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Abstract. A common and simple way to create a bootleg video is to
simply record a movie from the theater screen. Because the recorded
video is not generally of high quality, it is usually easy to visually de-
tect such recordings. However, given the wide variety of video content
and film-making styles, automatic detection is less straight-forward. We
describe an automatic technique for detecting a video that was recorded
from a screen. We show that the internal camera parameters of such video
are inconsistent with the expected parameters of an authentic video.
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1 Introduction

Often only hours after their release, major motion pictures can find their way
onto the Internet. A simple and popular way to create such bootleg video is to
simply record a movie from the theater screen. Although these video are certainly
not of the same quality as their subsequent DVD releases, increasingly compact
and high resolution video recorders are affording better quality video recordings.

We describe how to automatically detect a video that was recorded from a
screen. Shown in Fig. 1, for example, is a scene from the movie Live Free Or
Die Hard. Also shown in this figure is the same scene as viewed on a theater
screen. Note that due to the angle of the video camera relative to the screen, a
perspective distortion has been introduced into this second recording. We show
that this re-projection can introduce a distortion into the intrinsic camera pa-
rameters (namely, the camera skew which depends on the angle between the
horizontal and vertical pixel axes). We leverage previous work on camera cali-
bration to estimate this skew and show the efficacy of this technique to detect
re-projected video.

2 Methods

We begin by describing the basic imaging geometry from 3-D world to 2-D image
coordinates for both arbitrary points (Section 2.1) and for points constrained
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Fig. 1. Shown on the right is a scene from the movie Live Free Or Die Hard, and shown
on the left is the same scene as viewed on a movie screen. A recording of the projected
movie introduces distortions that can be used to detect re-projected video.

to a planar surface (Section 2.2). See [3] for a thorough treatment. We then
describe the effect of a re-projection: a non-planar projection followed by a planar
projection (Section 2.3). Such a re-projection would result from, for example,
video recording the projection of a movie.

2.1 Projective Geometry: non-planar

Under an ideal pinhole camera model, the perspective projection of arbitrary
points X (homogeneous coordinates) in 3-D world coordinates is given by:

x = λKMX, (1)

where x is the 2-D projected point in homogeneous coordinates, λ is a scale
factor, K is the intrinsic matrix, and M is the extrinsic matrix.

The 3× 3 intrinsic matrix K embodies the camera’s internal parameters:

K =

 αf s cx

0 f cy

0 0 1

 , (2)

where f is the focal length, α is the aspect ratio, (cx, cy) is the principle point
(the projection of the camera center onto the image plane), and s is the skew
(the skew depends on the angle, θ, between the horizontal and vertical pixel
axes: s = f tan(π/2 − θ)). For simplicity, we will assume square pixels (α = 1,
s = 0) and that the principal point is at the origin (cx = cy = 0) – these are
reasonable assumptions for most modern-day cameras. With these assumptions,
the intrinsic matrix simplifies to:

K =

 f 0 0
0 f 0
0 0 1

 . (3)
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The 3 × 4 extrinsic matrix M embodies the transformation from world to
camera coordinates:

M = (R | t ) , (4)

where R is a 3× 3 rotation matrix, and t is a 3× 1 translation vector.

2.2 Projective Geometry: planar

Under an ideal pinhole camera model, the perspective projection of points Y
constrained to a planar surface in world coordinates is given by:

y = λKPY , (5)

where y is the 2-D projected point in homogeneous coordinates, and Y , in the
appropriate coordinate system, is specified by 2-D coordinates in homogeneous
coordinates. As before, λ is a scale factor, K is the intrinsic matrix, and P is the
extrinsic matrix. The intrinsic matrix K takes the same form as in Equation (3).
The now 3× 3 extrinsic matrix P takes the form:

P = (p1 p2 t ) , (6)

where p1, p2 and p1 × p2 are the columns of the 3 × 3 rotation matrix that
describes the transformation from world to camera coordinates, and as before,
t is a 3× 1 translation vector.

