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Figure 1. Overview of Our Membership Inference Method. Images are generated using an image-to-image pipeline, seeded with
an in-training image (bottom) and an out-of-training image (top), across increasing strengths. A larger strength corresponds to reduced
emphasis on the seed image. The plot on the left shows the similarity between each generated image and its corresponding seed image (the
DreamSim image similarity metric), where smaller values indicate greater similarity. The in-training seed consistently yields more similar
outputs than the out-of-training seed. Our membership inference method exploits this phenomenon.

Abstract

From a simple text prompt, generative-Al image models can
create stunningly realistic and creative images bounded,
it seems, by only our imagination. These models have
achieved this remarkable feat thanks, in part, to the inges-
tion of billions of images collected from nearly every cor-
ner of the internet. Many creators have understandably
expressed concern over how their intellectual property has
been ingested without their permission or a mechanism to
opt out of training. As a result, questions of fair use and
copyright infringement have quickly emerged. We describe
a method that allows us to determine if a model was trained
on a specific image or set of images. This method is compu-
tationally efficient and assumes no explicit knowledge of the
model architecture or weights (so-called black-box mem-
bership inference). We anticipate that this method will be
crucial for auditing existing models and, looking ahead, en-
suring the fairer development and deployment of generative
Al models.

Project Page: genai-confessions.github.io
Data: hf.co/datasets/faridlab/stroll

1. Introduction

Most agree that — despite occasional hallucinations, extra
fingers and toes, and gravity-defying motion — Al-powered
systems are now capable of creating human-like prose, im-
age, and video from a simple prompt. Most also agree
that these systems, in the form of large-language [17], im-
age [19], and video [15] models, are only possible thanks to
the ingestion of massive amounts of human-generated con-
tent. Here, however, is where disagreements begin [6].

As the courts — and the court of public opinion — adjudicate
these matters in the coming years, the question of whether
a model was trained on a specific dataset will be critical.
This so-called question of membership inference is chal-
lenging for a number of reasons. First, training datasets are
massive and often created through large-scale web scraping
without careful record keeping [25]. Second, once trained,
the models are opaque, making a post-hoc inference chal-
lenging. And third, given the competitive landscape and
lack of clear laws, there is currently little incentive for rule
following, with even some former tech CEOs encouraging
young entrepreneurs to steal intellectual property and later
hire lawyers to “clean up the mess” [10].


https://genai-confessions.github.io
https://huggingface.co/datasets/faridlab/stroll

The study of membership inference emerged as deep-
learning applications started to be trained on large
datasets [12]. Early work focused on membership inference
targeting classification (as compared to generative) mod-
els [23]. More recently, attention has turned to member-
ship inference for generative models, including large lan-
guage models (LLMs) [4, 14], generative adversarial net-
works (GANSs) [9, 11], and diffusion-based text-to-image
models [3, 13, 26-28].

Diffusion-based models are the leading contenders in pro-
ducing photorealistic images and video and hence the focus
of our effort. Previous membership inference methods for
these models either assume full or partial knowledge of the
generative model architecture and trained weights (white-
box or gray-box), are applicable to only one model architec-
ture, require massive computing power to operationalize, or
only work for analyzing membership for an entire dataset,
as compared to a single image.

By contrast, our membership inference assumes no explicit
knowledge of the model details (black-box), generalizes to
different model architectures, is computationally efficient,
and can operate on both a dataset of images as well as a
single image.

The contributions of this paper can be summarized as fol-
lows:

* A computationally efficient and easy to implement, black-
box membership inference method for generative-Al im-
age models (Figure 1);

e A dataset (STROLL) of semantically matched image
pairs for evaluating membership inference;

* Empirical analysis of membership inference and memo-
rization across different model architectures.

2. Methods
2.1. Data

We compiled three datasets consisting of images generated
by Stable Diffusion (v1.4, v2.1, v3.0), Midjourney (v6), and
DALL-E (v2). As described below, these datasets consist of
paired in-training and out-of-training images used to evalu-
ate our membership inference technique. Each pair of im-
ages is constructed to be semantically similar in terms of
content so as to ensure that any observed differences be-
tween in-training and out-of-training seed images is not due
to semantic differences.

