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ABSTRACT

Many aspects of JPEG compression have been successfully used in
the domain of photo forensics. Adding to this literature, we describe
a JPEG artifact that can arise depending upon seemingly innocuous
implementation details in a JPEG encoder. We describe the nature
of these artifacts and show how a generic JPEG encoder can be
conigured to explain a wide range of these artifacts found in real-
world cameras. We also describe an algorithm to simultaneously
estimate the nature of these artifacts and localize inconsistencies
that can arise from a wide range of image manipulations.
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1 INTRODUCTION

Within the ield of photo forensics [17], format-based techniques
exploit speciic artifacts introduced by the choice of image format
and compression scheme. A variety of such forensic techniques
have been developed based on the JPEG compression format: The
quantization values used to quantize the discrete cosine transform
(DCT) coeicients are used to identify the recording camera man-
ufacturer and model [16, 22, 23]; anomalies in the distribution of
DCT coeicients or the irst digit of DCT coeicients are used
to reveal multiple JPEG compressions [2, 6, 7, 19, 29, 32, 36]; and
artifacts introduced by the JPEG blocking are used to localize tam-
pering [20, 28, 31, 42]. More recently, machine learning has been
employed to automatically learn and detect anamolous JPEG arti-
facts [5, 35].

It has recently been shown that artifacts introduced by the choice
of rounding operator used to quantize the DCT coeicients can
be used to localize tampering and identify speciic encoders [1,
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9].1 This artifact ś termed a JPEG dimple ś manifests itself as a
single darker or brighter pixel in each 8 × 8 intensity block. In our
earlier work [1], we only considered the impact of loating-point
to integer rounding that occurs in the inal quantization of DCT
coeicients. While this was suicient to capture the basic artifact,
it failed to explain large variations in these artifacts in real-world
cameras. Here we extend this earlier work as follows: (1) We show
the presence of a wide variation in rounding-based artifacts across
dozens of cameras; (2) We show how a detailed model of a JPEG
encoder can capture most of these variations; and (3) We propose an
algorithm to automatically localize inconsistencies in these artifacts
that may arise from a broad range of manipulations.

The analysis of rounding errors in the domain of digital signal
processing is well studied [41]. Such rounding errors, arising due
to the use of ixed-point arithmetic, have been previously mod-
eled as uniformly distributed white noise [4, 21, 34]. Using this
model, the authors in [38] analyzed the rounding errors introduced
during various fast ixed-point DCT implementations proposed
in [10, 26]. In [8] and [33], the authors analyzed the propagation
of rounding errors in JPEG compression. Similar to this previous
work, we also analyze the rounding errors introduced during ixed-
point JPEG compression. Our analysis, however, is targeted towards
understanding and re-producing the rounding errors observed in
real-world cameras. Unlike previous work, that derive the rounding
error for a given JPEG implementation, we aim to estimate the JPEG
compression parameters that give rise to a speciic artifact, and
exploit these artifacts to detect and localize image manipulation.

We will start by describing a generic JPEG encoder along with
some design decisions that ix certain implementation details while
allowing others to be conigurable. We then show how diferent
choices of the conigurable parameters give rise to diferent artifacts
found in many real-world cameras. Lastly, we describe an algorithm
to localize inconsistencies in these artifacts that arise from a variety
of image manipulations.

2 JPEG COMPRESSION

The JPEG image standard is the most popular lossy compression
scheme for still photographic images [40]. The JPEG encoding of a
3-channel RGB color image consists of seven basic steps: (1) convert
from RGB to luminance/chrominance (YCbCr); (2) optionally sub-
sample each channel by a factor of two or more (the chrominance
channels are typically subsampled but the luminance channel is
not); (3) partition each channel into non-overlapping 8 × 8 pixel

1Jessica Fridrich and colleagues have previously observed this JPEG artifact and rou-
tinely eliminated it as part of their PRNU analysis [18].
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blocks; (4) convert the luminance values from unsigned to signed in-
tegers ( e.g., from [0; 255] to [−128, 127] ); (5) convert each block to
the frequency domain using a 2-D discrete cosine transform (DCT);
(6) quantize each DCT coeicient where the amount of quantization
depends on the spatial frequency and channel (the lower spatial fre-
quencies are typically quantized less than higher frequencies, as is
the luminance channel as compared to the chrominance channels);
(7) entropy encode the quantized DCT coeicients.