2.3 Re-Projection

Consider now the effect of first projecting arbitrary points in 3-D world coor-
dinates into 2-D image coordinates, and then projecting these points a second
time. As described in Section 2.1, the first projection is given by:

x = λ1K1M1X. (7)

The second planar projection, Section 2.2, is given by:

y = λ2K2P2x = λ2K2P2 (λ1K1M1X) = λ2λ1K2P2 (K1M1X) . (8)

The effective projective matrix K2P2K1M1 can be uniquely factored (see Ap-
pendix A) into a product of an intrinsic, K, and extrinsic, M , matrix:

y = λ2λ1λKMX. (9)

Recall that we assumed that the camera skew (the (1, 2) entry in the 3 × 3
intrinsic matrix, Equation (2), is zero. We next show that that a re-projection can
yield a non-zero skew in the intrinsic matrix K. As such, significant deviations
of the skew from zero in the estimated intrinsic matrix can be used as evidence
that a video has been re-projected.
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We have seen that the re-projection matrix K2P2K1M1 can be factored into
a product of a scale factor and intrinsic and extrinsic matrices:

K2P2K1M1 = λKM. (10)

Expressing each 3× 4 extrinsic matrix M1 and M in terms of their rotation and
translation components yields:

K2P2K1(R1 | t1) = λK(R | t)
K2P2K1R1 = λKR. (11)

Reshuffling1 a few terms yields:

K−1K2P2K1R1 = λR

K−1K2P2K1 = λRRT
1 . (12)

Note that the right-hand side of this relationship is an orthogonal matrix – this
will be exploited later. On the left-hand side, the left-most matrix is the inverse
of the effective intrinsic matrix in Equation (2):

K−1 =

 1
αf − s

αf2
scy−cxf

αf2

0 1
f − cy

f
0 0 1

 . (13)

And the product of the next three matrices is:

K2P2K1 =

 f2 0 0
0 f2 0
0 0 1

  p11 p21 t1
p12 p22 t2
p13 p23 t3

  f1 0 0
0 f1 0
0 0 1

 ,

=

 f1f2p11 f1f2p21 f2t1
f1f2p12 f1f2p22 f2t2
f1p13 f1p23 t3


=

 qT
1

qT
2

qT
3

 , (14)

where f2 and f1 are the focal lengths of the original projections, p1i and p2i

correspond to the ith element of p1 and p2, and ti corresponds to ith element
of t2 (the third column of matrix P2). The product of the four matrices on the
left-hand side of Equation (12) is then:

K−1K2P2K1 =


(

1
αf q1 − s

αf2 q2 + scy−cxf
αf2 q3

)T

(
1
f q2 − cy

f q3

)T

qT
3

 . (15)

1 Since the matrix R1 is orthonormal R−1
1 = RT

1 .
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Recall that K−1K2P2K1 = λRRT
1 , Equation (12), and that R and RT

1 are each
orthonormal. Since the product of two orthonormal matrices is orthonormal,
K−1K2P2K1 is orthogonal (the rows/columns will not be unit length when λ 6=
1). This orthogonality constrains the above matrix rows as follows:

qT
3

(
1
f

q2 −
cy

f
q3

)
= 0 (16)(

1
f

q2 −
cy

f
q3

)T (
1

αf
q1 −

s

αf2
q2 +

scy − cxf

αf2
q3

)
= 0. (17)

Solving Equation (16) for cy yields:

cy =
qT

3 q2

‖q3‖2
. (18)

Substituting for cy into Equation (17), followed by some simplifications, yields:

s = f
qT

2 q1‖q3‖2 − (qT
3 q2)(qT

3 q1)
‖q2‖2‖q3‖2 − (qT

3 q2)2
. (19)

Note that the skew, s, is expressed only in terms of the effective focal length f ,
the pair of intrinsic matrices K1 and K2, and the second transformation matrix
P2. We can now see under what conditions s = 0.

First, note that the denominator of Equation (19) cannot be zero. If
‖q2‖2‖q3‖2 − (qT

3 q2)2 = 0 then, q2 ∝ q3, in which case K2P2K1 is singular,
which it cannot be, since each matrix in this product is full rank. And, since
f 6= 0, the skew is zero only when the numerator of Equation (19) is zero:

qT
2 q1‖q3‖2 − (qT

3 q2)(qT
3 q1) = 0

f2
1 p31p32 − t1t2 + p2

33t1t2 + p31p32t
2
3 − p32p33t1t3 − p31p33t2t3 = 0, (20)

where p3i is the ith element of p3 = p1 × p2. Although we have yet to geometri-
cally fully characterize the space of coefficients that yields a zero skew, there are
a few intuitive cases that can be seen from the above constraint. For example, if
the world to camera rotation is strictly about the z-axis, then p31 = p32 = 0 and
p33 = 1, and the skew s = 0. This situation arises when the image plane of the
second projection is perfectly parallel to the screen being imaged. As another
example, if t = ±f1p3, then the skew s = 0. This situations arises when the
translation of the second projection is equal to the third column of the rota-
tion matrix scaled by focal length of the first projection – a perhaps somewhat
unlikely configuration.