2.1.1. STROLL

This dataset contains 100 in-training and out-of-training im-
age pairs of outdoor city objects and scenes recorded on a
smartphone in the San Francisco Bay area over the course
of two days in July 2024. Shown in the top panel of Figure 2
are representative image pairs (first two rows).
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Figure 2. Representative examples of in-training and out-of-
training images from the STROLL (top), Carlini (middle), and
Midjourney (bottom) datasets.



Prompted with “Provide a detailed, 15 word long caption
of this image,” ChatGPT-40 [1] was used to generate a de-
tailed caption for each image. These captions were used
for the in-training/out-of-training experiment. For a sec-
ond, in-training (alt caption)/out-of-training experiment, a
new caption was generated for the in-training image (with
the out-of-training captions remaining the same). This alter-
nate caption was generated with the prompt “Provide a de-
tailed, 15 word long caption of this image that is distinctly
different from [previous caption]”.

2.1.2. Carlini

This dataset contains 74 images that appear to have been
memorized [3] by Stable Diffusion (v1.4) [20]. Shown
in the middle panel of Figure 2 are representative images.
These images are a tiny fraction of the LAION-5B [22]
dataset used to train Stable Diffusion (v1.4). Each in-
training image in this dataset is accompanied by its original
caption from LAION-5B, which was also used to generate
matching out-of-training images using DALL-E (v2) [18]
(middle panel of Figure 2).

2.1.3. Midjourney

This dataset contains 10 images that appear to have been
memorized [24] by Midjourney (v6) [2]. Shown in the bot-
tom panel of Figure 2 are representative images. Each in-
training image in this dataset is accompanied by its orig-
inal caption from LAION-5B, which was used to gener-
ate matching out-of-training images using Stable Diffusion
(v3) [7] (Figure 2). Unlike the previous two datasets in
which the control images were generated using DALL-E,
here we use Stable Diffusion (v3) because DALL-E would
not generate many of the images in this dataset consisting
of recognizable celebrities.

2.2. Models
2.2.1. STROLL/Stable Diffusion (v2.1)

We created a custom derivative of the Stable Diffusion
(v2.1) variant image model by fine-tuning the 2.1 model
weights' on the in-training portion of the STROLL dataset.
The official training script” was used to fine-tune the
model’s UNet module while keeping the CLIP encoder and
variational autoencoder (VAE) weights frozen. The learn-
ing rate was set to 10~°, and the maximum-steps parameter
was set to 100°, while the remaining parameters were left
at their recommended default values: image resolution of
512 x 512, mixed precision turned off, and a random hori-
zontal flip augmentation.

Given a seed image and text prompt as input, the image-to-
image feature of this fine-tuned model, with default param-
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3For reference, fine-tuning SD v2.1 from v2.0 took 210,000 steps.

eters and varying strengths, was used to power our member-
ship inference. The strength s; € [0, 1] controls the influ-
ence of the text prompt relative to the seed image, where a
value of 0 yields a generated image that is identical to the
seed image, and a value of 1 generates an image guided fully
by the text prompt, effectively ignoring the seed image.

In order to determine the impact of the number of training
steps, we created a second fine-tuned model in which the
training steps was increased from 100 to 1,000.

2.2.2. Carlini/Stable Diffusion (v1.4)

We used the off-the-shelf Stable Diffusion (v1.4) model”
and invoked its image-to-image pipeline. All image gener-
ation parameters were set to the default values with image
strength s; € [0, 1].

2.2.3. Midjourney/Midjourney (v6)

We used the commercial Midjourney model® and manually
invoked its image-to-image pipeline through their Discord
interface. All parameters were set to the default values, ex-
cept for the image strength (termed weight in Midjourney),
ranging from O (yielding a generated image that ignores the
seed image) to 3 (yielding a generated image identical to the
seed image). Note that this strength parameter is reversed
as compared to Stable Diffusion.

2.3. Membership Inference

Our membership inference method predicts whether a
model M was trained on an image I with caption C. This
method does not access any explicit information about M’s
architecture or trained weights. This method only requires
access to the image-to-image inference engine for generat-
ing an image from a descriptive prompt, seed image, and
variable strength parameter that controls the deviation be-
tween the seed image and generated image. Intuitively,
this approach exploits a — perhaps unintended — property of
image-to-image generation that produces less variation for
an in-training seed image as compared to an out-of-training
seed image.