Because performing the 2-D DCT in step (5) is the most computa-
tionally demanding step of JPEG compression, a number of eicient
DCT implementations are available [37]. The popular JPEG com-
pression library, JPEGLib 2, for example, provides three diferent
DCT implementations each yielding a diferent speed and accu-
racy trade-of. Inspired by this implementation, the pseudo-code
block-jpeg in Appendix C is a generic JPEG algorithm in which we
have ixed some parameters (ixed-point arithmetic, 32-bit preci-
sion, two’s-complement representation, and a more eicient pair of
1-D DCTs), while leaving other parameters conigurable. In total,
there are 87 of these conigurable parameters, which as we will see,
can have a impact on the accuracy of the inal JPEG compression.
These parameters are:

(1) d (·) is one of the three 1-D DCT implementation, d1 (·), d2 (·),
or d3 (·) (see Appendix A)
• d1 (·) is based on the Ligtenberg-Vetterli (LV) algorithm [39]
which yields 1-D DCT coeicients each scaled by a factor
of 2. Our implementation is performedwith a single matrix
multiplication, but this algorithm can be more eiciently
implemented with 29 additions and 13 multiplications.
• d2 (·) is based on the Loeler-Ligtenberg-Moschytz (LLM)
algorithm [30] which yields 1-D DCT coeicients each
scaled by a factor of 2

√
2. Our implementation is again

performed with a single matrix multiplication, but this
algorithm can be more eiciently implemented with 29
additions and 11 multiplications.
• d3 (·) is based on the Arai-Agui-Nakajima (AAN) algo-
rithm [3] which yields 1-D DCT coeicients each scaled
by a diferent value given by a⃗, Equation (1). This algorithm
is implemented with 29 additions and 5 multiplications.

a⃗ =

*..............
,

2
√
2

4 cos(π/16)
4 cos(2π/16)
4 cos(3π/16)

2
√
2

4 cos(5π/16)
4 cos(6π/16)
4 cos(7π/16)

+//////////////
-

(1)

Each of the above 1-D DCT implementations consists of
three basic steps:
• Computation of constants each of which is computed as
a loating-point value and converted, using the lt2ix op-
erator (see Appendix B), to a ixed-point representation
with an assumed 13-bit precision (see c j in d1 (·), d2 (·), and
d3 (·), j ∈ [0, 7].).

2http://www.ijg.org/

• Computation of an eight-point 1-D DCT. Each of the re-
sulting DCT coeicients difer from the desired DCT coef-
icients by a multiplicative factor, deined as the coeicient
scale. The scale for d1 (·), d2 (·), and d3 (·) is 213 ·2, 213 ·2

√
2,

and 213 · a⃗, respectively.
• Element-wise division of the DCT coeicients followed
by rounding in order yield properly scaled coeicients. In
d1 (·) and d2 (·), this de-scaling operation is performed in
lines 3-4, and in lines 5-6 for d3 (·) (see Appendix A).

(2) s⃗h and s⃗v are each 8-D vectors consisting of de-scaling con-
stants used to control the horizontal (h) and vertical (v) scale
of the 1-D DCT coeicients in d (·).

(3) s is a scalar that can be used to de-scale the 2-D DCT coei-
cients after two 1-D DCT computations.

(4) Q is an 8 × 8 matrix of DCT-coeicient quantization values.
These values may or may not be scaled depending on the
de-scaling constants of s⃗h , s⃗v , and s .

(5) fe (·) and fo (·) are rounding operators used to de-scale even
and odd DCT coeicients after 1-D DCT in d (·). We dis-
tinguish between even and odd coeicients because they
typically involve diferent computations.

