 15-D PCA parameterization of the facial geometry (top row), the 23-D PCA parameterization of the
oculometric shape (middle), and the 22-D PCA parameterization of the oralmetric shape (bottom) comparing (a) real and GAN-generated
faces, (b) real and diffusion-generated faces, and (c) GAN- and diffusion-generated faces.

models. Each model is projected onto these top 15 PCs to
yield a 15-D geometric representation of each face.

Shown in the top row of Figure 3(a) is a 2D t-SNE [38]
projection of this PC representation, from which we see no
discernible grouping of the real and GAN faces.

To further explore the potential differences between the
3D geometry of real and GAN faces, we next trained a logis-
tic regression (LR) on the 15-D PC representations. Given
our relatively small dataset, here – and throughout – we re-
port on the training accuracy; given the use of a simple LR
classifier, the chance of over-fitting is less significant.

Averaged over 100 repetitions, the average classification
accuracy for the real and GAN faces is 65.1% and 66.3%
with a standard deviation of 1.1% and 1.0% (Table 1, row
1), where chance classification in this balanced dataset is
50%. With accuracy only slightly better than chance, we see

that the 3D geometry of GAN-generated faces is generally
consistent with real faces.

This entire process was repeated for the set of 400 real
and 400 diffusion-generated 3D models. Shown in the top
row of Figure 3(b) is the t-SNE projection of this PC rep-
resentation, from which we see a bit more clustering of the
real and diffusion faces as compared to the GAN faces in
panel (a). This is confirmed by the average LR classifica-
tion accuracy increasing to 77.9% and 83.4% for the real
and synthetic faces with a standard deviation of 1.2% and
0.7% (Table 1 row 1).

We also compared the GAN- to the diffusion-synthesized
images. Shown in the top row of Figure 3(c) is the
t-SNE projection of this PC representation, revealing partial
grouping similar to the real and diffusion-generated faces
in panel (b). The average LR classification confirms this
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Figure 4. Median, and 35% and 65% quantiles, of the nine lighting coefficients for the (a) GAN- and (b) diffusion-generated faces, as
compared to the real faces. Yn,∗ corresponds to the nth-order spherical harmonics: shown in the legend are Y1,∗ (top) and Y2,∗ (bottom).

grouping with an average accuracy of 81.9% and 85.3% for
the GAN and diffusion faces with a standard deviation of
0.5% and 0.6% (Table 1 row 1).

As compared to diffusion-generated faces, GAN-
generated faces more closely mimic the 3D geometry of
real faces, and there appears to be a geometric difference
between GAN and diffusion faces.

5. Photometric

We next explore possible 3D environmental lighting dif-
ferences between real and synthesized faces. These photo-
metric properties are quantified using a spherical-harmonic
representation [2,31]. This method assumes a convex Lam-
bertian surface of constant reflectance illuminated by a dis-
tant light source(s), and a known 3D geometry. Shown
in Figure 2(d) are examples of texture-mapped 3D models
(from Section 4) filtered to a small region around the eyes
and nose that can reasonably be assumed to satisfy these
assumptions (i.e., primarily uniform skin texture with no
hair, facial hair, eyes, or teeth). The 2D textures are au-
tomatically filtered using MediaPipe’s [27] facial keypoint
estimation to isolate the region of interest.

From the facial appearance (texture) and underlying 3D
geometry, we estimate the 9-D environmental lighting coef-
ficients as described in [25].

Shown in Figure 4 are the median, and 35% and 65%
quantiles, of the nine lighting coefficients for the GAN- and
diffusion-generated faces as compared to the real faces. For

the basis spherical harmonics depicted in the figure legend,
the in-plane horizontal and vertical axis corresponds to the
x-axis and z-axis (the camera optical axis) and the positive
y-axis is facing into the page.

With a correlation of r2 = 0.99, the photometric proper-
ties of GAN-generated faces are highly similar to real faces.
With a correlation of r2 = 0.58, diffusion-generated faces
are less similar to real faces. Notable deviations are found
in the first-order term (Y1,−1) corresponding to the light-
ing from above or below the photographer, and three of the
second-order lighting terms (Y2,−1, Y2,0, and Y2,2) corre-
sponding to differences in illumination in front of and be-
hind the camera. These differences relate to what is per-
haps the most common illumination patterns in natural pho-
tos: the dominant light source is usually from above, and
photographers typically position themselves between their
subject and the dominant light source to avoid the glare that
results from back lighting. These patterns don’t seem to be
fully respected in diffusion-synthesized faces.

As in the previous section, we train a logistic regression
on the 9-D lighting coefficients. Averaged over 100 repeti-
tions, classification accuracy for the real and GAN faces is
58.4% and 59.4% with a standard deviation of 1.0% and
1.2%. Classification accuracy for the real and diffusion
faces is significantly higher at 78.2% and 80.1% with a
standard deviation of 0.7% and 0.9%. Lastly, classification
between GAN and diffusion faces has a similar accuracy
of 75.2% and 81.5% with a standard deviation of 0.6% for
both classes (Table 1, row 2).