Our method involves three steps: (1) image-to-image infer-
ence with varying strengths, (2) measurement of perceptual
similarity between a generated and seed image I; and (3)
membership inference prediction quantifying the likelihood
that model M was trained on image /.

In the first step, the image-to-image pipeline of model M is
invoked with a seed image I, its descriptive caption C', and
strength parameters s;, where ¢ = 1,2,..., m. For each
strength s;, the image generation is repeated n times, re-
sulting in a set of output images I}-,j, where j =1,2,...,n.
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In the second step, the distance d; ; between the seed image
I and each generated image I 4,7 18 calculated using Dream-
Sim [8]. This perceptual metric of image similarity com-
putes a distance d; ; € [0,1] where a value of 0 is maxi-
mally similar and a value of 1 is maximally different. For
each strength s;, the minimum distance across n generated
images is retained, yielding a m-D vector of distances for
each strength value: d= (d1 do ... dm).

We use a simple logistic-regression model to distinguish in-
training from out-of-training images based on the distances
d.

Stable Diffusion and Midjourney afford a different
parametrization of the strength variable s;: For Stable Dif-
fusion (v1.4 and v2.1), s; € [0.02,0.2,0.4,0.6,0.8,1.0];
for Midjourney (v6), s; € [0, 1,2, 3]. For Stable Diffusion,
we used a minimum strength of 0.02 because a strength of
0.0 simply returned the seed image. Throughout, n = 10
were generated at each strength parameter.

3. Results

As described in detail in Section 2, our membership infer-
ence method predicts whether a model M was trained on
an image I with caption C. This method involves three
steps: (1) image-to-image inference with varying strengths,
(2) measurement of perceptual similarity between a gen-
erated image and seed image I with caption C; and (3)
membership inference prediction quantifying the likelihood
that model M was trained on image I. Intuitively, this
method exploits an emergent property in which image-to-
image generation produces less variation for an in-training
seed image as compared to an out-of-training seed image.

3.1. STROLL

Shown in Figure 3(a) is a Gaussian fitted log-probability
density function to the DreamSim distance between the
in-training seed images and the result of image-to-image
generation under Stable Diffusion 2.1. Each curve corre-
sponds to a different image-to-image strength parameter s;
(see Section 2) where, as strength increases, the seed im-
age has increasingly less impact on the generated image.
As expected, for strength parameters close to 0 (thinnest
curve), the DreamSim distance is relatively small, and as the
strength increases (thicker curves), the distance increases
proportionally, meaning that the generated images are in-
creasingly more distinct from the seed image.

Shown in Figure 3(d) are the same density functions but
for the out-of-training seed images. Here we see the same
trend, where small strength parameters lead to more simi-
larity as compared to larger strength parameters. However,
the mean of these densities as a function of strength s; is
larger for these out-of-training images. In particular, notice
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(DreamSim) between a seed image and a generated image with
varying strength for the STROLL (top), Carlini (middle), and Mid-
journey (bottom) datasets. In all cases, in-training seed images
lead to generated images that are more perceptually similar to the
seed (smaller DreamSim distance).



that the mean of the densities for strengths greater than 0.6
are significantly larger for out-of-training as compared to
in-training images. That is, the images generated with an
out-of-training seed are more distinct than those generated
with an in-training seed.

Shown in the top panel of Figure 4 is an in-training seed im-
age (far left) and the resulting image-to-image generation
for strengths s; € [0.02,0.2,0.4,0.6,0.8,1.0]. Consistent
with the DreamSim distance (Figure 3(a)), all of the gener-
ated images are perceptually similar to the seed image. By
comparison, also shown in Figure 4, is an out-of-training
seed image and the resulting image-to-image generation for
varying strengths. Again, consistent with the DreamSim
distance (Figure 3(d)), the generated images deviate from
the seed starting at a strength of 0.6.