(6) fs (·) is a rounding operator used to de-scale the 2-D DCT
coeicients at line 8 of block-jpeg.

(7) fq (·) is a rounding operator used to quantize the inal DCT
coeicients by non-power-of-two values (line 14 of block-jpeg).

(8) f2 (·) is a rounding operator used to quantize the inal DCT
coeicients by power-of-two values (line 10 of block-jpeg).
We distinguish between this and fq (·) because division by a
power of two followed by rounding can be eiciently imple-
mented with a simple bit-shift. Note that unlike fq (·) and
f2 (·) which are used to quantize the DCT coeicients, the
operators fe (·), fo (·), and fs (·) are used in the computation
of the DCT coeicients. See the next section for a descrip-
tion of the four rounding operators that we consider and see
Appendix B for pseudo-code for these operators.

2.1 Rounding Artifacts

The parameters fe (·), fo (·), fs (·), fq (·), and f2 (·) deined above
require a choice of rounding operators. The following four standard
rounding operators will be considered:

• The round operator rounds loating-point values to the near-
est integer: round(1.5) = 2 and round(−1.5) = −2.
• The halfup operator is similar to round(·) except in the case
of a tie, where values are rounded towards the largest nearest
integer: halfup(1.5) = 2 and halfup(−1.5) = −1.
• The trunc operator rounds towards the nearest integer with
the smaller magnitude (i.e., towards zero): trunc(1.5) = 1
and trunc(−1.5) = −1.
• The loor operator rounds towards the smallest nearest in-
teger (i.e., towards negative ininity): loor(1.5) = 1 and
loor(−1.5) = −2.

Note that because the typical JPEG encoder is implemented using
ixed-point arithmetic, these rounding operations are only neces-
sary after a division (in our case, either quantization or de-scaling).
As such, we bundle rounding and division into a single function
(see Appendix B).
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The choice of which of the four rounding operators to use (round,
halfup, trunc, loor) depends largely on a speed-accuracy trade-of.
For example, the loor operator with fewer operations than the
round operator is more eicient. On the other hand, as we will
show below, the loor operator yields values that are consistently
smaller than their original values, whereas the round operator does
not.

To see the nature of these biases, we will consider the most
common case of dividing by a power of 2 (for the purposes of
exposition, we consider power-of-two divisors, but the basic bias
which we will show manifests itself for non-power-of-two divi-
sors). Let the random variables ∆f , ∆r , ∆h , and ∆t represent the

diference between the loating-point values x/2k and the integer
values obtained after loor(x , 2k ), round(x , 2k ), halfup(x , 2k ), and
trunc(x , 2k ) operations respectively, where x is an integer (assumed
to be drawn from a zero-mean distribution), k is a positive integer,
and the rounding operation occurs after the division x/2k .

Following [21, 38], we assume that: (1) the discrete random vari-
able ∆∗ is uniformly distributed in a inite interval, (2) ∆∗ is un-
correlated with the input x , and (3) ∆∗ at any step in block-jpeg is
independent of its value at any other step. Under these assumptions,
we will derive the bias (if any) that occurs following each of the
four rounding operators.

Per our assumption, ∆f = loor(x , 2k ) − x/2k is uniformly dis-

tributed over i/2k where i is an integer in the interval [−(2k − 1), 0].
The expected value of the random variable ∆f is:

E

[
∆f

]
=

1

2k

0
∑

i=−(2k−1)

i

2k

=

1

22k

0
∑

i=−(2k−1)
i = − 1

22k

2k−1
∑

i=0

i

= − 1

22k
*
,
2k (2k − 1)

2
+
- = − (2

k − 1)
2k+1

. (2)

Note that for k = 1, this expected value is −0.25, and for large values
of k , this expected value approaches −0.5. That is, the loor operator
introduces a consistent negative bias.

