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Quantifying morphological shape is a fundamental issue in evolutionary biology. Recent technological advances (e.g., confocal

microscopy, laser scanning, computer tomography) have made the capture of detailed three-dimensional (3D) morphological

structure easy and cost-effective. In this article, we develop a 3D analytic framework (SPHARM—spherical harmonics) for modeling

the shapes of complex morphological structures from continuous surface maps that can be produced by these technologies.

Because the traditional SPHARM methodology has limitations in several of its processing steps, we present new algorithms for

two SPHARM processing steps: spherical parameterization and SPHARM registration. These new algorithms allow for the numerical

characterization of a much larger class of 3D models. We demonstrate the effectiveness of the method by applying it to modeling

the cerci of Enallagma damselflies.
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The ability to objectively quantify the phenotype of an organism

is fundamental to evolutionary biology. Without this ability, we

cannot objectively compare phenotypic attributes across taxa or

describe how phenotypes change through time. The revolution

in quantitative morphometric analyses over the past 20 years has

brought tremendous rigor to the quantification and comparison of

many types of morphological structures, particularly those with

relatively many homologous landmarks (Bookstein 1991; Rohlf

and Marcus 1993; Marcus et al. 1996; Small 1996; Dryden and

Mardia 1998; Klingenberg et al. 2002; Richtsmeier et al. 2002;

Klingenberg and Monteiro 2005). Until recently, a dearth of land-

marks on a structure meant that generating high-quality data in

three dimensions was difficult, and as a result analytical tech-

niques to exploit such data were unnecessary.

However, recent advances in imaging, microscopy, laser

scanning, and computer tomography (CT) have all made the ac-

quisition of rich three-dimensional (3D) morphological data quick

and easy from almost any structure, and so analytical techniques

to quantify complex 3D shapes are also now sorely needed. A

number of approaches have been developed to analyze 3D data, in-

cluding but not limited to extensions of geometric morphometrics

and various spline methods to 3D landmark positions (Bookstein

1991; Rohlf and Marcus 1993; Davis et al. 1997; Dryden and

Mardia 1998; Richtsmeier et al. 2002; Zelditch et al. 2004;
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Gay-Bellile et al. 2006; Liao et al. 2005), eigenshapes of contin-

uous curves (MacLeod 1999), nonlinear registration and surface-

to-surface distances (Kristensen et al. 2006; Nieman et al. 2006;

Ólafsdóttir et al. 2007), and fractal analyses (Scott et al. 2005) and

geographic information systems (GIS) analyses (Plyusnin et al.

2008) of digital elevation surface maps. Each of these techniques

has strengths and weaknesses (Richtsmeier et al. 2002; Polly

2008). Techniques such as geometric morphometrics form a rich

mathematical description of shape change, but their application

requires that a large set of homologous landmarks must be present

on every object included in the analysis. Others (e.g., registration

and surface-to-surface distance techniques) can analyze collec-

tions of objects with few and incomplete sets of landmarks, but

are poor descriptors of the underlying objects.

If a morphological structure can be described by a continuous

3D coverage of points (e.g., the voxels corresponding to a structure

from a digital image stack produced by imaging or CT scanning),

a number of techniques now exist to model the surface from such

data, including spherical harmonics (Ballard and Brown 1982;

Brechbuhler et al. 1995), hyperquadrics (Hanson 1988), and su-

perquadrics (Terzopoulos and Metaxas 1991). Spherical harmon-

ics, the extension of Fourier techniques to three dimensions, is

particularly well suited to modeling shapes from such data, and

is being applied to related problems in computer vision (Ballard

and Brown 1982; Brechbuhler et al. 1995), computer graphics

(Funkhouser et al. 2003; Bulow 2004; Zhou et al. 2004), medical

image analysis (Schudy and Ballard 1979; Gerig et al. 2001a,b;

Shen et al 2004), and bioinformatics (Ritchie and Kemp 1999).

Spherical harmonics were first used as a type of parametric sur-

face representation to construct a functional basis for star-shaped

objects (i.e., the object boundary can be defined as a single-

valued radius function in a polar coordinate system) (Schudy and

Ballard 1979; Ballard and Brown 1982). An extended method,

called SPHARM, was proposed to model a much larger class of

objects, including those with protrusions, intrusions, and other

arbitrarily shaped but simply connected 3D objects (Brechbuhler

et al. 1995). SPHARM shares features with the Elliptic Fourier

Descriptor (EFD) for describing two-dimensional (2D) contours

(Kuhl and Giardina 1982) and can be thought of as a 3D extension

of the EFD method.