Although there are clearly many situations under which s = 0, our sim-
ulations suggest that under realistic camera motions, this condition is rarely
satisfied. Specifically, we computed the skew, Equation (19), from one million
randomly generated camera configurations. The relative position of the second
camera to the planar projection screen was randomly selected with the rotation
in the range [−45, 45] degrees, X and Y translation in the range [-1000,1000],
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Z translation in the range [4000, 6000], and focal length in the range [25, 75].
The average skew was 0.295, and only 48 of the 1, 000, 000 configurations had
a skew less than 10−5 (in a similar simulation, the estimated skew for a single
projection is on the order of 10−12).

2.4 Camera Skew

From the previous sections, we see that re-projection can cause a non-zero skew
in the camera’s intrinsic parameters. We review two approaches for estimating
camera skew from a video sequence. The first estimates the camera skew from a
known planar surface, while the second assumes no known geometry.

Skew estimation I: Recall that the projection of a planar surface, Equa-
tion (5), is given by:

y = λKPY = λHY , (21)

where y is the 2-D projected point in homogeneous coordinates, and Y , in
the appropriate coordinate system, is specified by 2-D coordinates in homoge-
neous coordinates. The 3 × 3 matrix H is a non-singular matrix referred to as
a homography. Given the above equality, the left- and right-hand sides of this
homography satisfy the following:

y × (HY ) = 0 y1

y2

y3

×

 h11 h21 h31

h12 h22 h32

h13 h23 h33

  Y1

Y2

Y3

 = 0. (22)

Note that due to the equality with zero, the multiplicative scalar λ, Equa-
tion (21), is factored out. Evaluating the cross product yields: y2(h13Y1 + h23Y2 + h33Y3)− y3(h12Y1 + h22Y2 + h32Y3)

y3(h11Y1 + h21Y2 + h31Y3)− y1(h13Y1 + h23Y2 + h33Y3)
y1(h12Y1 + h22Y2 + h32Y3)− y2(h11Y1 + h21Y2 + h31Y3)

 = 0. (23)

This constraint is linear in the unknown elements of the homography hij . Re-
ordering the terms yields the following system of linear equations:

(
0 0 0 −y3Y1 −y3Y2 −y3Y3 y2Y1 y2Y2 y2Y3

y3Y1 y3Y2 y3Y3 0 0 0 −y1Y1 −y1Y2 −y1Y3
−y2Y1 −y2Y2 −y2Y3 y1Y1 y1Y2 y1Y3 0 0 0

) 
h11
h21
h31
h12
h22
h32
h13
h23
h33

 = 0

Ah = 0.(24)

A matched set of points y and Y appear to provide three constraints on the eight
unknowns elements of h (the homography is defined only up to an unknown scale
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factor, reducing the unknowns from nine to eight). The rows of the matrix, A,
however, are not linearly independent (the third row is a linear combination of
the first two rows). As such, this system provides only two constraints in eight
unknowns. In order to solve for h, we require four or more points with known
image, y, and (planar) world, Y , coordinates that yield eight or more linearly
independent constraints. From four or more points, standard least-squares tech-
niques, as described in [3, 5], can be used to solve for h: the minimal eigenvalue
eigenvector of AT A is the unit vector h that minimizes the least-squares error.

We next describe how to estimate the camera skew from the estimated ho-
mography H. This approach is a slightly modified version of [15]. Recall that H
can be expressed as:

H = KP = K ( p1 p2 | t ) . (25)

The orthonormality of p1 and p2, yields the following two constraints:

pT
1 p2 = 0 and pT

1 p1 = pT
2 p2, (26)

which in turn imposes the following constraints on H and K: h11

h12

h13

T

K−T K−1

 h21

h22

h23

 = 0 (27)

 h11

h12

h13

T

K−T K−1

 h11

h12

h13

 =

 h21

h22

h23

T

K−T K−1

 h21

h22

h23

 . (28)

For notational ease, denote B = K−T K−1, where B is a symmetric matrix
parametrized with three degrees of freedom (see Equation (41) in Appendix B):