The random variable ∆h = halfup(x , 2k ) − x/2k also follows a
uniform distribution over i/2k where i is an integer in the interval[
−(2k−1 − 1), 2k−1

]
. The expected value of ∆h is:

E [∆h] =

1

2k

2k−1
∑

i=−(2k−1−1)

i

2k

=

1

22k

2k−1
∑

i=−(2k−1−1)
i

=

1

22k
(2k−1) =

1

2k+1
(3)

When k = 1, this expected value is 0.25. In contrast to the loor op-
erator, where a bias of −0.5 is introduced as k increases, increasing
values of k in the halfup operator lead to an exponentially smaller
bias.

DCT Intensity

0 0.01 0.02 −0.01 0 0.02

Figure 1: Shown in the left half of each panel are the aver-

age 8 × 8 DCT blocks extracted from images compressed us-

ing JPEGLib (left) and the corresponding optimal estimate

compressed with block-jpeg (right). The L1 estimation error

is 10−17. Shown in the right half of this igure is the same

artifact in the intensity domain.

While the loor and halfup operators introduce a consistent bias,
a similar analysis of the expected values for the round and trunc
operators reveal no such bias. The systematic bias introduced by
the loor and halfup rounding operators, used throughout the JPEG
compression pipeline, leads to speciic artifacts that vary across
camera manufacturers.

2.2 JPEG Artifacts

The above rounding operators are used at each of four steps in
block-jpeg: Once during each of two 1-D DCTs ( fe (·), fo (·)), once
during 2-D de-scaling ( fs (·)), and once during quantization
(

fq (·), f2 (·)
)

. Because the AC-coeicients of natural images are
zero-mean [27], the negative and positive biases described above
will lead to non-zero-mean distributions which in turn will lead
to perceptual artifacts in the average 8 × 8 DCT/intensity block.
As will see later, these artifacts depend on both the speciic round-
ing operator used in each of these steps as well as the de-scaling
and quantization factors. First, however, we will describe how to
estimate these JPEG compression parameters.

3 JPEG PARAMETER ESTIMATION

Let X be the expected value of the rounding artifact, estimated by
averaging all 8 × 8 DCT blocks from images compressed with a
ixed JPEG encoder and quality. We seek the block-jpeg parameters

θ⃗ = [d (·), s⃗h , s⃗v , s , Q , fq (·), f2 (·), fe (·), fo (·), fs (·)] that yield an
artifact Y

θ⃗
that minimizes the following L1 objective function

θ⃗m = argmin
θ⃗


1

64

7
∑

i=0

7
∑

j=0

����Xi, j − Yθ⃗,i, j
����

, (4)

Each Y
θ⃗
is computed by compressing a ixed set of 10 grayscale

images with block-jpeg and averaging all non-overlapping 8 × 8
DCT blocks. In order to analyze only rounding artifacts, we subtract
the loating-point-average3 DCT block from eachY

θ⃗
. Each grayscale

image is of size 512 × 512 yielding a total of 40, 960 8 × 8 blocks.
The parameter θ⃗m that minimizes the objective in Equation (4)
is estimated using a brute force search over a reduced parameter
search space as described next.

3The loating-point-average DCT block, obtained using loating-point DCT, with
respective quantization table does not introduce any integer rounding bias.
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Table 1: The ground truth (row 1) and estimated (rows 2-

7) parameter conigurations for JPEGLib. The parameters

in rows 2-7 each have the same L1 estimation error (within

loating-point precision). The ∗ indicates that all four round-
ing operators give the same L1 error.

d (se
h
, so
h
) (sev , s

o
v ) s f2 (·) fq (·) fs (·) fe (·) fo (·)

