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Abstract

This paper presents a technique for blindly removing im-
age non-linearities in the absence of any calibration infor-
mation or explicit knowledge of the imaging device. The ba-
sic approach exploits the fact that a non-linearity introduces
specific higher-order correlations in the frequency domain
(beyond second-order). These correlations can be detected
using tools from polyspectral analysis. The non-linearities
can then be estimated and removed by simply minimizing
these correlations.

1. Introduction

Most imaging devices introduce some form of luminance
and geometric non-linearities (e.g., gamma correction and
lens distortion). For many applications in image processing,
digital photography and computer vision it is advantageous
to remove these non-linearities prior to subsequent process-
ing. For example, geometric non-linearities (e.g., lens dis-
tortion) may interfere with structure/shape estimation and
image mosaicing. Luminance non-linearities (e.g., gamma
correction) may interfere with shape from shading and pho-
tometric stereo.

Typically, luminance non-linearities are estimated by
passing a calibration target with a full range of known lumi-
nance values through the imaging device (e.g., a Macbeth
chart [1]). The resulting measurements are used to deter-
mine the functional form of the non-linearity. Similarly,
geometric non-linearities are estimated by imaging a cali-
bration target with known fiducial points. The deviation of
these points from their original positions is used to estimate
the amount of distortion (e.g., [13]).
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If a device’s non-linearity is constant, then the device
can occasionally be calibrated and the non-linearities re-
moved by passing the images through the inverse mod-
els. However, if direct access to the device is not possi-
ble or if it is impractical to place a calibration target in the
scene, then this procedure becomes considerably more bur-
densome. In addition, image non-linearities may change
dynamically with the camera and scene dynamics. For ex-
ample, most commercial digital cameras dynamically alter
the luminance non-linearity depending on the scene lumi-
nances. Similarly, changes in focal length and zoom may
alter the amount of lens distortion. Under these conditions
a single off-line calibration is insufficient: the device must
be re-calibrated with every image.

We propose a technique for blindly removing image non-
linearities in the absence of any calibration information or
explicit knowledge of the imaging device. The basic ap-
proach exploits the fact that non-linearities introduce spe-
cific higher-order correlations in the frequency domain (be-
yond second-order). These correlations can be estimated
using tools from polyspectral analysis. The non-linearities
can then be estimated and removed by simply minimizing
these correlations.

Polyspectral analysis and higher-order statistics have
previously been used for various forms of image restora-
tion: noise removal [8], deblurring [14, 4], and speckle re-
moval [9]. See also [5, 11, 6] for general discussions on the
use of higher-order statistics in image processing. Polyspec-
tral analysis has been used to analyze non-linearities in sig-
nals (e.g, speech [2]).

Insight is gained into the proposed technique by consid-
ering first the effect of luminance non-linearities on a sim-
ple one-dimensional signal composed of a sum of two zero-
phase sinusoids:

f(x) = a1 sin(ω1x) + a2 sin(ω2x). (1)

When this signal is passed through a point-wise luminance
non-linearity new harmonics are introduced with ampli-
tudes that are correlated to the original harmonics [3]. To



see this more explicitly consider an arbitrary non-linear
point-wise function expressed in terms of its Taylor series
expansion:

g(u) = g(u0) +
g′(u0)(u − u0)

1!
+

g′′(u0)(u− u0)
2

2!
+ ... (2)

Considering only the first three terms of this expansion,
dropping the various scalar constants, and rewriting using
basic trigonometric identities yields:

g(f(x)) ≈ f(x) + f2(x)

= a1 sin(ω1x) + a2 sin(ω2x)

+ 1

2
a2

1(1 + sin(2ω1x)) + 1

2
a2

2(1 + sin(2ω2x))

+ 2a1a2 sin((ω1 + ω2)x) + 2a1a2 sin((ω1 − ω2)x).

(3)

Notice the presence of several new harmonics, 2ω1, 2ω2,
ω1 + ω2 and ω1 − ω2. Notice also that the amplitudes of
these new harmonics are correlated to the amplitudes of the
original harmonics. For example the amplitude of ω1+ω2 is
proportional to the product of the amplitudes of ω1 and ω2.
This observation generalizes to arbitrary signals/images and
non-linearities.

In the following sections we will show empirically that
when an image is passed through a non-linearity, higher-
order correlations in the frequency domain increase propor-
tional to the “magnitude” of the non-linearity. As a result,
non-linearities can be estimated and removed by simply
minimizing these correlations. This procedure requires no
calibration information or explicit knowledge of the imag-
ing device. We first show how tools from polyspectral anal-
ysis can be used to estimate these higher-order correlations,
and then show the efficacy of the blind removal of lumi-
nance and geometric non-linearities in both synthetic and
natural images.