B =

 b11 b12 0
b12 b22 0
0 0 1

 . (29)

Notice that by parametrizing the intrinsic matrix in this way, we have bundled
all of the anomalies of a double projection into the estimate of the camera skew.
Substituting the matrix B into the constraints of Equations (27)-(28) yields the
following constraints:

„
h11h21 h12h21 + h11h22 h12h22

h2
11 − h2

21 2 (h11h12 − h21h22) h2
12 − h2

22

« 0@ b11

b12

b22

1A = −
„

h13h23

h2
13 − h2

23

«
. (30)

Each image of a planar surface enforces two constraints on the three unknowns
bij . The matrix B = K−T K−1 can, therefore, be estimated from two or more
views of the same planar surface using standard least-squares estimation. The
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desired skew can then be determined (see Appendix B) from the estimated ma-
trix B as:

s = −f
b12

b11
. (31)

Note that the estimate of the skew, s, is scaled by the focal length, f . Since
a camera’s skew depends on the focal length, it is desirable to work with this
normalized skew.

Skew estimation II: We showed in the previous section how to estimate a
camera’s skew from two or more views of a planar surface. This approach has the
advantage that it affords a closed-form linear solution, but has the disadvantage
that it only applies to frames that contain a known planar surface. Here we
review a related approach that does not require any known world geometry, but
requires a non-linear minimization.

Consider two frames of a video sequence with corresponding image points
given by u and v, specified in 2-D homogeneous coordinates. It is well estab-
lished [3] that these points satisfy the following relationship:

vT Fu = 0, (32)

where F , the fundamental matrix, is a 3 × 3 singular matrix (rank(F ) = 2).
Writing the above relationship in terms of the vector and matrix elements yields:

( v1 v2 1 )

0@ f11 f21 f31

f12 f22 f32

f13 f23 f33

1A 0@ u1

u2

1

1A = 0

u1v1f11 + u2v1f21 + v1f31 + u1v2f12 + u2v2f22 + v2f32 + u1f13 + u2f23 + f33 = 0.

Note that this constraint is linear in the elements of the fundamental matrix
fij , leading to the following system of linear equations:

( u1v1 u2v1 v1 u1v2 u2v2 v2 u1 u2 1 )


f11
f21
f31
f12
f22
f32
f13
f23
f33

 = 0

Af = 0. (33)

Each pair of matched points u and v provides one constraint for the eight un-
known elements of f (the fundamental matrix is defined only up to an unknown
scale factor reducing the unknowns from nine to eight). In order to solve for the
components of the fundamental matrix, f , we require eight or more matched
pairs of points [6, 2]. Standard least-squares techniques can be used to solve for
f : the minimal eigenvalue eigenvector of AT A is the unit vector f that minimizes
the least-squares error.

We next describe how to estimate the camera skew from the estimated funda-
mental matrix F . We assume that the intrinsic camera matrix K, Equation (3),
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is the same across the views containing the matched image points. The essential
matrix E is then defined as:

E = KT FK. (34)

Since F has rank 2 and the intrinsic matrix is full rank, the essential matrix E
has rank 2. In addition, the two non-zero singular values of E are equal [4]. This
property will be exploited to estimate the camera skew. Specifically, as described
in [8], we establish the following cost function to be minimized in terms of the
camera focal length f and skew s:

C(f, s) =
n∑

i=1

σi1 − σi2

σi2
, (35)

where σi1 and σi2 are, in descending order, the non-zero singular values of E
from n estimated fundamental matrices (each computed from pairs of frames
throughout a video sequence), and where K is parametrized as:

K =

 f s 0
0 f 0
0 0 1

 . (36)

Note that since only the relative differences in the singular values of E are
considered, the arbitrary scale factor to which E is estimated does not effect
the estimation of the skew. As before, by parametrizing the intrinsic matrix in
this way, we have bundled all of the anomalies of a double projection into the
estimate of the camera skew. The cost function, Equation (35), is minimized
using a standard derivative-free Nelder-Mead non-linear minimization.

3 Results

We report on a set of simulations and sensitivity analysis for each of the skew
estimation techniques described in the previous sections. We then show the effi-
cacy of these approaches on a real-video sequence. In each set of simulations we
provide the estimation algorithm with the required image coordinates. For the
real-video sequence we briefly describe a point tracking algorithm which provides
the necessary image coordinates for estimating the camera skew.