d2 (211, 211) (215, 215) 20 round round * halfup halfup

d2 (211, 211) (215, 215) 20 round round round halfup halfup

d2 (211, 211) (215, 215) 20 round round halfup halfup halfup

d2 (211, 211) (215, 215) 20 round round trunc halfup halfup

d2 (211, 211) (215, 215) 20 round round loor halfup halfup

d2 (211, 211) (215, 215) 22 round round trunc halfup halfup

d2 (211, 211) (215, 215) 21 round round trunc halfup halfup

The full search space for the 87 parameters in block-jpeg is enor-
mous. For example, even if we (arbitrarily) restrict each element in
the 8-D vectors s⃗h and s⃗v to 10 possible values, the search space over
just these parameters is 1016. As such, we restrict the parameter
search space as follows: (1) the values in s⃗h , s⃗v and s are restricted to
be a power-of-two; (2) the values for s⃗h and s⃗v are chosen such that
the DCT coeicients after each 1-D DCT can have a maximum scale
of 23; (3) the values in s⃗h at all even/odd positions are restricted to
have the same value. The same constraint is separately applied to
s⃗v , yielding a total of two parameters for s⃗h and two parameters
for s⃗v ; (4) Finally the quantization table is assumed to be known
and ixed.

The above constraints reduce the search space to a total of
3, 145, 728 parameter combinations: three possible values for d (·);
16× 16× 4 possible values for even and odd de-scaling constants in
s⃗h , s⃗v , s; 4

5 possible values for fs (·), fe (·), fo (·), f2 (·), and fq (·) as
each function can take on one of four possible values, loor, halfup,
round, or trunc.

3.1 Software Artifacts

In this section, we estimate the parameters for the common JPEGLib
library.4 This library ofers three variations of 1-D DCT implemen-
tations, loat DCT, fast-integer DCT, and slow-integer DCT. We
analyze the slow-integer DCT because, unlike the other implemen-
tations, this version is captured by our model (d2 (·) in Appendix A).

The slow-integer DCT implementation uses a 13-bit precision to
represent the loating point constants. All the DCT coeicients are
divided by 211 after the irst 1-D row-DCT, followed by a division
with 215 after the second 1-D column-DCT. Each of these divisions
are implemented with the bit shift version of the halfup rounding
operator (see Appendix B). The remaining scale of 23 (see Section 2)
is multiplied with the quantization table and removed during quanti-
zation with the round operator used for both power and non-power
of two’s. JPEGLib does not perform a 2-D de-scaling operation (step
3 in Section 2). This yields the following ground truth values for

the parameter θ⃗ : d = d2, (seh , s
o
h
) = (211, 211), (sev , s

o
v ) = (215, 215),

s = 1, f2 (·) = round, fq (·) = round, fs (·) = ∗, fe (·) = halfup,
and fo (·) = halfup. The ∗ indicates that the value of the rounding
operator doesn’t matter as the divisor is 1.

4The parameters estimated from MatLab-compressed images and TurboJPEG-
compressed images were found to be identical to JPEGLib-compressed images.

Figure 2: A histogram of L1 parameter estimation errors for

JPEGLib, displayed on a log-log scale.

We construct the average DCT block X in Equation (4) with
the same 10 grayscale images that were used to compute Y

θ⃗
. The

quantization table is ixed to consist of both power and non-power
of twos.

Shown in the left half of Figure 1 is the average 8× 8 DCT blocks
compressed using JPEGLib (left) and the corresponding estimated
artifact (right). Shown in the right half of this igure is the same
artifact in the intensity domain. The irst row of Table 1 enumer-
ates the ground-truth parameters for JPEGLib. Rows 2-7 of this
table enumerate the estimated parameters that yielded a minimum
L1 error of 10−17. Rows 2-5 correspond to the correct parameters
with only the rounding operator for fs (·) varying. This is expected
because the scale factor s = 1 and therefore there is no artifact
introduced by this rounding operator. The parameters in rows 6-7
correspond to a coniguration with a slightly diferent scale factor
s paired with the trunc operator. These results show that although
we can estimate the correct parameters, these parameters are not
necessarily unique.

Shown in Figure 2 is histogram of L1 parameter estimation errors
(on a log-log scale). There are six parameter conigurations with a
minimal error of 10−17. The next smallest error is on the order of
10−5 and the largest error is on the order of 100. Only 0.0002% of
the total possible parameter conigurations yield the minimum L1
error, indicating that although not unique, they are distinct.