Spherical harmonics overcomes many of the problems of

other techniques: (1) Only a small set of homologous landmarks

is required to perform the analyses. These landmarks are used

to register objects relative to one another, but not necessarily in

the description of the object’s shape. Thus, spherical harmonics is

particularly amenable in cases in which geometric morphometrics

is not—namely, objects with continuous surfaces but few homolo-

gous landmarks. (2) Spherical harmonics produces an orthogonal

basis for mathematically representing the 3D shape of a large class

of objects. As such, spherical harmonics produces a phenotypic

space in which 3D biological structures of heterogeneous shapes

can be ordinated, and thus provides a basis for reconstructing the

tempo of evolutionary change among those structures.

In this article, we describe the application of the SPHARM

algorithmic framework to 3D morphological structures. To build

intuition in the approach, we first describe various ways to ap-

ply Fourier methods to quantify 2D contours, highlight some of

the basic problems with functionally describing shapes in such

a framework, and illustrate how these problems can be allevi-

ated. We then describe the SPHARM framework for 3D objects,

including algorithmic additions that increase its robustness and

applicability to morphological structures. We demonstrate its ap-

plication using the male mating structures of Enallagma dam-

selflies (Odonata: Coenagrionidae). Specifically, we show how

SPHARM produces a high-dimensional phenotypic space to de-

scribe and quantify the positions of various shapes relative to

one another, to perform multivariate descriptive and hypothesis-

testing statistical analyses on shape variation, and to estimate

ancestral 3D morphologies and rates of evolutionary shape

change.

Fourier-Based Shape Modeling
We describe Fourier-based techniques for modeling 2D and 3D

shapes. For the purpose of building intuition, we first describe

approaches to model closed 2D contours, which closely follows

previous descriptions of these methods but with some excep-

tions. We then show how these techniques extend to modeling 3D

surfaces.

FOURIER MODELING IN 2D

A closed 2D contour can be modeled using standard Fourier-

based techniques (e.g., the elliptical Fourier analysis ([Rohlf and

Archie 1984]). Consider a very simple 2D closed contour—a

square (Fig. 1). This contour can be described by a one-parameter

function r(θ), which maps the distance from a specified origin to

each point on the contour as a function of the angle in the polar

coordinate system (Fig. 1). The function r(θ) can be expressed in

terms of a Fourier series

r (θ) = a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ), (1)

where the Fourier coefficients an and bn are given by the Fourier

transform

an = 1

π

∫ π

−π

r (θ) cos nθ dθ (2)

bn = 1

π

∫ π

−π

r (θ) sin nθ dθ. (3)
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Figure 1. A square (left panel) can be described by a radius function r(θ) (right panel) that maps the distance from a specified origin as

a radius sweeps through the square boundary. A few corresponding points are identified on the contour and on the radius function to

orient the reader. The lower series of panels illustrate using the radius function to reconstruct the original contour. The middle row of

panels show the reconstructed radius functions as progressively more coefficients are used (0, 4, 8, 50, and 100 from left to right), and

the corresponding panels in the bottom row show the reconstructed contours.

This decomposition provides a generative basis for the function

r(θ) in terms of sine and cosine functions of varying amplitudes

and frequencies. The radial function r(θ), and hence the under-

lying contour, can also be reconstructed to varying degrees of

accuracy from this decomposition by using more coefficients in

the reconstruction (Fig. 1). With n = 0, the radial function is

modeled with a single term (i.e., r (θ) = a0
2 ) and the reconstructed

Figure 2. Sample 2D closed contours that cannot be represented by a radius function based on the given origins. No value of r(θ) exists

for some θs the “C” shape and “L” shapes, and in all of the contours some θs have more than one value of r(θ).

contour is, of course, a circle. As more coefficients are added, the

contour begins to take form, and with n = 100 (i.e., 2n + 1 = 201

terms in equation [1]) the reconstruction is almost perfect (the

original radial function was sampled at only 256 points).

This Fourier basis representation is not without its limita-

tions. Shown in Figure 2 are three simple contours that do not

lend themselves well to the Fourier decomposition described in
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equation (1). For each shape, the radius crosses the contour at

more than one value for many values of θ, given the positions

of the origin. Also for the first and third shapes (i.e., the “C” and

“L”), the radius does not cross the contour for some angles. Note

also that these problems are not necessarily resolved by simply

moving the origin. Locations for the origin can be found for the

“T” and “L” contours that do resolve these problems, but no loca-

tion for the origin exists that alleviates these problems for the “C”

shape. Several extended Fourier methods (e.g., Kuhl and Giardina

1982; Foote 1989) have been proposed to solve this problem and

the rest of this section extends one of these methods (Kuhl and Gi-

ardina 1982) that can naturally be extended to model 3D surfaces.

