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ABSTRACT

We describe a new forensic technique for distinguishing be-
tween computer generated and human faces in video. This
technique identifies tiny fluctuations in the appearance of a
face that result from changes in blood flow. Because these
changes result from the human pulse, they are unlikely to be
found in computer generated imagery. We use the absence or
presence of this physiological signal to distinguish computer
generated from human faces.

Index Terms— Video Forensics, CGI, Photo Realism

1. INTRODUCTION

The photo realism of still and animated computer generated
(CG) characters continues to improve thanks to the develop-
ment of increasingly more powerful 3-D rendering software
and hardware. When trying to distinguish the real from the
fake, such CG characters pose significant challenges to the
forensics community.

Over the past decade, some progress has been made in de-
veloping forensic techniques to discriminate CG from human
characters. Most of these techniques exploit regularities in
some low- to mid-level statistical features extracted from CG
and natural images. The first such approaches to this problem
used statistical features extracted from the wavelet domain [1,
2]. Related techniques leveraged sensor noise [3, 4], demo-
saicing artifacts [5], chromatic aberrations [6], geometric- and
physics-based image features [7], and color compatibility [8].
More recently, non-statistically based techniques have been
proposed which exploit facial asymmetries [9] and repetitive
patterns of facial expressions [10].

These previous techniques were developed to operate
on static images, and although they could be applied to
video, they would not take advantage of the rich temporal
data inherent to video. We describe a complementary and
physiologically-inspired forensic technique for discriminat-
ing CG from human faces in a video. This technique directly
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Fig. 1. Shown in the top row is a visualization of the change in
blood flow due to the human pulse. Also shown is a space (verti-
cal axis) and time (horizontal axis) plot of the color changes in the
person’s face, revealing the presence of a periodic pulse. No such
physiological signal is present in the CG face shown in the bottom
row. [CG video downloaded from: youtu.be/WO9W56KcCb8].

measures differences in facial color that result from the hu-
man pulse. Such temporal variations are nearly invisible to
the human eye, but can be revealed with “video magnifi-
cation” [11]. This technique has the advantage that it does
not require extensive data collection common to statistically-
based techniques and it exploits a naturally and universally
common signal to all humans – a pulse.

2. METHODS

In order to distinguish between computer generated and hu-
man faces, we propose to determine the absence or presence
of a physiological signal that results from the human pulse.
This signal manifests itself by changes in facial color which
are magnified to be more visible, Fig. 1.

With a standard video as input, we manually identify a
face on the first frame and then automatically track facial fea-
tures over the length of the video. These tracked features are
used to automatically fit a generic 3-D head model to the face
on each frame. The head pose on each frame is then aligned to
a canonical viewpoint from which the appearance of a patch
of skin (the forehead or cheek) is extracted. This patch is sub-



Fig. 2. Shown are nine features used for facial tracking, and an
aligned 3-D model.

jected to “video magnification” [11] to enhance the desired
physiological signal. The absence or presence of this physio-
logical signal resulting from changes in blood flow is used to
classify the person as computer generated or human. Each of
these system components is described below in more detail.

2.1. Head tracking

We use a standard feature tracking approach to track a face
over the length of the video. To begin, an analyst extracts a 5-
to 15-second video and identifies nine facial features on the
first frame, Fig. 2 (this step can be fully automated by em-
ploying a face and facial feature detector). Then, a standard
SIFT-based descriptor is extracted at each feature point [12].
These features are localized on the next frame of the video
using a simple tracking algorithm.

Assuming small motions between consecutive frames, we
expect each facial feature to be located in a small neighbor-
hood relative to its position in the previous frame. Denote
the ith SIFT descriptor at spatial location x, y and time t as
φ(xi, yi, t). The location of this feature at time t+1 is given to
be the location that minimizes the mean square error between
descriptors:

E(u, v) = ‖φ(xi, yi, t)− φ(xi + u, yi + v, t+ 1)‖, (1)

where u, v ∈ [−6, 6] pixels. This process is repeated on each
frame, where each feature descriptor is updated on each frame
to contend with variations in lighting, scale, and pose.

2.2. Head alignment

Shown in Fig. 2 (right) is a 3-D head model aligned to the
image shown on the left of this same figure. We employ
a generic 3-D head model customized to each individual
through only an anisotropic scaling in the horizontal and ver-
tical directions. On the first frame of the video, this scaling
and the overall head pose is automatically estimated. On each
subsequent frame, the scaling is fixed, and only the head pose
is re-estimated.

The head pose is estimated from the nine corresponding
2-D (video frame) and 3-D (model) features. Denote the lo-

cation of the ith facial feature in a video frame as pi ∈ R2

and its corresponding feature in the 3-D model as Pi ∈ R3.
Given these corresponding features, we estimate the extrinsic
parameters that optimally map the 3-D model to the observed
2-D video frame [13]. The extrinsic parameters are composed
of three rotation angles and three translation components. The
intrinsic parameters are composed of only the focal length
which we assume to be 35mm (we also assume that the prin-
ciple point is the image center and assume negligible sensor
skew and lens distortion). The six extrinsic parameters are
estimated by minimizing the following error function:

E(R, t) =
∑
i

‖pi − F
(
R t

)
Pi‖, (2)

where R is a 3 × 3 rotation matrix, t is a 3 × 1 translation
vector, F is the 3× 3 intrinsic matrix, and the coordinates pi

and Pi are specified in homogeneous coordinates. On the first
video frame only, an additional anisotropic scaling is added to
the model estimation to yield the following error function to
be minimized:

E(R, t, s) =
∑
i

‖pi − F
(
R t

)
SPi‖, (3)

where S is an anisotropic scaling matrix in which the hori-
zontal scaling is fixed at 1, and the vertical scaling s is a free
parameter. This scaling adjusts the aspect ratio of the 3-D
head model and allows for a minimum customization to the
head being analyzed.