3.2 Camera Artifacts

In this section we show that a diverse set of 24 cameras introduces
artifacts that can be approximately modeled with the parameters
speciied in our generic JPEG encoder block-jpeg. Each group in
Figure 3 corresponds to one of the 24 diferent cameras. Shown from
left to right are; the average 8 × 8 DCT block X , the corresponding
optimal estimate Y

θ⃗
of these artifacts, the average 8× 8 block in the

intensity domain and the estimated average block in the intensity
domain. For each camera, we downloaded between 25 and 100
images from Flickr with intact metadata, ensuring that the images
were of the same orientation and quality. This yielded a total of
1, 694 images. The average DCT blocks, computed over all non-
overlapping 8×8 blocks across all images for each camera, is shown
in the left-half of each panel in Figure 3 (to aid visualization, the
large-magnitude DC-term and the irst horizontal and vertical AC-
terms are zeroed-out). Note that the artifacts introduced by diferent
cameras vary in terms of their overall structure and magnitude (the
panels are displayed on diferent intensity scales, as speciied below
each panel). The DCT block Y

θ⃗
is constructed from the estimated

parameters θ⃗ .



Photo Forensics From Rounding Artifacts Woodstock ’18, June 03–05, 2018, Woodstock, NY

Apple iPhone5c Canon EOS10D Casio EX-H15

−0.11 0.09 0.28 −0.07 0.08 0.22 −0.11 0.07 0.24 −0.09 0.09 0.26 −0.1 0.04 0.18 −0.05 0.06 0.16

Fujiilm X20 HP PhotosmartE317 HTC ADR6300

0.05 0.24 0.42 −0.43 0.06 0.56 −0.22 −0.08 0.07 −0.54 −0.25 0.04 −0.24 −0.1 0.04 −0.31 −0.14 0.03

HTC OneX+ JVC GZ-HM300 Kodak DC240ZOOM

0.04 0.25 0.45 −0.2 0.14 0.48 −0.14 0.04 0.22 −0.07 0.07 0.2 0.04 0.25 0.46 −0.21 0.06 0.33

Leica D-LUX5 Minolta DiMAGE7i Minolta MAXXUM5D

0.07 0.26 0.44 −0.37 0.06 0.49 −0.18 −0.05 0.08 −0.15 −0.04 0.06 0.08 0.27 0.45 −0.16 0.25 0.65

Motorola DROIDX Nikon D3100 Olympus E-PL2

−0.01 0.03 0.06 −0.02 0.03 0.08 −0.11 0.06 0.22 −0.06 0.11 0.28 0.05 0.2 0.35 −0.43 0.05 0.53

Olympus VH210 Panasonic DMC-LZ5 Pentax K-x

0.02 0.07 0.12 −0.08 0.26 0.61 0.05 0.24 0.42 −0.5 0.22 0.95 −0.1 0.08 0.27 −0.06 0.13 0.31

RIM BlackBerry8310 Samsung NX300 Samsung SM-T310

−0.43 0.41 1.25 −0.38 0.08 0.55 −0.39 −0.2 −0.02 −1.01 −0.44 0.12 −0.44 −0.25 −0.05 −0.62 −0.18 0.27

SonyEricsson K750i Sony ILCE-7 Sony DSC-HX30V

−0.17 0.18 0.52 −0.18 −0.04 0.1 0.01 0.03 0.05 −0.01 0.01 0.04 0.04 0.25 0.45 −0.27 0.29 0.84

Figure 3: For each of the 24 cameras we show, from left to right, the actual 8 × 8 average DCT block from JPEG images of the

camera, the average DCT block after compressionwith the estimated parameters, the actual average block in intensity domain

and the estimated average block in intensity domain.

As in the previous section, the minimization does not yield a
unique set of parameters. Despite the lack of parameter unique-
ness, we see that our model captures a broad range of compression
artifacts. At the same time, there are some artifacts that are not
captured by our model. The impact of this, along with the lack
of uniqueness, on the forensic application will be addressed in
Section 4.