The 2D Fourier representation can be expanded to these and

more complex shapes by employing two parametric functions

x(θ) and y(θ). Similar to the radial function r(θ), these functions

parameterize the contour as a function of angle θ. However, in this

representation, the angle θ is now arc length along the contour

specified relative to an arbitrary origin on the contour. The arc

length is normalized so that the total length around the contour

is 2π, that is the circumference of a unit radius circle. In fact,

Figure 3. An arbitrarily shaped 2D closed contour can be described by two functions x(θ) and y(θ) based on an underlying arc length

parameterization θ, where O (green dot) is the origin for measuring the arc length θ. The variable θ is normalized so that its sum over

the whole curve is equal to 2π. In the top left panel, a sample 2D curve is shown. In the middle panel, its parameterization on the unit

circle is shown. In the top right panel, the solid black line corresponds to the function x(θ) and the dashed black line corresponds to the

function y(θ). Dots and the color maps show the correspondences among the curve, the parameterization and the functions x(θ) and y(θ).

The bottom row of figures show reconstructions of this contour using harmonic coefficients for degrees 1, 4, 8, 16, and 64. The middle

row shows the reconstructed x(θ) and y(θ) functions and the bottom row shows the corresponding contours.

we can think of this transformation as mapping the contour onto

the unit circle, where such a bijective (i.e., one-to-one) mapping

preserves the arc length (Fig. 3). The functions x(θ) and y(θ)

correspond to the x- and y-Cartesian coordinates of the contour.

In this parameterization, the “C” contour can now be mapped by

two representative functions of θ (Fig. 3). Each function, x(θ) and

y(θ), can now be expanded in terms of a Fourier Series

x(θ) = a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ) (4)

y(θ) = c0

2
+

∞∑
n=1

(cn cos nθ + dn sin nθ), (5)

where the Fourier coefficients are computed as described in equa-

tions (2) and (3). As before, these Fourier coefficients can be used

to represent and reconstruct the underlying contour (Fig. 3).

FOURIER MODELING IN 3D

These methods are easily extended to represent the surfaces

of closed 3D objects. Shown in Figure 4 is a 3D surface
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Figure 4. Spherical coordinate system that maps out all points on a surface as a function of two angles is illustrated in (A). A star-shaped

3D closed surface is shown in (B), which can be described by a spherical radius function r(θ, ϕ) shown in (C). Colored dots show the

correspondence between the surface and the radius function.

parameterized by the radial function r(θ, ϕ). The variable θ is

the polar (colatitudinal) coordinate with ϕ ∈ [0 π], and ϕ is the

azimuthal (longitudinal) coordinate with ϕ ∈ [0 2π) (Fig. 4A).

The function r(θ, ϕ) specifies, as a function of two angles, the

distance from a specified origin to each point on the surface. The

functional representation of the shape in Figure 4B is shown in

Figure 4C. As in the 2D case, the radial function embodies the

underlying 3D surface, and can be decomposed in terms of a

Fourier series and transform. This radial parameterization, how-

ever, suffers from the same limitation as described in the previous

section—surfaces with zero and more than one value per radius

cannot be defined by r(θ, ϕ).

An analogous change in representation to that used in 2D

can be used to parameterize a 3D surface. In this case, three

functions, x(θ, ϕ), y(θ, ϕ), and z(θ, ϕ), are needed. Similar to

the arc length parameterization in 2D, the angular parameters θ

and φ correspond to an equal area on the surface. Specifically, a

surface is mapped onto a unit sphere under a bijective mapping

that minimizes the area and topology distortion. In principle, this

mapping is exactly analogous to mapping a 2D contour to a unit

circle, but a number of thorny practical problems prevent this

mapping from being completely straightforward. However, once

mapped onto the sphere, the Fourier transformation on the sphere

is straightforward to compute. In the first step, a mapping from the

3D closed surface to a unit sphere is determined. A satisfactory

mapping often requires a minimization over some measure of

distortion. Three typical distortions are length, angle and area

(Floater and Hormann, 2004). A mapping is isometric (length

preserving) if and only if it is conformal (angle preserving) and

equiareal (area preserving). Thus, an isometric mapping is an ideal

mapping without any length, angle, or area distortion. However,

isometric mappings only exist in certain cases: for example, the

mapping of a cylinder onto a plane. An equiareal mapping is a

reasonable alternative to a conformal mapping because it allows

each unit area on the object surface to be treated equally by

assigning the same amount of parameter space to it. Because

an uncontrolled equiareal mapping often contains excessive and

undesired angle or length distortions, an ideal spherical mapping

should minimize angle and length distortions.