Independent-samples, two-sided t-tests reveal a significant
difference between the DreamSim distributions for the in-
training vs out-of-training data at a strength s; > 0.4,
with an increasing effect size (Cohen’s D) with increasing
strength:

« 0.02 (£(198) = 0.5, p = 0.6, D = 0.07)

e 0.2 (#(198) = 2.3, p=0.02, D = 0.32)
* 0.4((198) =73, p< 1078, D =1.0)

¢ 0.6 (t(198) =11.2, p< 1078, D = 1.6)
e 0.8(t(198) = 14.5, p< 1078, D =2.1)
e 1.0 (#(198) = 14.8, p< 1078, D = 2.1)

3.1.1. Alternate Caption

In the above analysis, we assume that the image-to-image
generation is provided with the same image caption used in
training of the image-generation model. To test the sensi-
tivity of this assumption, alternate captions were generated
for each image (see Section 2). Shown in Figure 3(b) are
the same Gaussian fitted log-probability density functions
to the DreamSim distances. As compared to the in-training
images with the original caption (Figure 3(a)), the gener-
ated images with alternate captions are less similar to their
seed images, but still distinct from the out-of-training im-
ages (Figure 3(d)).

An independent-samples, two-sided t-tests again reveals a
significant difference between the DreamSim distributions
for the in-training vs out-of-training data at a strength s; >
0.4:

0.02 (£(198) = 0.7, p = 0.5, D = 0.1)
0.2 (£(198) = 1.6, p = 0.1, D = 0.2)
0.4 (t(198) = 5.7, p< 1078, D = 0.8)
0.6 (t(198) = 8.5, p< 1078, D =1.2)
0.8 (¢(198) = 11.1, p < 1078, D = 1.6)
1.0 (£(198) = 10.5, p < 1078, D = 1.5)
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3.1.2. Effect Size

We observe qualitative differences between the distributions
for the in-training and out-of-training data increases with
strength s;. We quantify this with Cohen’s D, a measure of
effect size: for strengths 0.02,0.2,..., 1.0, the effect sizes
are 0.1,0.3,1.0,1.6,2.1,2.1. A similar pattern emerges
for the in-training and out-of-training (alt caption) distribu-
tions, with effect sizes of 0.1,0.2,0.8,1.2,1.6,1.5. With a
Cohen’s D of 0.8 considered large, we see large effects with
strength parameters greater than 0.4

3.1.3. Classifier

The distributions in the top panel Figure 3 show a
population-level difference between in-training and out-of-
training images. To predict if an individual image belongs
to the in-training or out-of-training set, we trained a logistic
regression on the 6-D distance vectors d corresponding to
the 100 in-training (original caption), 100 in-training (alter-
nate caption), 100 out-of-training and 100 out-of-training
(DALL-E) images. These DALL-E images, generated to
match the content of the out-of-training images (see Sec-
tion 2), balanced the data set for model training. As shown
in Figure 3(e), the distributions for these images are similar
to the out-of-training images in panel (d).

A logistic regression was trained on a random subset of 80%
of this data and evaluated on the remaining 20%. From 100
random training/testing splits, the average testing accuracy
(measured as equal error rate) is 85% with a variance of
0.17. For a fixed false positive rate (misclassifying an out-
of-training image as in-training) of 1%, the average true
positive rate (correctly classifying an in-training image) is
74% with a variance of 0.36.

3.1.4. Memorization

In the results described above, the fine-tuned Stable Diffu-
sion model was trained with 100 steps. We next consider the
impact of increasing the training steps to 1000 as described
in Section 2.

Shown in Figure 3(c) is the Gaussian-fitted log probability
densities for this model in which we can see a qualitatively
different pattern than before, Figure 3(a). Here, almost re-
gardless of strength, the generated images are uniformly
similar to the seed image. This, we posit, is because the
prolonged learning caused the model to effectively mem-
orize the training images and associated captions. This is
consistent with the results described next.

3.2. Carlini

In the previous section, we showed that when the pre-
trained Stable Diffusion (v2.1) model is fine-tuned on a set
of 100 images of our creation, we can determine that the
model was trained on these images. Because this is a fairly
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Figure 4. Images generated using the STROLL dataset and Stable Diffusion (v2.1) image-to-image pipeline (top), the Carlini dataset and
Stable Diffusion (v1.4) model (middle), and Midjourney (v6) dataset and image-to-image pipeline. The seed image is shown in the left-
most column. The remaining columns correspond to generated images with increasing strength, where moving rightward corresponds to
less emphasis placed on the seed image. In all three cases, the in-training seed image leads to perceptually more similar images than the
out-of-training seed images.



constrained experiment, we next validate that our member-
ship inference generalizes to a real-world scenario.

As described in Section 2, the Carlini dataset consists of 74
images used to train Stable Diffusion (v1.4) and, as shown
in [3], this model can be coaxed to produce images that are
nearly indistinguishable from these training images, Fig-
ure 2.

