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Abstract

Modern day computer graphics are capable of generating highly photorealis-
tic images resulting in challenging legal situations. For example, as a result
of a 2002 U.S. Supreme Court ruling, computer generated child pornogra-
phy is protected speech, while pornographic photographs depicting an actual
child remains illegal. The ability to distinguish between protected and illegal
material assumes that law enforcement agents, attorneys, jurors, and judges
can reliably distinguish between computer generated and photographic im-
agery. We describe a series of psychophysical experiments that used images
of varying resolution, JPEG compression, and color to explore the ability
of observers to distinguish computer generated from photographic images of
people. The results allow us to assign a probability that an image that is
judged to be a photograph is, in fact, a photograph.
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1. Introduction

The past few decades have seen tremendous advances in computer graph-
ics rendering software and hardware. These advances have led to remarkable
theatrical releases that blur the line between reality and fantasy. At the
same time, this technology has resulted in challenging legal situations. Most
notably, the 1996 Child Pornography Prevention Act expanded the prohibi-
tion on child pornography to include not only pornographic images of ac-
tual children but also any computer generated (CG) images that simulate a
minor engaging in sexually explicit conduct. This ruling was subsequently
challenged, and in 2002 the U.S. Supreme Court found that portions of the



CPPA were overly broad and infringed on the first amendment (Ashcroft v.
Free Speech Coalition). This new ruling classified computer generated child
pornography, the creation of which does not involve an actual child, as pro-
tected speech. The ability to distinguish between protected (CG) and illegal
(photographic) material has, therefore, become essential.

Previous work has considered computational techniques for distinguishing
CG from photographic images [1, 2, 3, 4, 5, 6]. These techniques exploit a
variety of low-level statistical differences to classify images as either CG or
photographic. While these techniques have met with some success, they
are vulnerable to variations in resolution, image quality (SNR), compression
quality, and color, which can dramatically alter the underlying statistical
measurements.

On the other hand, the human visual system is remarkable at reasoning
about images and videos of humans and human faces [7, 8]. We previously
conducted a perceptual study to test the ability of human observers to dis-
criminate CG and photographic images [9]. This study compared perfor-
mance for images of people, man-made objects, and natural environments
for CG images generated between the years 2000 and 2006. We found that
human observers were able to reliably distinguish between CG and photo-
graphic images. Building on this earlier work, the current study focuses
exclusively on images of people, it updates the CG images to include images
rendered between 2007 and 2010, and it explores the impact of the variations
in image quality that arise in real-world settings: (1) resolution, (2) JPEG
compression, and (3) color vs. grayscale. We describe a series of experiments
that probe the reliability of observers to judge that a photograph is in fact a
photograph. We use this measure of performance because in child pornogra-
phy cases, the legality of an image depends on whether it is a photograph.

2. Methods

2.1. Images

We downloaded thirty CG images from two popular computer graph-
ics websites (www.forums.cgsociety.org and www.creativecrash.com). We re-
ceived written confirmation from the website editors that the posted images
were solely computer generated (i.e., did not contain any photographic com-
ponents). The people depicted in these images vary in age, gender, race,
pose, and lighting. In order to avoid bias in the selection of images, we
downloaded all images of people that were of sufficient resolution. While
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Figure 1: Shown are paired CG (left) and photographic (right) images. See also Figure 2.

most of the images exemplified cutting-edge photorealism, there was some
variability in quality.

As our control set, we downloaded thirty high-resolution photographic
images that closely matched the CG images in terms of age, gender, race,
and pose. These images were downloaded from a variety of websites. The
content and context of these websites virtually guaranteed that these images
were photographic in nature.

The background was manually deleted from each CG and photographic
image so that observers could only use the rendered or photographed person
to make their judgments.

Because the sizes of the CG and photographic images varied significantly,
each image was cropped to a square aspect-ratio and down-sampled so that
the area of the person depicted was 122, 600 pixels (approximately 350× 350
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Figure 2: Shown are paired CG (left) and photographic (right) images. See also Figure 1.

pixels). This down-sampling had the added benefit of largely removing any
JPEG artifacts in the original JPEG image. The image was then saved as a
JPEG with quality 100 (on a scale of 100 (best) to 1 (worst)).