The CALD spherical parameterization algorithm was devel-

oped to perform this mapping (Shen and Makedon 2006). The

CALD algorithm starts from an initial parameterization and per-

forms local and global smoothing methods alternately until a so-

lution is approached. For this algorithm, the surface is represented

as a triangular mesh consisting of vertices (a dense sampling of

points on the surface) and faces (connections between adjacent

vertices to form a tessellated mesh of triangles). Mesh smoothing

relocates vertices on the sphere to improve the parameter mesh

quality without changing its topology. Note that smoothing op-

erates only on the parameter mesh (e.g., the spherical parameter

mesh shown in Fig. 5C) and does not affect the object mesh (e.g.,

the mesh describing the surface of the object in Fig. 5B) and its

shape. CALD contains three key components. The initial param-

eterization step is an extension of Brechbuhler’s (1995) method

for triangular meshes. A local smoothing method and a global

smoothing method are then applied to iteratively improve the

quality of the parameterization. The local smoothing step aims

to minimize the area distortion at a local submesh by solving a

linear system and also to control its worst length distortion at the

same time. The global smoothing step calculates the distribution

of the area distortions for all the mesh vertices and tries to equalize

them over the whole sphere. The overall CALD algorithm com-

bines the local and global methods together and performs each

method alternately until a solution is achieved.

This mapping applies to genus-zero surfaces (Weisstein

2008)—surfaces and objects with no "holes" or “handles” (e.g.,

a sphere is a genus-zero object, whereas a torus and a teacup are

both genus-one objects). Shown in Figure 5A is a bowl-shaped

surface, in Figure 5B a triangular mesh version of this surface,

in Figure 5C its mapping onto a sphere, and the corresponding

functions x(θ, ϕ), y(θ, ϕ), and z(θ, ϕ) are given in Figure 5D–

F. These three functions can now be expressed in terms of the
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Figure 5. An arbitrarily shaped but simply connected 3D closed surface can be described by three spherical functions x(θ, ϕ), y(θ, ϕ),

and z(θ, ϕ) based on an underlying spherical parameterization (i.e., a bijective mapping between (x, y, z) and (θ, ϕ)): (A) A sample object

surface (i.e., a bowl), (B) its mesh representation, (C) its spherical parameterization, and (D–F) three spherical functions that describe the

bowl. Colored dots show the mappings among the object surface, the parameterization, and the three spherical functions.

Fourier spherical harmonic (SPHARM) functions (Brechbuhler

et al. 1995)

Y m
l (θ,φ) =

√
2l + 1(l − m)!

4π(l + m)!
Pm

l (cos θ)eimφ, (6)

where Pm
l (cos θ) are the associated Legendre polynomials de-

fined by the differential equation

Pm
l (x) = (−1)m

(2l l!)
(1 + x2)

m
2

(dl+m)

(dxl+m)
(x2 − 1)l . (7)

Each function is independently decomposed in terms of the spher-

ical harmonics as

x(θ,ϕ) =
∞∑

l=0

l∑
m=−l

cm
lx Y m

l (θ,ϕ), (8)

y(θ,ϕ) =
∞∑

l=0

l∑
m=−l

cm
ly Y m

l (θ,ϕ), (9)

z(θ,ϕ) =
∞∑

l=0

l∑
m=−l

cm
lz Y m

l (θ,ϕ). (10)

These terms can be bundled into a single vector-valued function

v(θ,ϕ) =
∞∑

l=0

l∑
m=−l

cm
l Y m

l (θ,ϕ), (11)

where v(θ, ϕ) = (x(θ, ϕ), y(θ, ϕ), z(θ, ϕ))T and cm
l = (cm

lx, cm
ly,

cm
lz)T .

The coefficients cm
l are determined using standard least-

squares estimation, which we describe next using x(θ, ϕ) as an

example. Our goal is to compute the coefficients cm
lx up to a user-

specified maximum degree Lmax. Assume that an input spherical

function x(θ, ϕ) is described by a set of spherical samples(θi ,ϕi )

and their function values xi = x(θi, ϕi), for 1 ≤ i ≤ n. According

to equation (8), we can formulate a linear system as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1,1 y1,2 y1,3 . . . y1,k

y2,1 y2,2 y2,3 . . . y2,k

...
...

...
...

yn,1 yn,2 yn,3 . . . yn,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

...

ak

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where yi,j = Ym
l (θi, ϕi), j = l2 + l + m + 1, and k = (Lmax + 1)2.

Note that we use an indexing scheme that assigns a unique index j

to every pair (l, m). Least square fitting is used to solve the above

system for (a1, a2, . . ., ak)T , because n �=k in almost all the cases.

Because each a j ≡ ĉm
lx is an estimate of the original coefficient cm

lx

for j = l2 + l + m + 1, we can reconstruct the original function

as

x̂(θ,ϕ) =
Lmax∑
l=0

l∑
m=−1

ĉm
lx Y m

l (θ,ϕ) ≈ x(θ,ϕ).