2. Bispectral Analysis

Consider a one-dimensional signal f(x), and its Fourier
transform:

F (ω) =

∞
∑

k=−∞

f(k)e−iωk . (4)

It is common practice to use the power spectrum to estimate
second-order correlations:

P (ω) = E {F (ω)F ∗(ω)} , (5)

where E{·} is the expected value operator, and ∗ denotes
complex conjugate. However the power spectrum is blind
to higher-order correlations of the sort introduced by a non-
linearity, Equation (3). These correlations can however be
estimated with higher-order spectra (see [10] for a thorough

survey). For example the bispectrum estimates third-order
correlations and is defined as:

B(ω1, ω2) = E {F (ω1)F (ω2)F
∗(ω1 + ω2)} . (6)

Note that unlike the power spectrum the bispectrum of a
real signal is complex-valued. Comparing the bispectrum
with Equation (3) we can see intuitively that the bispec-
trum reveals the sorts of higher-order correlations intro-
duced by a non-linearity. That is, correlations between har-
monically related frequencies, for example, [ω1, ω1, 2ω1] or
[ω1, ω2, ω1 + ω2]. The bispectrum can be estimated by di-
viding the signal, f(x), into N (possibly overlapping) seg-
ments, computing Fourier transforms of each segment, and
then averaging the individual estimates:

B̂(ω1, ω2) =
1

N

N
∑

k=1

Fk(ω1)Fk(ω2)F
∗

k (ω1 + ω2), (7)

where Fk(·) denotes the Fourier transform of the kth seg-
ment. This arithmetic average estimator is unbiased and of
minimum variance. However, this estimator has the unde-
sired property that its variance at each bi-frequency (ω1, ω2)
depends on P (ω1), P (ω2), and P (ω1 + ω2) (see e.g., [7]).
We desire an estimator whose variance is independent of
the bi-frequency. To this end, we employ the bicoherence,
a normalized bispectrum, defined as:

b2(ω1, ω2) =
|B(ω1, ω2)|

2

E{|F (ω1)F (ω2)|2}E{|F (ω1 + ω2)|2}
. (8)

It is straight-forward to show using the Schwartz inequality
that this quantity is guaranteed to have values in the range
[0, 1]. As with the bispectrum, the bicoherence can be esti-
mated as:

b̂(ω1, ω2) =
| 1

N

∑

k
Fk(ω1)Fk(ω2)F

∗

k (ω1 + ω2)|
√

1

N

∑

k
|Fk(ω1)Fk(ω2)|2

1

N

∑

k
|Fk(ω1 + ω2)|2

.

(9)
Note that the bicoherence is now a real-valued quan-

tity. This quantity is used throughout the paper to measure
higher-order correlations.

3. Luminance Non-Linearities

Shown in Figure 1 is a 1-D signal f(x), the log of its
normalized power spectrum log(P (w)) and its bicoherence
(normalized bispectrum) b̂(ω1, ω2). Also shown is the same
signal passed through a point-wise luminance non-linearity
f1.5(x) and its power and bispectral response. Notice that
while the non-linearity leaves the power spectrum largely
unchanged there is a significant increase in the bispectral
response. It is the introduction of these correlations that we
will exploit to estimate and remove image non-linearities.
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Figure 1: Shown on the left is a fractal signal and on the
right the signal passed through a point-wise non-linearity.
While the non-linearity leaves the power spectrum largely
unchanged there is a significant increase in the bispectral
response. The axis of the bicoherence corresponds to ω1

and ω2. The origin is in the center, and the axis range from
[−π, π].

We begin by considering a parametric model of the lumi-
nance non-linearity. A generic one parameter gamma func-
tion is given by:

g(u) = uγ , (10)

where u denotes a pixel’s luminance value, normalized
into the range [0, 1]. The inverse function is given by:
g−1(u) = u1/γ . Given an image that has been subjected
to a non-linearity of this form, our task is determine the
value of γ. This value is blindly estimated by sampling a
range of inverse gamma values 1/γ, applying the inverse
function g−1(u) to the image and selecting the value of γ
that minimizes the average bicoherence.