As compared to the 3D geometric properties described
in the previous section, GAN-generated faces are even more
consistent with real faces. On the other hand, the geometric
and photometric properties of diffusion-generated faces are
similarly distinct from real faces.

6. Oculometric
We next explore potential differences in the 2D eye shape

in real and synthesized faces. MediaPipe’s keypoint estima-
tor [27] is used to identify the left and right eye. A bounding
box is then specified encompassing the eye and eyelid. Each
eye is then scaled to a fixed resolution of 20×32 pixels and
converted from RGB to grayscale, Figure 5.

The left and right eyes, packed into a single image, for
400 real and 400 GAN faces are subjected to a PCA. We
find that the top 23 principal components capture 99% of
the variance. Each pair of eyes is projected onto these top
23 PCs to yield a 23-D representation of the ocular shape.

Shown in the middle row of Figure 3(a) is a 2D t-SNE
projection of this PC representation. Although there is no
apparent grouping, a logistic regression reveals some dif-
ferences. Averaged over 100 LR repetitions, the accuracy
for the real and GAN eyes is 71.6% and 76.6% with a stan-
dard deviation of 2.3% and 0.8% (Table 1, row 3). These
shape differences are greater than the 3D geometric and 3D
photometric differences.

This process is repeated for the set of 400 real and 400
diffusion eyes. Shown in the middle row of Figure 3(b),
is the t-SNE representation, revealing more grouping. The
average LR classification (again averaged over 100 repeti-
tions) accuracy is 70.6% and 67.9% with a standard devia-
tion of 0.7% and 0.9% (Table 1 row 3).

Lastly, we compare GAN- to diffusion-generated eyes.
Shown in the middle row of Figure 3(c) is the t-SNE pro-
jection of this PC representation, revealing some grouping.
The average LR classification confirms this grouping with
an average accuracy of 83.8% and 75.7% for the GAN and
diffusion eyes with a standard deviation of 1.4% and 2.3%
(Table 1 row 3).

Overall, the 2D ocular features of GAN faces are less
consistent with real images than the 3D geometric and pho-
tometric properties. On the other hand, ocular features of
diffusion faces are more consistent with real images than
the 3D properties.

7. Oralmetric
We next explore possible 2D mouth shape differences

between real and synthesized faces. MediaPipe’s keypoint
estimator [27] is used to identify the mouth. A rectangu-
lar bounding box is specified horizontally by the corners
of the mouth and vertically by MediaPipe’s philturm and
chin crease keypoints. Each bounding box is then scaled

(a) (b) (c)

Figure 5. Representative examples of cropped (a) real, (b) GAN-
generated, and (c) diffusion-generated mouths and eyes used in the
oralmetric and oculometric analyses.

to 140 × 70 pixels, and converted from RGB to grayscale,
Figure 5.

Subjecting the 400 real and 400 GAN-generated mouths
to a PCA yields a basis of size 22 capturing 99% of the vari-
ance. Each mouth is projected onto these top 22 PCs, yield-
ing a 22-D representation of the oral shape. Shown in the
bottom row of Figure 3(a) is a 2D t-SNE projection of this
PC representation. Although there is no apparent group-
ing, a logistic regression reveals some differences. Aver-
aged over 100 LR repetitions, the accuracy for the real and
GAN mouths is 65.8% and 68.0% with a standard deviation
of 0.9% and 1.2% (Table 1, row 4).

This process was repeated for the set of 400 real and 400
diffusion faces. Shown in the bottom row of Figure 3(b),
is the t-SNE representation, revealing more grouping. This
is supported by an increase in the average LR classification
of 72.0% and 71.5% with a standard deviation of 1.0% and
0.8% (Table 1 row 4).

Finally, we compared GAN- to diffusion-generated
mouth. Shown in the bottom row of Figure 3(c) is the t-
SNE projection of this PC representation and the average
LR classification is 86.1% and 81.5% with a standard devi-
ation of 0.6% for both classes (Table 1 row 4).

Overall, the trend from the previous sections continue: as
compared to diffusion faces, GAN faces are more consistent
with real faces. For GAN faces, the 3D geometric and pho-
tometric properties are more consistent with real faces than
the 2D ocular and oral features; for diffusion faces, this is
reversed with the 2D facial features more consistent than
the 3D properties.



feature real GAN real diff GAN diff
geometric 65.1 66.3 77.9 83.4 81.9 85.3

photometric 58.4 59.4 78.2 80.1 75.2 81.5
oculometric 71.6 76.6 70.6 67.9 83.8 75.7

oralmetric 65.8 68.0 72.0 71.5 86.1 81.5
combined 75.0 78.1 74.6 74.5 84.8 82.0

Table 1. Two-way classification accuracy (%) to distinguish be-
tween real and GAN, real and diffusion, and GAN and diffusion
faces. Accuracy is averaged over 100 LR repetitions trained on
different facial features (rows 1-4) and a all features (row 5).