The more degrees (i.e., larger Lmax) one uses, the more accurate

the reconstruction x̂(θ,ϕ) is. The same least-squares estimation

is applied to y(θ, ϕ) and z(θ, ϕ), and coefficients cm
ly and cm

lz are

determined accordingly. After that, the bundled coefficients cm
l

approximate the full underlying surface and can be used to repre-

sent and reconstruct the surface (Fig. 7).

Registration
When objects are being compared, their SPHARM models must

be placed into a common reference system in order for corre-

sponding coefficients in the two models to be comparable and

Figure 6. Step 1 in SPHARM registration: (A) the template, (B) an object before alignment, (C) the same object aligned to the template

in the object space. Step 2 in SPHARM registration: (D) the template, (E) an object aligned to the template in the object space, (F) the

same object aligned to the template in both the object and parameter spaces.

to allow appropriate morphing between them. The goal of regis-

tration is to bring the objects as near as possible into positional

and rotational alignment with one another. The registration re-

quires the specification of six or more landmarks on each shape,

corresponding to “similar” points that will guide the registration.

Let P = {	p1, 	p2, . . . , 	pn} and Q = {	q1, 	q2, . . . , 	qn} denote cor-

responding landmarks for the two shapes to be registered, where

each 	pi and 	qi are points in R3.

In the first registration step, the following objective function

is minimized to solve for the rotation, R, and translation, T , that

brings the specified landmarks into closest positional agreement

f (R, T) = 1

n

n∑
i=1

||	qi − R 	pi − T ||2. (12)

We employ a quaternion-based algorithm (Besl and McKay 1992)

to find the rotation and translation that minimizes the above least-

squares error (the quaternion-based approach affords a simpler

closed-form solution for the above formulation). This is similar

to the Procrustes analyses, given that the landmark set roughly de-

fines the homology between objects. Figure 6A–C shows a sample

result of aligning an object to the template, where landmarks are

shown as colored dots on surfaces.

EVOLUTION APRIL 2009 1 0 0 9
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The registration quality can be evaluated by the root mean

squared distance RMSD between the corresponding surface parts.

Let S1 and S2 be two SPHARM surfaces, where their SPHARM

coefficients are formed by cm
1,l and cm

2,l, respectively, for 0 ≤ l ≤
Lmax and 1l ≤ m ≤ l. The RMSD between S1 and S2 is (Gerig

et al. 2001)

RMSD =
√

1/4π
∑Lmax

l=0

∑l

m=−l
||cm

1,t − cm
2,l ||2. (13)

Although using a set of specified landmarks will align an ob-

ject to the template in Euclidean space, the RMSD between these

two parametric surfaces will not be minimized unless the surface

homology between these models is optimized. In the second reg-

istration step, we establish such an optimized surface homology.

The homology between SPHARM models is implied by the un-

derlying parameterization: two points with the same parameter

pair (θ, ϕ) on two surfaces are defined to be a corresponding

pair. In other words, the underlying parameterization defines the

landmark labels if one treats a surface as an infinite number of

landmarks. Thus, to create an ideal homology, we can simply ro-

tate the parameter net of an object to best match the template’s

parameter net. In Figure 6 (D–F), we superimpose a colored mesh

onto a SPHARM reconstruction to show its underlying parame-

terization. On the mesh, the yellow, red, and blue dots indicate the

north pole (0, 0), the south pole (0, π), and the crossing point of

the zero meridian and the equator (0, π
2 ), respectively. The tem-

plate and its parameterization are shown in Figure 6D, and the

initial parameterization of the object to be aligned is shown in

Figure 6E. Even though the object has been rotated and translated

so that its landmark positions best match those of the template, the

RMSD (=79.0) between these two models is large because their

parameterizations are not well aligned. Rotating the parameteri-

zation of the object to the position shown in Figure 6F minimizes

the RMSD (=12.5) between them. The second step of SPHARM

registration aims to achieve this minimized RMSD by rotating the

parameterization of the object surface.

One solution for rotating the parameterization of a SPHARM

model is to recalculate the SPHARM coefficients using the ro-

tated parameterization, but this requires solving three linear sys-

tems and is time-consuming. To accelerate the process, we use a

rotational property in the harmonic theory and rotate SPHARM

coefficients without recalculating the SPHARM expansion. Let

v(θ,ϕ) = ∑∞
l=0

∑l
m=−1 cm

l Y m
l (θ,ϕ) be a SPHARM parametric

surface. After rotating the parameter net on the surface in

Euler angles (αβγ), the new coefficients cm
l (αβγ) are (Bruel and

Hennocq 1995; Ritchie and Kemp 1999):

cm
l (αβγ) =

l∑
n=−1

Dl
mn(αβγ)cn

l , (14)

where

Dl
mn(αβγ) = e−iγndl

mn(β)e−iαm

and

dl
mn =

min(l+n,l−m)∑
t=max(0l n−m)

(−1)t

√
(l + n)!(l − n)!(l + m)!(l − m)!