3.1 Simulation (skew estimation I):

Recall that a minimum of four points with known geometry on a planar surface
viewed from a minimum of two views are required to estimate the camera skew.
We therefore randomly generated between 4 and 64 points on a planar surface
and generated a video sequence of this stationary surface. In all of the simula-
tions, the first projection was specified by the following camera parameters: the
planar surface was 2000 units from the camera, between successive frames the
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rotation about each axis was in the range [−2.5, 2.5] degrees and the translation
in each dimension was in the range [−50, 50], and the camera focal length was
in the range [25, 75] (but fixed for each sequence). For the second projection, the
camera was placed a distance of 5000 units from the first projected image and
underwent a motion in the same range as the first camera. We randomly gener-
ated 10, 000 such sequences as imaged through a single projection, and 10, 000
sequences as imaged through a double projection (re-projection).

In the first simulation, we tested the sensitivity to additive noise. As described
above, 30 frames were generated each containing 4 points on a planar surface.
Noise in the range of [0, 1] pixels was added to the final image coordinates. The
skew was estimated from 15 pairs of frames, where each frame at time t was
paired with a frame at time t + 15. A sequence was classified as re-projected
if one or more of the image pairs yielded an estimated skew greater than 0.1.
While this type of voting scheme yields slightly higher false positive rates, it
also significantly improves the detection accuracy. In the absence of noise, 0
of the 10, 000 singly projected sequences were classified as re-projected, and
84.9% of the re-projected sequences were correctly classified. With 0.5 pixels
of noise, 17.2% of the singly projected sequences were incorrectly classified as
re-projected, and 87.4% of the re-projected sequences were correctly classified.
Shown in Fig. 2(a) are the complete set of results for additive noise in the range
of [0, 1] pixels. Note that even with modest amounts of noise, the false positive
rate increases to an unacceptable level. We next show how these results can be
improved upon.

In this next simulation, we tested the sensitivity to the number of known
points on the planar surface. The noise level was 0.5 pixels, and the number of
known points was in the range [4, 64]. All other parameters were the same as
in the previous simulation. With the minimum of 4 points, 16.2% of the singly
projected sequences were incorrectly classified while 87.7% of the re-projected
sequences were correctly classified (similar to the results in the previous simu-
lation). With 6 points, only 0.33% of the single projection sequences were in-
correctly classified, while the accuracy of the re-projected sequences remained
relatively high at 84.6%. Shown in Fig. 2(b) are the complete set of results –
beyond 8 points, the advantage of more points becomes negligible.

In summary, from 6 points, with 0.5 pixels noise, in 30 frames, re-projected
video can be detected with 85% accuracy, and with 0.3% false positives.

3.2 Simulation (skew estimation II):

Recall that a minimum of eight points viewed from a minimum of two views are
required to estimate the camera skew. We therefore generated between 8 and 128
points with arbitrary geometry and generated a video sequence of this stationary
cloud of points. In all of the simulations, the first and second projection were
generated as described in the previous section. We randomly generated 10, 000
sequences as imaged through a single projection, and 10, 000 sequences as imaged
through a double projection (re-projection). As before, a sequence was classified
as re-projected if the estimated skew was greater than 0.1.
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(a)

(b)

Fig. 2. Skew Estimation I: Detection accuracy (light gray) and false positives (dark
gray) as a function of noise (top) and the number of points (bottom).

In the first simulation with the minimum of 8 points, 2 frames, and with no
noise, 0 of the 10, 000 singly projected sequences were classified as re-projected,
and 88.9% of the re-projected sequences were correctly classified. With even
modest amounts of noise, however, this minimum configuration yields unaccept-
ably high false positives. We find that the estimation accuracy is more robust to
noise when the skew is estimated from multiple frames (i.e., multiple fundamen-
tal matrices in Equation (35)). In the remaining simulations, we estimated the
skew from 5 fundamental matrices, where each frame t is paired with the frame
at time t + 15.

In the second simulation, the number of points were in the range [8, 128], with
0.5 pixels of additive noise, and 5 fundamental matrices. With the minimum of
8 points the false positive rate is 29.4%, while with 32 points, the false positive
rate falls to 0.4%. In each case, the detection accuracy is approximately 88%.
Shown in Fig. 3(a) are the complete set of results for varying number of points.

In the third simulation, the number of points was 32, with 0.5 pixels of noise,
and with the number of fundamental matrices (i.e., pairs of frames) in the range
[1, 20]. As shown in Fig. 3(b), increasing the number of fundamental matrices
reduces the false positives while the detection accuracy remains approximately
the same.