Each CG and photographic image was then color adjusted to match the
brightness (mean) and contrast (variance) of each luminance and chromi-
nance channel. Denote a CG image as fg(x, y, c) and a photographic image
as fp(x, y, c), where c corresponds to the luminance (Y), chrominance (Cr),
or chrominance (Cb) channel. The brightnesses were matched by adjusting
the mean of each channel as follows:

fg(x, y, c) = fg(x, y, c)− µg(c) + µ(c) (1)

fp(x, y, c) = fp(x, y, c)− µp(c) + µ(c) (2)

where µg(c) and µp(c) are the means of the cth channel of the CG and pho-
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Figure 3: A CG image at six different resolutions. For point of reference, the third image
from the right is of the size of a typical thumbnail.

tographic images, and µ(c) is the average brightness across all 60 images
(~µ = [150 121 137]). The contrasts were then matched by adjusting the
variances of each channel as follows:

fg(x, y, c) =

√
σ

σg

(fg(x, y, c)− µ(c)) + µ(c) (3)

fp(x, y, c) =

√
σ

σp

(fp(x, y, c)− µ(c)) + µ(c) (4)

where σg and σp are the variances of the cth channel of the CG and pho-
tographic image, and σ is the average variance across all 60 images (~σ =
[5527 69 109]). After color adjusting in the luminance/chrominance space,
the images were converted back to their original RGB color space. This
brightness and contrast matching ensured that observers could not classify
images based on systematic differences in simple low-level image statistic (as
they could if, for example, the CG images generally had a higher contrast
than their photographic counterparts).

The cropped, masked, down-sampled, and brightness and contrast ad-
justed images are shown in Figures 1 and 2, where the paired CG and pho-
tographic images are shown side-by-side.
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Figure 4: A CG image compressed at six different qualities: worst (left) to best (right).

2.1.1. Image Manipulations

In addition to testing the ability of human observers to classify images
as CG or photographic, we also wanted to consider the impact of subjecting
images to basic degradations in quality that typically arise in real-world
settings. In particular, we considered the effect of (1) resolution, (2) JPEG
compression, and (3) color vs. grayscale.

Shown in Figure 3 is a CG image at its original resolution (1.000), and
down-sized by a factor of 0.025, 0.050, 0.100, 0.250, and 0.500 along each
dimension. Because the images were initially scaled to match the area of
the person depicted, the absolute size of these images depends on content.
Across all 60 CG and photographic images, the average size in pixels are:
13× 13, 27× 27, 54× 54, 109× 109, 218× 218, and 436× 436.

Shown in Figure 4 is a CG image at 0.250 resolution and JPEG com-
pressed with a quality of 10, 15, 25, 50, 75, and 100. The JPEG qualities are
specified on a scale of 1 (worst) to 100 (best), as employed by the MatLab
JPEG encoder (imwrite).

Shown in Figure 5 are three CG and three photographic images in their
original RGB color and converted to grayscale as follows:

gray = 0.299R + 0.587G + 0.114B. (5)

In the final manipulation, we asked observers to classify images that were
inverted, Figure 5. Inversion is known to greatly impair face recognitions [8],
but it should have no effect on the discrimination of most image statistics. If
performance is unaffected by inversion, then this would suggest that observers
are basing their judgment on a low-level cue.

We did not explore the full space of resolution, quality, grayscale, and
orientation, as this would have produced a prohibitively large number of
stimuli. Instead, we explored slices through this parameter space. Most
notably, the JPEG quality was fixed at 100 as the resolution was varied, and
the resolution was fixed at 0.250 as the quality was varied.
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Figure 5: CG (left) and matching photographic (right) images in color (top), grayscale
(middle), and inverted (bottom).

2.2. Psychophysical Setup

Thirty-six observers were recruited from the Introduction to Psychology
subject pool at Rutgers-Camden. All observers reported having normal or
corrected-to-normal acuity and normal color vision.

The 360 stimuli (6 resolutions × 1 quality × 60 images, or 1 resolution
× 6 qualities × 60 images) were divided into 6 sets such that every image
appeared once in a set. Each observer ran only one set (i.e., they saw each CG
or photographic person once and at one resolution or one quality). Observers
were told that they would see a sequence of images and that their task was
to determine whether each image was photographic or computer generated,
where CG is defined as an image entirely created using computer software.
Observers were also told that the background had been removed from each
image and so the blank backgrounds provided no useful information.

The stimuli were displayed on a PowerMac G5 using Psychtoolbox rou-
tines [10]. The viewing distance was not constrained and many observers
adjusted their viewing distance depending on the size of the image. The
observers registered their responses using the “F” and “J” keys on the key-
board. To ensure that observers did not rush their judgment, the experimen-
tal program ignored any responses made within 3 seconds of image onset.
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No feedback was given and there was a 1 second delay between images. The
entire experiment lasted approximately 5 minutes.