(l + n − t)!(l − m − t)!(t + m − n)!t!

×
(

cos β

2

)(2l+n−m−2t) ( sin β

2

)(2l+m−n)

.

The goodness of the match is measured by the RMSD between

two models, which can be calculated directly from SPHARM

coefficients according to equation (13).

We employ a sampling-based strategy that fixes one parame-

terization and rotates the other to optimize the surface correspon-

dence by minimizing the RMSD defined in equation (13). The

rotation space can be sampled nearly uniformly using icosahedral

subdivisions. This assigns rotation angles to β and γ. Let n be the

number of icosahedral samples. The expansion coefficients are

then rotated through (0βγ) and then by n equal steps in α using

equation (14), evaluating the RMSD at each orientation. The result

is the best orientation that minimizes the RMSD.

An Example Application with
Damselflies
We have employed the 3D SPHARM representation described

in the previous sections to model the morphology of cerci, the

male morphological mating structures used by males to grasp fe-

males during courtship and copulation, and the females where

these male structures contact the female in the Enallagma dam-

selfly clade (McPeek et al. 2008, 2009). Enallagma females use

the 3D shape of these structures to assess whether males are con-

specifics or heterospecifics for mating (Paulson 1974; Robertson

and Paterson 1982), and likewise the 3D shapes of these struc-

tures are used by humans to identify males to species (Westfall

and May 2006). In that study, we modeled the cerci of 41 Enal-

lagma species, and used the spherical harmonic representations to

reconstruct the evolutionary tempo and mode of shape change in

this important morphological structure across the 15 million year

history of the clade. Here, we emphasize the application and dis-

cuss the issues of applying spherical harmonics to the evolution

of 3D morphological structures using Enallagma as examples.

The basic data needed to apply these techniques are a

dense sampling of points on the surfaces of the structures

to be modeled. Many different technologies are now avail-

able to obtain such samplings, and a thorough review of

them is beyond the scope of this article. Two that we have

used are confocal microscopy and computed tomography (CT).

We employed micro CT scanning to generate the data for
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Enallagma cerci at a resolution of 2.5 μm using a SkyScan 1172

high-resolution micro-CT scanner (SkyScan, Kontich, Belgium).

The output from the CT scanning was a digital image stack of

cross-sections of a damselfly male. AmiraTM version 4.1.2 soft-

ware (Mercury Computer Systems Inc., Chelmsford, MA) was

used to identify all voxels associated with each cercus (damselflies

have two, a left and a right cercus, which are mirror images of

one another, to grasp females) to segment it from the rest of the

body. A high-resolution triangular mesh (10,002 vertices form-

ing 20,000 triangles) of the cercus surface was then constructed

from the object defined by the segmented voxels. The positions of

seven landmarks were then manually identified for registration.

Because the spherical harmonic coefficients are influenced by

both size and shape, we size-standardized all cerci to a common

length between two of the landmarks, thereby making shape the

primary difference between the cerci of different species.

First, a spherical parameterization must be constructed for

each cercus. The triangular mesh and landmarks for a cercus of

E. anna are shown as the raw mesh and as the mapping to the unit

sphere in Figure 7. To illustrate how greater degrees of spherical

Figure 7. Sample cercus surface of an Enallagma anna and its spherical parameterization. The mapping between the object surface and

its parameterization is indicated by the colored meshes and a few colored dots on the surface for landmarks. The bottom row shows the

reconstructions for this model using coefficients for degrees 1, 8, 16, and 24.

harmonic representation give more detailed description of the

object, we show reconstructions of this E. anna cercus using l =
1, 8, 16, and 24 in Figure 7.

Registration is the next important step in any analysis in

which shapes are to be compared. We recommend that one of the

objects be chosen as the registration “template” and all objects

be registered to this template before further analyses. For our

analyses, we arbitrarily chose E. anna as the template. Figure 8

illustrates the registration steps using E. antennatum being regis-

tered to the template E. anna. First, the object is translated and

rotated to bring the landmarks into as close a positional correspon-

dence as possible (Fig. 8A–C), and then the parameter alignment

is performed (Fig. 8D–F). This registration step completes a gen-

eralized Procrustes analysis as well as optimizes the homology

among objects. Figure 9 shows the registered model reconstruc-

tions for the cerci of several Enallagma species.