To avoid the memory and computational demands of
computing an image’s full four-dimensional bicoherence,
our analysis is restricted to the 1-D horizontal scan lines
of an image. This is reasonable since luminance non-
linearities can typically be modeled as a point-wise oper-
ation so that the correlations introduced in 1-D will be sim-
ilar to those in 2-D. The non-linearity g(u) for a scan line is
estimated by searching for the inverse function g−1(u) that
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Figure 2: Shown is the bicoherence of a gamma corrected
fractal image, f1.5(x, y), computed for a range of inverse

gamma values, [f1.5(x, y)]γ
−1

. The bicoherence reaches
a unique minimum at γ−1 = 1/1.5.

minimizes the bicoherence averaged across all frequencies:

π
∑

ω1=−π

π
∑

ω2=−π

b̂(ω1, ω2), (11)

where b̂(ω1, ω2) is the bicoherence defined in Equation (9).
The non-linearity for an image is estimated by averaging the
estimates for each horizontal scan line (or a subset of them).

In practice this simple search strategy is effective be-
cause the function being minimized is typically well-
behaved, i.e., contains a single minimum. This is illustrated
in Figure 2 where the bicoherence is plotted as a function of
varying inverse gamma values. In this example a 512× 512
fractal image with a 1/ω power spectrum and random phase
is subjected to a non-linearity with γ = 1.5. Note that the
bicoherence reaches a unique minimum at γ−1 = 1/1.5.

Shown in Figure 3 are ten images taken from the
database of [12]. The 8-bit images, 1024 × 1536 in
size, were originally calibrated to be linear in intensity.
Each image was then printed (one non-linearity), digitally
scanned (a second non-linearity) with a flatbed scanner (8-
bit, grayscale), and then subjected to a variety of gamma
values in the range [0.4, 2.2]. Ground truth is determined by
appending a small calibration strip to the bottom of the im-
age prior to printing. The actual non-linearity is determined
from this calibration information, but only the original im-
age is used in the blind estimation.

The bicoherence for a 1-D horizontal image slice is com-
puted by dividing the signal into overlapping segments of
length 64 with an overlap of 32. A 128-point windowed
DFT is estimated for each segment, from which the bico-
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gamma
image 0.42 0.80 1.10 1.63 2.11

0.53 0.70 0.96 1.59 2.17

0.47 0.81 1.12 1.59 2.18

0.46 0.73 1.06 1.48 2.13

0.42 0.72 1.00 1.56 2.16

0.43 0.77 1.02 1.57 2.17

0.54 0.86 1.10 1.58 2.18

0.46 0.80 1.07 1.57 2.18

0.46 0.79 1.08 1.49 2.15

0.50 0.89 1.09 1.51 2.16

0.48 0.79 1.11 1.49 2.19

Figure 3: Each initially linear image is printed, dig-
itally scanned and then synthetically gamma corrected
with γ ∈ [0.4, 2.2]. Shown are the estimated gamma val-
ues determined by minimizing the bicoherence.

herence is estimated. 1 There is a natural tradeoff between
segment length and the number of samples from which to
average. We have found empirically that these parameters
offer a good compromise, however their precise choice is
not critical to the estimation results.

The amount of gamma is estimated for a horizontal scan
line by applying a range of inverse gamma values between
0.1 and 3.6 in increments of 0.1 and selecting the value that
minimizes the average bicoherence, Equation (11). The es-
timate for the entire image is determined by averaging the
estimates from every sixteenth scan line. Shown in Figure 3
are the estimated gamma values. On average, the correct
gamma is estimated within 7.5% of the actual value.

4. Geometric Non-Linearities

As with luminance non-linearities, geometric non-
linearities (e.g., lens distortions) introduces specific higher-
order correlations. This can be seen by first considering
what effect a geometric non-linearity has on a 1-D sig-
nal. Consider, for example, a pure sinusoid: fu(x) =
a1 cos(ω1x), and for purposes of exposition, consider a sim-
plified geometric distortion: fd(x) = a1 cos(ω1x

2). It is
straight-forward to show that, unlike the undistorted signal,
this signal is composed of a multitude of (correlated) har-
monics which yields an increase in the bicoherence. This
observation generalizes to arbitrary signals/images and non-
linearities.

As with the luminance non-linearities, the blind re-
moval of geometric non-linearities requires a parameter-
ized model. For the purposes of removing lens distortions,
we consider a one-parameter radially symmetric distortion
model. Denote the desired undistorted image as fu(x, y),
and the distorted image as fd(x̃, ỹ), where:

x̃ = x(1 + κr2) and ỹ = y(1 + κr2), (12)

and r2 = x2 + y2 , and κ controls the amount of distortion.
Given only a distorted image our task is to determine the
value of κ. To accomplish this we begin with a distorted
image fd , and sample a range of possible κ values, apply
the inverse distortion to fd yielding an undistorted image
fu, compute the average bicoherence of fu, Equation (11),
and select the value of κ that minimizes this quantity.