The error functions in Equations (2) and (3) are mini-
mized using a standard unconstrained nonlinear optimization.
An additional regularization term is added to these error func-
tions, imposing a smoothness on the parameters over time.
Shown in Fig. 4 and 5 are representative examples of the re-
sults of head tracking and alignment to a 3-D model.

2.3. Extracting a physiological signal

With a 3-D head model aligned to each video frame, the head
on each frame is aligned to a canonical viewpoint. A common
patch of skin (the forehead or cheek) is then extracted, from
which the desired physiological signal is measured. However,
the changes in color in a person’s face due to their pulse is
extremely small and nearly invisible to the human eye.

In order to make the measurement of this signal more
reliable, we use a technique for magnifying tiny motions in
a video. This technique, termed Eulerian video magnifica-
tion [11], takes as input a standard video and outputs a video
in which the color variations for a given temporal frequency
are magnified. We magnify the color variations at a temporal
frequency consistent with a typical pulse of 50-60 heart beats
per minute (0.83Hz - 1.0Hz). For simplicity, we then compute
the average luminance across a small extracted patch of skin.

Shown in Fig. 1, for example, are several frames of a hu-
man face (top) and CG face (bottom) after applying Eulerian



video magnification. Also shown are space-time plots ex-
tracted from these videos. In these plots, the horizontal axis
corresponds to time and the vertical axis corresponds to the
pixel color from a single vertical scanline in the center of the
forehead. Shown superimposed on these space-time plots are
the average luminance revealing the presence (top) and ab-
sence (bottom) of a pulse for the human and CG character,
respectively.

3. RESULTS

We evaluated the efficacy of the proposed forensic technique
on twelve videos, six containing human characters and six
containing CG characters. The human characters consisted
of videos of our creation and of videos downloaded from the
Web. The CG characters were each downloaded from a va-
riety of websites. For each video we manually extracted a
4.5 second section of the video. With a typical pulse of 50-
60 beats per minute, this video length yielded approximately
four beats in the extracted physiological signal.

Shown in Fig. 3 is the measured physiological signal
extracted from human (top) and CG (bottom) characters.1

Shown on the left is one frame of each 4.5 second long video
and on the right is the physiological signal extracted follow-
ing the procedure described in Section 2. A periodic human
pulse is clearly visible for the three human characters, but
not for the three CG characters. (Note that the scale of the
vertical axis for the video of Lance Armstrong, third from the
top, is different than the others).

Shown in Fig. 4 and 5 are two more detailed examples.
Shown in the top row are five frames of a 4.5 second long
video. Shown in the middle row is the corresponding aligned
3-D model. The nine facial features used for tracking and
alignment are annotated in both the video frames and 3-D
model. The rectangular region corresponds to the portion of
the forehead from which the physiological signal is measured.
As with the results in Fig. 3, we clearly see a pulse for the hu-
man face, Fig. 4, but not for the CG face, Fig. 5. Although not
shown here, the remaining videos followed the same pattern
of results.

4. DISCUSSION

We have described a physiologically-based forensic technique
for distinguishing between computer generated and human
faces. This technique detects the absence or presence of a hu-
man pulse in a video. This physiological signal is, of course,
naturally present in all living humans. Because this signal is
nearly invisible to the human eye, there is no obvious reason
why a modeler would add this signal to a computer generated
character. While we have focused only on faces, the proposed
approach could be applied to any part of visible skin.

1Fig. 3, videos in rows 2-6 dowloaded from: youtu.be/B76UZCccdQE;
youtu.be/Vq8NgepsFg8; youtu.be/WO9W56KcCb8; youtu.be/l6R6N4Vy0nE;
youtu.be/CvaGd4KqlvQ.

Fig. 3. Shown is one frame of a video and the measured physiolog-
ical signal. The characters in the top three panels are human while
the characters in the bottom three panels are CG. The periodic pulse
is clearly visible in the human but not in the CG characters.

The drawback of this technique is that it is only applica-
ble to video of a person and might be vulnerable to counter-
measures should a modeler choose to artificially introduce a
pulse to a CG character, or should a forger remove the pulse
from a human character. The benefits, however, are that it
exploits a naturally occurring physiological signal, is nearly
fully automatic, is effective when analyzing low quality and
low resolution video, and does not require extensive data col-
lection common to statistically-based techniques. We expect
to fully automate this forensic technique by employing a face
and facial feature detector. We also plan to estimate and re-
move luminance changes due to lighting which could, if they
modulate at the same frequency as a pulse, confound our clas-
sification.



Fig. 4. Shown in the top row are five consecutive frames of a 4.5 second long video. Shown in the middle row is the corresponding aligned
3-D model. The nine facial features used for tracking and alignment are annotated in both the video frames and 3-D model. The rectangular
region corresponds to portion of the forehead from which the physiological signal is measured. Shown in the bottom row is the measured
physiological signal revealing the underlying human pulse.

Fig. 5. Shown in the top row are five consecutive frames of a 4.5 second long video. Shown in the middle row is the corresponding aligned
3-D model. The nine facial features used for tracking and alignment are annotated in both the video frames and 3-D model. The rectangular
region corresponds to portion of the forehead from which the physiological signal is measured. The lack of a periodic signal in the bottom
row indicated the lack of a pulse for this CG model. [Video downloaded from: youtu.be/nX8KitVCcZM]
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