Once all the models have been aligned, the SPHARM coef-

ficients are an orthogonal basis for a high-dimensional phenotype

space that ordinates each of the objects relative to one another.

If the objects have been standardized to a common size before

EVOLUTION APRIL 2009 1 0 1 1



LI SHEN ET AL.

Figure 8. Step 1 in SPHARM registration of Enallagma antennatum to E. anna as a template: (A) the E. anna template, the E. antennatum

cercus (B) before alignment, and (C) after aligning to the template landmarks in the object space. Step 2 in SPHARM registration: (D) the

template, (E) the E. antennatum parameterization (E) before and (F) after being aligned to the template in the object space. The colored

mesh indicates the underlying parameterization. For example, yellow dot is the north pole, red dot is the south pole, and the white line

is the equator.

the SPHARM models are constructed, this ordination primarily

describes shape differences among the objects. The registration

makes the coefficients commensurable, and thus the coefficients

are quantitative representations of the shapes of the objects that

can be used to calculate (1) the distance between the shapes of

two structures, (2) the angles between the shapes of two objects

relative to a third reference object, and (3) moments of distribu-

tions for the collection of shapes in a dataset (e.g., the mean and

variance of shape). Standard multivariate statistical techniques

Figure 9. Normalized SPHARM reconstructions for some representative Enallagma cerci.

(e.g., Morrison 2004) can then be applied to describe and test

hypotheses about the collection of objects in the dataset. For ex-

ample, principal components analysis can be applied to reduce the

dimensionality of data, describe the major axes of shape variation

in this high-dimensional space, and visualize the positions relative

to one another (see McPeek et al. (2008, 2009) for an applica-

tion to the Enallagma cerci). For example, the first four principal

components extracted from the 41 Enallagma cerci accounted

for 75.6% of the total variation in shape (McPeek et al. 2008).
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Figure 10. Visualization of the shape variation along the first four principal components (PCs). Each row shows eigenshapes (i.e.,

reconstructions of eigenmodes) along a principal axis space along a range from −2 standard deviations (−2 × SD) to +2 SD (2 × SD).

Figure 10 presents visual representations of the shape variation

along these first four principal components.

The SPHARM models also can be morphed from one to

another, because the homology between the two has been estab-

lished by their optimally aligned underlying parameterizations.

Given two SPHARM descriptors A and B, we can calculate a new

descriptor C = (1 − w) A + w B : C is simply a weighted average

of A and B. As w is changed from 0 to 1, C will transfer from A

Figure 11. Shown is a morphing from the cercus of E. anna to E. antennatum.

to B accordingly and form a morphing result between A and B.

In Figure 11 we show such a morphing example from E. anna to

E. antennatum. In an evolutionary context, morphing is directly

applicable in ancestral reconstruction techniques—ancestral re-

construction is simply morphing according to an evolutionary

model of character change. Various techniques are now used

widely to reconstruct the ancestral character states of quantitative

phenotypes over the phylogeny of a clade (e.g., squared change

EVOLUTION APRIL 2009 1 0 1 3



LI SHEN ET AL.

parsimony, minimum evolution, evolutionary contrasts analyses:

see review in Rohlf (2001)). All these techniques estimate the

phenotypes associated with nodes in a phylogeny by calculating

some weighted average of surrounding nodes in the tree. All of

these weighted averages are simply different specifications of the

above morphing function. Morphing can potentially be used to

predict the shape of a common ancestor for a set of species (Rohlf

2001) and thus to help reconstruct the evolutionary tempo of shape

changes (see McPeek et al. 2008, 2009 for the application of evo-

lutionary contrasts analyses and character reconstructions to the

Enallagma clade).

Practical Considerations
Three-dimensional morphological shape has been one of the most

elusive aspects of an organism’s phenotype to accurately and

quantitatively characterize in all its subtlety. Fourier methods are

a venerable mathematical toolkit for such problems and as such

have been used for some time to characterize shape in 2D (Rohlf

and Archie 1984; Ferson et al. 1985; Foote 1989). Fourier repre-

sentations do, however, have their limitations. A major criticism

of Fourier-based methods is that coefficients do not represent ho-

mologous, or in fact any specific, feature of a shape (Bookstein

et al. 1982; Ehrlich et al. 1983). Any particular localized change

in a shape (e.g., a local protrusion or invagination) will cause

simultaneous changes in many Fourier coefficients. As a result,

Fourier coefficients cannot be used as characters in a phylogenetic

analysis (Zelditch et al. 1995). However, the inability to use them

as phylogenetic characters does not negate the utility of Fourier

coefficients as effective descriptors of shape, as an effective basis

for comparing differences in shape among a collection of objects

(MacLeod 1999; Polly 2008), or as a basis for reconstructing the

evolution of shape change (McPeek et al. 2008, 2009).