Given a guess as to the amount of distortion, κ, the dis-
tortion is inverted by solving Equation (12) for the original
spatial coordinates x and y, and warping the distorted image
onto this sampling lattice. Solving for the original spatial
coordinates is done in polar coordinates where the solution
takes on a particularly simple form.

To avoid the memory and computational demands of
computing an image’s full four-dimensional bicoherence,

1The signal is first zero-meaned and then windowed with a symmetric
Hanning window prior to estimating the DFT.
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camera calibration target

distort undistort

Figure 4: Shown along the top is a small low-grade cam-
era, and a calibration target used to manually calibrate the
lens distortion. Shown below is an image of the calibra-
tion target before (left) and after calibration (right).

the bicoherence is estimated from one-dimensional radial
slices through the center of the image. This is reasonable if
we assume a radially symmetric distortion and that the dis-
tortionemanates from the center of the image. 2 The amount
of distortion for a radial slice is estimated by a brute force
search for the inverse distortion that minimizes the average
bicoherence, Equation (11). The amount of distortion for an
image is then estimated by averaging the estimates from a
subset of radial slices (every 10 degrees). The bicoherence
was estimated as described in the previous section. Values
of κ from -0.5 to 0.1 in steps of 0.02 were sampled. The
asymmetry in the sampling range was for computational ef-
ficiency, and reasonable in our examples with strictly nega-
tive lens distortions.

Shown in Figure 4 is a low-grade camera used in our
experiments. Also shown in Figure 4 is an image of the cal-
ibration target before and after calibration. The amount of
distortion was manually estimated to be κ = −0.16. In the
absence of this calibration information the amount of dis-
tortion was blindly estimated for each of the images in Fig-
ure 5. The individual estimates are −0.20, −0.02, −0.10,
and −0.14, with an average estimate of −0.13

Because of the unavoidable non-linear interpolation step
involved in the warping during the model inversion, corre-
lations are artificially introduced that confound those intro-
duced by the lens distortion. As such, in all of our results

2If the image center drifts, then a more complex minimization is re-
quired to jointly determine the image center and amount of distortion.

distort (-0.16) undistort (-0.13)

Figure 5: Shown are several distorted images (left) and
the results of blindly estimating and removing the lens dis-
tortion (right).

the estimated distortion κ is related to the actual distortion
κ′ by the following empirically determined cubic relation-
ship:

κ′ = −1.5784κ3 − 0.7752κ2 + 1.6621κ− 0.0089 (13)

We have found that errors in the estimation of geometric
non-linearities are typically higher than those of luminance
non-linearities. We suspect that there are at least two rea-
sons for this. First, the images used in these experiments
are 480 × 640, significantly smaller than those used in the
removal of luminance non-linearities. The shorter signal
length makes it more difficult to obtain an accurate estimate
of the bicoherence. Second, geometric non-linearities in-
troduce a multitude of correlations, while the bicoherence
only measures correlations between harmonically related
frequencies. In numerous simulations (not presented here),
we were able to overcome the noisier estimates by simply
averaging over five to ten images. As such, we show in Fig-
ure 5 the results of averaging the estimates from all four
images. In practice, this should not be burdensome, as it is
relatively easy to acquire a small number of images.
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5. Discussion

Image non-linearities introduce specific higher-order
correlations in the frequency domain. Using tools from
polyspectral analysis, these non-linearities can be blindly
estimated and removed by simply minimizing these corre-
lations. In so doing, neither calibration information nor ex-
plicit knowledge of the imaging device is required. We did
assume a parametric model of the non-linearity. We also
assumed that the image non-linearities are applied unifor-
mally throughout the image. A device that employs, for ex-
ample, local gain control will require a more sophisticated
inversion technique that allows for multiple spatially vary-
ing model parameters.

The blind estimation of luminance non-linearities has
proven to be reasonably accurate for most applications. The
advantage of this approach is that it does not require any cal-
ibration. The drawback is that the blind estimation requires
a computationally more intensive estimation of the bicoher-
ence across a range of possible model parameters. Since the
minimization is well behaved this brute force search should
be replaced with a more efficient search (e.g., a gradient de-
scent minimization).

The accuracy of blindly estimating lens distortion is by
no means comparable to that based on calibration. As such
we don’t expect that this approach will supplant other tech-
niques in areas where a high degree of accuracy is required.
Rather, we expect this approach to be useful in areas where
only qualitative results are required.

It is intriguing to observe that the non-linearities in an
imaging device can fundamentally change the statistics of
an image while not dramatically altering the appearance of
an image. This may prove to be useful for understanding
and classifying the statistics of natural images.
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