A second group of observers was recruited through Amazon’s Mechanical
Turk. This crowd sourcing utility has become popular among social scientists
as a way to quickly collect large amounts of data from human observers
around the world [11].

Four hundred and thirty six observers were paid $1.00 each to classify 30
images (partitioned similar to that described above). Given the uncontrolled
nature of the data collection, some data filtering was necessary. Approxi-
mately 10% of observers were excluded because they responded randomly
(missing the easiest images) or because they always pressed the same key on
every trial.

3. Results

We characterize reliability as the probability that an image is in fact
photographic when an observer believes it to be photographic. We adopt
this measure because in a legal setting it is the most critical measure in
assessing a defendant’s guilt or innocence. This measure can be expressed
as the following conditional probability, where R denotes the user response
and I the image category (both variables can take on the value of “CG” or
“photo”):

P (I = photo|R = photo). (6)

This conditional probability can be estimated directly from the observer re-
sponses.

3.1. Resolution

Shown in the first two rows of Figure 6 is the reliability of photograph
classification, Equation (6), for the color (RGB) condition at six different
resolutions and a JPEG quality of 100. The first row corresponds to our lab-
oratory observers and the second row corresponds to our Mechanical Turk
observers. Note first that both sets of observers have fairly similar perfor-
mance, with the laboratory observers performing slightly better at the higher
resolutions. An interesting and somewhat surprising result is that observers
consistently perform better at one-half resolution than the full resolution:
for example, 90.0% versus 81.4% for the laboratory observers. Pooled across
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0.025 0.050 0.100 0.250 0.500 1.000

RGB 65.4% 58.4% 78.0% 79.8% 90.0% 81.4%
RGB 62.1% 64.8% 73.1% 79.6% 84.7% 79.5%

Gray 54.6% 62.5% 65.6% 78.3% 76.0% 75.3%

Invert 54.9% 66.0% 68.7% 75.6% 73.3% 71.0%

Figure 6: Shown is the reliability of photograph classification, Equation (6), for different
resolutions and conditions. The first row (RGB) corresponds to the accuracy for our
laboratory observers and the second row (RGB) and remaining rows correspond to our
Mechanical Turk observers.

observers, this difference was significant (z = −2.887, two tailed p < 0.0039).
We speculate that performance at the highest resolution is lower because the
fine details in computer generated images are so accurate that observers take
their presence as evidence of a photographic image. At one-half resolution,
however, these details are not visible, and so observers rely on other cues
which, interestingly, are more distinguishing.

Even at the lowest resolutions of 0.025 and 0.050, corresponding to an av-
erage image size of 13×13 and 27×27 pixels, observers are above chance per-
formance of 50%. This surprising accuracy is consistent with previous studies
which showed that images as small as 32×32 pixels provide enough informa-
tion to identify objects and the semantic category of real-world scenes [12].

Shown in Figure 7 are all thirty CG images, at the 0.250 resolution,
ranked in order of perceptual discrimination averaged over all laboratory
and Mechanical Turk observers. There is no obvious relationship between
gender, age, race, pose, etc. and ease of classification.

In addition to the reliability of judging that an image is a photograph, it is
also useful to know the reliability of judging that an image is CG. By replacing
“photo” with “CG” in Equation 6, we have estimated the conditional proba-
bility that an image is CG if an observers says it is CG, P (I = CG|R = CG).
The reliability of the Mechanical Turk observers, from smallest to largest
scale, is 60.25%, 72.51%, 88.11%, 90.48%, 94.42%, and 92.28%. Note first
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11.8% 47.1% 47.1% 50.0% 52.9% 56.3%

56.3% 62.5% 64.7% 70.6% 70.6% 75.0%

82.4% 83.3% 84.2% 87.5% 87.5% 87.5%

88.2% 93.3% 94.1% 94.4% 94.4% 100%

100% 100% 100% 100% 100% 100%

Figure 7: Shown are all thirty CG images ranked (left to right and top to bottom) in
order of perceptual discrimination for the 0.250 resolution condition. The value below
each image denotes the percentage of trials in which observers correctly classified the
image as CG.
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10 15 25 50 75 100

JPEG 72.9% 77.4% 77.3% 76.5% 81.2% 81.4%

Figure 8: Shown is the reliability of photograph classification, Equation (6), for different
JPEG qualities.

that observers are highly reliable across resolution. These results are also
valuable in interpreting the reliability of photograph classification. If, for ex-
ample, observers were highly conservative in classifying an image as photo,
then they would have a high reliability for photographs but low reliability
for CG. This is clearly not the case since observers have similar reliability for
judging photographs and CG.