Polly (2008) has lucidly discussed many of the theoretical

and practical problems for understanding the evolution of struc-

tures that are characterized by such homology-free representations

as Fourier coefficients. As he illustrates, direct linear changes

in genetics and the underlying developmental bases for struc-

tures will not necessarily cause linear changes between structures

in our mathematical representations of those structures (Polly

2008). This is an argument about how one structure is morphed

into another. In fact, in our approach, the registration algorithm

implicitly establishes homology between surfaces by optimally

aligning their underlying parameterizations, which is similar to

assigning appropriate landmark labels to surface samples. This

is why the coefficients of two shapes are commensurable. How-

ever, the spherical harmonic coefficients do not represent isolated

features on the structure, and so individual coefficients cannot be

associated with specific features of the structure.

Alignment of the parameter meshes does, however, gen-

erate correspondence of spatial locations across structures. Re-

constructing shapes from the spherical harmonic coefficients is

done on some distribution of vertices across the surface of the

unit sphere (e.g., Fig. 9). Alignment of the parameter meshes

of two objects means in practical terms that each vertex on one

reconstructed shape corresponds to a vertex on the other object

(e.g., Fig. 8). Thus, one could compare shapes by reconstructing

the (x,y,z) coordinates of each shape from the aligned param-

eter meshes on a common distribution of vertices on the unit

sphere. Each vertex is then a corresponding position on the sur-

faces of all objects—although we stress that these are not the

same as homologous landmarks in geometric morphometrics, be-

cause landmarks defined a priori on the surfaces of objects (e.g.,

our registration landmarks) will not be identical vertices on all

objects, although they will be very close to one another. Because

the mapping from the spherical harmonic coefficients to spatial

information is linear, these two representations of the shapes (i.e.,

spherical harmonic coefficients vs. spatial locations of vertices)

contain identical information.

To show this, we reconstructed spatial models of the 41

Enallagma cerci using an icosahedron subdivided to level 4 on

the unit sphere (giving 5120 triangles [Teanby 2006]), and ex-

tracted principal components from the resulting coordinates of

these reconstructions. The eigensystem of this principal compo-

nents analysis was identical to the eigensystem extracted from the

spherical harmonic coefficients used to make the reconstructions

(i.e., corresponding eigenvalues accounted for the same amount

of variation, and principal component scores from the two anal-

yses were [within the bounds of rounding error] perfectly cor-

related). Thus, the spherical harmonic coefficients can be used

to construct surfaces, and the distances between the locations

of each vertex of reconstructed shapes can be used to identify

localized areas that differ to greater or lesser extents. This is

comparable to registration and surface-to-surface distances meth-

ods (e.g., Kristensen et al. 2006; Nieman et al. 2006; Ólafsdóttir

et al. 2007) but is done on the reconstructed objects and not

on the original data. Parameterizing objects using larger val-

ues of Lmax would reduce the difference between the original

data and the reconstructed object, but in practice even moder-

ate values of Lmax (we used Lmax = 18 for this analysis) should

provide adequate descriptors of shapes for this purpose. In ad-

dition, spherical harmonics provides the added benefit of quan-

titatively describing the shape of each object. We are continu-

ing to develop visualization tools to aid these analyses, meth-

ods that provide more exact correspondence between vertices

on different objects, and links between various types of analyses

(e.g., combining SPHARM with 3D implementations of thin plate

splines).
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We have also described a very simple morphing function

(i.e., a linear averaging) that is equally applied to all Fourier co-

efficients (e.g., McPeek et al. 2008, 2009). One can imagine dif-

ferent morphing functions being applied to different coefficients

(e.g., altering the high and low frequency coefficients accord-

ing to different functions). At this point, we do not know what

the correct morphing function is. Moreover, the correct function

should reflect the underlying genetic and developmental mecha-

nisms that define the structure’s shape (Steppan et al. 2002; Rice

2004; Polly 2008). However, we have such information for only a

small handful of simple traits, let alone complex shapes, and yet

evolutionary morphing (e.g., evolutionary contrasts analyses and

ancestral character reconstruction: Felsenstein 1985; Rohlf 2001)

is a powerful tool in comparative biology.

Recent technological advances in imaging and CT have made

capturing the detailed 3D structure of morphological features as

data quick and inexpensive. The extension of Fourier methods to

such 3D data is relatively straightforward, and the algorithms

we describe here alleviate many of the computational problems

inherent in this transition. Further work is obviously needed to

continue to refine the SPHARM procedures, but these refinements

will continue to develop familiar and powerful analytical tools to

capture the rich structure inherent in 3D morphologies.
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