In summary, from 32 points, with 0.5 pixels noise, in 5 fundamental matri-
ces, re-projected video can be detected with 88% accuracy, and with 0.4% false
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(a)

(b)

Fig. 3. Skew Estimation II: Detection accuracy (light gray) and false positives (dark
gray) as a function of the number of points (top) and the number fundamental matrices
(bottom).

positives. This is similar to the accuracy for the skew estimation from points on
a planar surface. The advantage here, however, is that this approach does not
require known geometry of points on a planar surface.

3.3 Real Video

Shown in Fig. 4 are three frames of a 42 frame segment from the movie Live Free
Or Die Hard. These frames were digitized at a resolution of 720×304 pixels. Su-
perimposed on each frame are 64 features tracked across all frames. We employed
the KLT feature tracker [7, 11, 10] which automatically selects features using a
Harris detector, and tracks these points across time using standard optical flow
techniques. We manually removed any features with clearly incorrect tracking,
and any points not on the buildings or street (the estimation of a fundamental
matrix requires points with a rigid body geometry). These tracked features were
then used to estimate the skew (method II). The 42 frames were grouped into
21 pairs from which the skew was estimated (each frame at time t was paired
with the frame at time t + 21). The estimated skew was 0.029, well below the
threshold of 0.1.

This 42-frame segment was then displayed on a 20 inch LCD computer mon-
itor with 1600 × 1200 pixel resolution, and recorded with a Canon Elura video
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original re-projected

Fig. 4. Shown are the first, middle, and last frame of a 42-frame segment of the movie
Live Free or Die Hard. On the left is the original digitized video, and on the right is
the re-projected video. The white dots denote the tracked features used to estimate
the camera skew using method II.

camera at a resolution of 640×480. As above, features were tracked in this video
segment, from which the skew was estimated. The estimated skew was 0.25, an
order of magnitude larger than the skew from the authentic video and well above
our threshold of 0.1.

4 Discussion

We have described how to detect a re-projected video that was recorded directly
from a projection on a movie or television screen. We have shown that such a re-
projection introduces a skew into the camera’s intrinsic parameters, which does
not normally occur with authentic video. The camera skew can be estimated
from two or more video frames from either four or more points on a planar
surface, or eight or more arbitrary points. In addition, from four or more points,
the camera skew can be estimated from only a single image. This technique can
be applied to detect if a single image has been re-photographed (an often cited
technique to circumvent some forensic image analysis, e.g., [9]).
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Appendix A

In this appendix, we show that the product of matrices K2P2K1M1 in Equa-
tion (8) can be uniquely factored into a product of an upper triangular matrix
(intrinsic) and an orthonormal matrix augmented with a fourth column (ex-
trinsic). We begin by expressing the second extrinsic matrix M1 in terms of its
rotation and translation components:

K2P2K1M1 = K2P2K1 (R1 | t1) . (37)

Multiplying R1 and t1 each by the 3× 3 matrix (K2P2K1) yields:

K2P2K1M1 = (K2P2K1R1 | K2P2K1t1) = (K2P2K1R1 | t′) . (38)

Consider now the 3× 3 matrix K2P2K1R1. Since each of these matrices is non-
singular, their product is non-singular. As such, this matrix can be uniquely
factored (within a sign), using RQ-factorization, into a product of an upper
triangular, U , and orthonormal, O, matrix:

K2P2K1M1 = λ
(
UO | 1

λt′
)

= λU
(
O | 1

λU−1t′
)

= λKM, (39)

where K = U , M = (O | 1
λU−1t′), and where λ is chosen so that the (3, 3) entry

of U has unit value. Note that this factorization leads to a product of a scale
factor, λ, an intrinsic matrix K, and an extrinsic matrix, M , as in Equation (9).

Appendix B

In this appendix, we show how to determine the skew, s, in Equation(31), from
the estimated matrix B = K−T K−1. The intrinsic matrix is parametrized as:

K =

 f s 0
0 f 0
0 0 1

 . (40)

Applying the matrix inverse and multiplication yields:

B = K−T K−1 =

 1
f2 − s

f3 0

− s
f3

s2+f2

f4 0
0 0 1

 . (41)

from which:

−b12

b11
=

s

f
, (42)

where bij denotes the entries of the matrix B, Equation (29).