Recall that observers were forced to view each image for a minimum of
3 seconds. The laboratory observers viewed each CG image for an average
of 4.80 seconds and each photographic image for an average of 4.51 seconds.
The Mechanical Turk observers viewed each CG image for an average of 5.58
seconds and each photographic image for an average of 4.96 seconds.

3.2. JPEG Compression

Shown in Figure 8 is the reliability of the photograph classification, Equa-
tion (6), for the JPEG compression condition at a single resolution of 0.250.
Note first that the accuracy at the highest JPEG quality of 100 is comparable
to the same condition in Figure 6 (second row, fourth column). In addition,
performance stays fairly constant through a broad range of compression qual-
ities. At the lowest JPEG quality, the performance degrades to 72.9% from
a maximum of 81.4%.

Observers viewed each CG image for an average of 5.25 seconds and each
photographic image for an average of 5.28 seconds.

3.3. Grayscale

Shown in the third row of Figure 6 is the reliability of photograph classifi-
cation, Equation (6), for the grayscale condition. As with the RGB condition,
six resolutions and one JPEG quality were considered. At the highest res-
olutions there is a significant degradation in performance due to the loss of
color. The most significant degradation comes at one-half resolution where
performance drops from 90.0% to 76.0%.
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Observers viewed each CG image for an average of 5.39 seconds and each
photographic image for an average of 5.39 seconds.

3.4. Orientation

Shown in the fourth row of Figure 6 is the reliability of photograph clas-
sification, Equation (6), for the condition in which the images were inverted.
As with the RGB and grayscale conditions, six resolutions and one JPEG
quality were considered. At each resolution there is a significant degrada-
tion in performance. There are no practical implications of this condition
because unlike the, resolution, JPEG compression, and grayscale conditions,
it is trivial to control for the orientation of an image. This condition does,
however, suggest that observers are employing some high-level perceptual
judgment, as opposed to some low-level statistical judgment, which would
not have been affected by the orientation of the face.

Similar to previous conditions, observers viewed each CG image for an
average of 5.79 seconds and each photographic image for an average of 5.00
seconds.

4. Discussion

Recent advances in computer graphics rendering technologies have made
it possible to create remarkably photorealistic imagery. This blurring of the
perceptual boundary between real and fake poses a significant forensic chal-
lenge because the legality of an image may hinge on whether it is computer
generated or photographic. Current computational techniques for image clas-
sification are limited, especially for images with low resolution or high image
compression. We have explored the ability of observers to reliably determine
that an image of a person is a photograph, and therefore illegal if it depicts
child pornography. We have considered the impact of resolution, compres-
sion quality, and color on performance. The results of these experiments
are summarized in a simple and intuitive measure of the probability that an
image is photographic when an observer classifies it as photographic.

When observers judged an image as a photograph, they are 85% reliable
for color images with medium resolution (between 218× 218 and 436× 436
pixels in size) and high JPEG quality. This judgement was still quite reliable
(75%) for images as small as 54× 54, and and even the seemingly impossible
images 13×13 pixels in size, supported above chance performance. In general,
judgments of grayscale images were less reliable than their color counterparts.
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Even fairly significant JPEG compression has a relatively minimal impact on
reliability.

It seems very likely that the accuracies reported here are a lower bound on
human performance. Our observers were given no training and no incentive
to perform well (their reward was independent of their performance). Most
decisions were made within 5 seconds. Compared with the types of images
encountered in forensic settings, our images were relatively impoverished,
containing only a single person depicted from the neck up against a blank
background. A full body figure interacting with the environment or other
people is far more difficult to render photorealistically. But while observer
performance can likely be improved, there is little doubt that with time
rendering technologies will also improve.

The discriminations examined in this study currently play a role in de-
ciding the outcome of court cases. So it is essential to have some measure of
the reliability of these discriminations. To our knowledge this study provides
the first such measure, and so despite the unavoidable limitations described
above, these data should have direct and immediate impact on legal practi-
tioners who must evaluate photographic evidence in child pornography cases.
In addition, these data should inform policy makers both here and abroad on
the practicality of laws that require discriminating photographs from com-
puter generated images.
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