8. All together now

Across 3D geometric and photometric properties and 2D
facial features, both GAN- and diffusion-synthesized faces
share strong commonalities with real faces, with GAN faces
exhibiting more realism than diffusion faces. At the same
time, we see more significant differences between GAN and
diffusion faces. In this final analysis, the 15 geometric, 9
lighting, 22 ocular, and 22 oral features are combined into
a single LR classifier. As shown in the last row of Table 1,
this combined classifier affords only a slight improvement
in distinguishing real from synthesized. In particular, the
combined LR accuracy for real versus GAN is only slightly
better than the oculometric accuracy, and the combined LR
accuracy for real versus diffusion is slightly worse than the
3D geometric and 3D photometric accuracy.

These results imply that the differences across the vari-
ous 3D and 2D properties are not independent.

9. Discussion

We find that GAN-synthesized faces are more consis-
tent with real faces than diffusion-synthesized faces with
respect to 3D geometric and photometric properties and 2D
oral facial features, while the 2D ocular features of diffusion
faces are slightly more realistic. Somewhat counter to our
findings, the authors in [11] find that diffusion models can
achieve superior image quality to GANs. While we focus
on 3D and 2D facial features, these authors evaluate a broad
category of images using an inception score image-quality
metric [35] which measures the diversity and distinctiveness
of synthesized images. This different metric and categorical
focus likely explains our different conclusions.

Our focus has been an exploration of the photo-realism
of AI-synthesized faces in which we intentionally employ
mostly linear techniques so as to focus on basic facial prop-
erties. We have little doubt that more sophisticated classi-
fiers may be able to utilize these basic findings to yield a
high-performing forensic classifier.

We have only considered two of the most popular syn-
thesis techniques. It remains to be seen if related techniques

like 3D-aware GANs [8] or GAN-based text-to-image [36]
will produce similarly photo-realistic images.

Even in these relatively early days of synthetic media,
AI-generated faces are highly realistic and have arguably
surpassed the photo-realism of classic computer-generated
imagery (CGI). Having jettisoned the need for highly de-
tailed 3D models and computationally-intensive rendering,
AI-generated content is also significantly less labor inten-
sive (once the system has been trained). AI-generated con-
tent does require significantly more data. However, with
massive datasets freely available (e.g., https://laion.
ai), access to data is no longer a rate-limiting step.

On the other hand, synthetically-generated content can
produce bizarre and implausible imagery. But, because syn-
thesis is so effortless and fast, brute-force synthesis will
eventually generate a desired and highly photo-realistic im-
age. It seems likely therefore that AI-synthesized content
will eventually surpass CGI in terms of usability and photo
realism. It remains to be seen if a hybrid rendering approach
can take advantage of CGI’s fine control/physical models,
and AI’s ease/flexibility.

Regardless of the current state of synthesized content, we
contend that if the trends continue, AI synthesis will even-
tually generate content that passes through the uncanny val-
ley, yielding images (and eventually audio and video) that
are perceptually indistinguishable from reality. This will no
doubt be considered a major success for the machine learn-
ing and computer vision communities, but will also raise
complex privacy, legal, and ethical questions and concerns.

On the privacy and legal fronts, recent investigations of
diffusion-based models have revealed that they are capable
of producing identical or nearly identical images found in
the model’s training set [7,37]. This apparent memorization
has privacy and legal implications. On the privacy front, if –
as has previously been reported [13] – sensitive images find
their way into a model’s training set, the synthesis process
can leak this type of sensitive data. On the legal front, if a
model’s training set contains copyrighted images obtained
without the appropriate permission [40], the regeneration
of a copyrighted image could be considered a violation of
intellectual property law.

On the ethical front, although OpenAI placed reasonable
safeguards on DALL-E’s ability to generate abusive, harm-
ful, or NSFW content, Stability AI initially placed no such
restrictions on their Stable Diffusion. As a result, almost
immediately after its release, their synthesis engine was
used to create all forms of NSFW imagery including those
involving children. In response, the company’s founder,
Emad Mostaque, said “Ultimately, it’s peoples’ responsi-
bility as to whether they are ethical, moral and legal in how
they operate this technology” [39].

We disagree with this seeming avoidance of responsibil-
ity for how one’s technology is being weaponized. There

https://laion.ai
https://laion.ai


are reasonable and practical measures that can be put in
place that allow for continued technological advances while
placing safeguards to mitigate predictable harms. With re-
spect to downstream detection of synthetic media, invisible
and robust watermarks can be embedded into synthesized
content. These watermarks can be baked into the synthesis
engines by watermarking all of the images in the training
dataset, after which the synthesis engine will generate con-
tent that contains the same watermark(s) [42]. While cer-
tainly not a perfect solution, the task of mitigating harms
from synthetic media should not be left to only the foren-
sics community, but should also begin to be addressed on
the synthesis side.
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