Shown in Figure 3(f)-(g) are the DreamSim distances for
the 74 in-training images and 74 semantically matched out-
of-training images (see Section 2). Here, we see the same
pattern as with the STROLL results described above: the
generated images are perceptually more similar to the in-
training seed images than the out-of-training seed images.

Shown in the middle panel of Figure 4 is an in-training seed
image (far left) and the resulting image-to-image genera-
tion for varying strengths. As with the previous STROLL
results, the generated images are perceptually similar to the
seed image. By comparison, the out-of-training seed image
yields generated images that deviate from the seed starting
at a strength of 0.6. Interestingly, the out-of-training im-
age at strength s; = 1.0 is nearly identical to the in-training
seed image. This is because, as shown by Carlini et al. [3],
this image was memorized during the original training of
the model, and so the original prompt yields the training
image at a strength of 1.0 where the seed image is ignored.

3.2.1. Classifier

The average equal error rate for logistic regression trained
on the STROLL images and evaluated on the Carlini dataset
is 93% with a variance of 0.01, and for a false positive rate
of 1%, the average true positive rate is 90% with a vari-
ance of 0.01. This accuracy is somewhat better than for the
STROLL images because this dataset was not just trained
on but was effectively memorized by the image generator,
leading to a larger difference between in-training and out-
of-training seed images. Here, we see that the classifier
trained on a different dataset and version of Stable Diffu-
sion generalizes quite nicely.

3.2.2. Memorization

Note that the in-training distributions, Figure 3(f), are qual-
itatively similar to the distributions in Figure 3(c) corre-
sponding to the in-training (memorized) results. This, we
believe, is because both of these models have memorized
some training images and so we see less variation than in
the case when the model was simply exposed to these im-
ages.

3.3. Midjourney

In the previous two sections, we showed the efficacy of our
membership inference on two different versions of Stable
Diffusion (v2.1 and v1.4). Here we show that our approach
generalizes to different model architectures.

As described in Section 2, the Midjourney dataset consists
of 10 images that appear to have been part of the training
datatset for Midjourney (v6). In particular, as shown in [24],
Midjourney can be coaxed to produce images that are nearly
indistinguishable from these well-recognized images, Fig-
ure 2.

Shown in Figure 3(h)-(i) are the DreamSim distances for
the 10 in-training images and 10 semantically matched out-
of-training images (see Section 2). Here, we see the same
pattern as with the STROLL and Carlini results: the gener-
ated images are perceptually more similar to the in-training
seed images than the out-of-training seed images.

Shown in the bottom panel of Figure 4 is an in-training seed
image (far left) and the resulting image-to-image generation
for varying strengths. As with the previous STROLL and
Carlini results, the generated images are perceptually sim-
ilar to the seed image. By comparison, the out-of-training
seed image leads to images that deviate more noticeably.

We again see that the out-of-training image, at a strength
s; = 0 where the seed image is ignored, is nearly iden-
tical to the in-training seed image. This is because this
image was memorized during the original training of the
model [24], and so the prompt simply reproduces it.

3.3.1. Memorization

As before, the in-training distributions, Figure 3(h), are
qualitatively similar to those in Figure 3(c) and (f) corre-
sponding to the STROLL in-training (memorized) and Car-
lini in-training results. This, again, is because all three of
these models have memorized some training images.

3.3.2. Classifier

Because Midjourney uses a different strength parametriza-
tion than Stable Diffusion, we are not able to deploy the
logistic regression model on a per-image basis.

3.4. Comparison to Previous Work

Comparing membership inference methods for generative-
Al image models remains challenging due to the lack of
standardized benchmarks and varying problem definitions/-
configurations (including the frequency and intensity with
which images are presented to the model during training).
Nonetheless, we compare our method to existing member-
ship inference approaches for the latest generative-Al image
model architectures (diffusion) in terms of computational
demands and overall effectiveness.

The method in [26] assumes access to a confirmed subset of
the targeted model’s in-training and out-of-training data. Its
reported accuracy ranges from 65% to 100% across multi-
ple models and datasets. The method in [27] assumes ac-
cess to internal representations of the model during diffu-
sion steps. At a fixed false positive rate of 1%, it achieves a



true positive rate ranging from 54% to 68% across multiple
datasets. Similarly, the method in [13] also relies on inter-
nal representations during diffusion steps. At a fixed false
positive rate of 1%, it achieves a true positive rate between
50% and 58% across different datasets. And, the method
in [5] is an ensemble of four other methods, whose pre-
dictions are analyzed for statistical significance and overall
confidence. At a fixed false positive rate of 1%, it achieves
a true positive rate ranging from 25% to 100% across mul-
tiple datasets.

By contrast, our method does not require access to a con-
firmed subset of in-training/out-of-training data or internal
representations from diffusion steps and achieves an aver-
age accuracy between 85% and 93%. At a fixed false posi-
tive rate of 1%, our method attains an average true positive
rate of between 74% and 90%.

When tested in the wild, many existing methods have been
found largely ineffective [4]. We, on the other hand, demon-
strate that the DreamSim trends leveraged by our method
persist even in an in-the-wild setting with Midjourney (v6)
(see Section 3.3).

Most effective membership inference and training data
extraction methods are computationally expensive. The
method in [3], which assumes a white-box scenario with
additional access to the model’s internals, achieves a true
positive rate of 71% at a false positive rate of 1%. This ap-
proach, however, is computationally demanding, requiring
training 16 shadow models, each of which computes loss for
all known in-training data points at each of 1,000 diffusion
steps. By contrast, our method does not require training
and only needs to perform six generations with at most 50
diffusion steps.

4. Discussion

We have observed that when seeded with a previously
trained image, image-to-image generation produces an im-
age more similar to the seed image as compared to those
generated from an out-of-training seed image. This is dis-
tinct from pure memorization, where it has previously been
shown that, with a sufficient amount of exposure, models
can reproduce training images [3]. Our approach applies to
both this less common case of memorization as well as the
more typical and broader class of training images.

We hypothesize a few different mechanisms that may ex-
plain why generative-Al models behave this way. One pos-
sibility is that when a seed image is partially corrupted with
additive noise (proportional to the user-supplied strength
parameter) and placed in the latent space for denoising, be-
cause of previous exposure to a training image-caption pair,
the previously learned local gradients guide the denoising
to a latent representation near a trained image. This ex-

planation would be consistent with the differences seen in
Figure 3(a)-(d), where a memorized image/caption yields
more self-similar images than an in-training image/caption,
which yields more self-similar images than an in-training
image/alternate caption. That is, the level of exposure to a
specific image/caption pair at training leads to proportion-
ally learned gradients in the denoiser.

Another possibility is that after training, the latent space
is non-uniformly structured, and so once an image/caption
pair is placed into latent space near an in-training exemplar,
it is simply more likely to converge to the in-training image
because of this structure. This is more likely to occur with
image-to-image generation because the initialization in the
latent space is dependent on the seed image and the strength
parameter constrains the number of steps that can be taken
by the denoiser.

Understanding why models are biased to produce content
similar to their training data may provide insights into re-
ducing the likelihood of infringement in the form of repro-
ducing training data, and may provide insights into how a
model can be made to forget training exemplars.

An attractive aspect of our membership inference for gen-
erative image models is that it does not require access to
model architecture details or trained weights, is computa-
tionally efficient, and generalizes to multiple different Al
models. A drawback of our approach is that it only applies
to models that allow for an image-to-image synthesis with
a controllable strength parameter, as compared to text-to-
image. Depending on the underlying mechanism by which
models produce images similar to their in-training data, our
method may be adaptable to text-to-image generation.

Many of today’s tech leaders have admitted that their
generative-Al models would not exist without their train-
ing on billions of pieces of content scraped from all corners
of the internet [16]. These same leaders have also called
for the loosening of fair-use and copyright rules. While it
is for the courts to decide on these matters of law [21], we
contend that content creators have legitimate concerns for
whether and how their content is used to train generative-
Al models, some of which are designed to offer services
directly competing with these very content creators.

A critical component of adjudicating these issues will be
determining if a deployed model was trained on a specific
piece of content. Equally important is determining how cre-
ators can and should be compensated when their content is
used for training, and how models can be made to forget
its training on a specific piece of content should this be the
wish of the content’s creator. We have focused only on the
first of these questions, but all of these issues are impor-
tant to resolve as generative Al continues its impressive and
impactful trajectory.
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