3.3 Recompression Artifacts

We have shown that diferent encoders introduce diferent JPEG
artifacts due to the diferences in JPEG compression parameters.
We next begin investigating how these artifacts may be used to
forensically detect and localize manipulations.
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n = 0 n = 1 n = 2 n = 3 n = 4
q = 100 q = 100 q = 100 q = 100 q = 100

L1 = 0.004 L1 = 0.005 L1 = 0.006 L1 = 0.006

n = 1 n = 1 n = 1 n = 1 n = 1
q = 98 q = 95 q = 90 q = 85 q = 80

L1 = 0.006 L1 = 0.006 L1 = 0.005 L1 = 0.005 L1 = 0.006

Figure 4: The efect of multiple compressions on the JPEG

artifact. Shown in the top row is the average 8 × 8 DCT ar-

tifact for singly compressed images (n = 0) at the highest

quality (q = 100), compressed using the estimated parame-

ters of a SONY ILCE-7 camera. Also shown in this row is the

efect of multiple compression (n = 1, 2, 3, 4) also at the high-

est quality, recompressed using JPEGLib. The L1 error is be-

tween the recompressed and original (far-left) DCT blocks.

Shown in the bottom row is the efect of double compression

(n = 1) at increasingly lower quality second compressions

(q = 98, 95, 90, 85, 80).

A manipulation of a JPEG image will generally require, at a
minimum, at least two compressions. The irst compression will
occur on the device and the second will typically occur by the
photo-editing software. Because these compressions will likely
employ diferent encoders and diferent quantization values [22],
we will consider the impact of these multiple compressions on the
original, device-induced, artifacts. We will also consider the impact
of cropping that will lead to multiple compressions in which the
8 × 8 JPEG lattice will be misaligned.

Throughout this section we will analyze 10 original images com-
pressed with the estimated parameters for a Sony ILCE-7. We will
then use JPEGLib to induce a second compression where qualities
are speciied in a range of 100 (highest) to 1 (lowest).

Shown in the top row of Figure 4 is the average 8×8DCT block for
images that have been compressed once (n = 0) and recompressed
one (n = 1) to four (n = 4) times, each at the highest quality of
100. Shown below each panel is the L1 error between the singly
compressed image and the recompressed versions. The artifact
in the recompressed images is efectively a super-position of the
artifacts from the original Sony ILCE-7 and the JPEGLib artifacts,
Figure 1, with the artifact corresponding to the second compression
becoming slightly more pronounced with more recompressions.

Shown in bottom row of Figure 4 is the efect of recompression
as a function of compression quality. Each panel shows the average
8 × 8 DCT block for images that have been recompressed once
with a quality ranging from 98 to 80. Shown below each panel
is the L1 error between the singly compressed image and the re-
compressed versions. As the recompression quality decreases, the
original artifact is diminished.

Shown in Figure 5 is the efect of cropping on the JPEG artifact.
Shown in the left of this panel is the original JPEGLib artifact in the

DCT Intensity DCT Intensity

Figure 5: The efect of cropping on the JPEG artifact. Shown

on the left are the original average 8 × 8 DCT and intensity

blocks. Shown on the right, is the impact of cropping the

image of the DCT lattice and re-saving in the lossless PNG

format.

DCT and intensity domain. Shown on the right is the same artifact
after cropping of the DCT lattice and saving in the lossless PNG
format. Although the artifact is signiicantly diferent in the DCT
domain5, we see that, as expected, the cropping simply corresponds
to a shift in the intensity domain.

4 FORENSICS

As shown in the previous section, a manipulated and resaved im-
age will either contain a combination of compression artifacts (for
a high-quality second compression), a diminished artifact (for a
low-quality second compression), or a completely new artifact (for
cropping prior to a second compression). In either case, we expect
a recompressed image to contain artifacts ś it just may be diicult
to precisely model and estimate these artifacts. In particular, we
cannot know the original compression parameters and there is no
practical way of considering all possible unknown initial param-
eters and possible cropping ofsets. As a result, we will employ a
data-driven approach to automatically estimate and segment an
image based on the JPEG rounding artifacts. While this may seem
like the detailed model was unnecessary, we believe that a thor-
ough understanding of these artifacts is inherently valuable to our
complete understanding of this forensic technique in terms of the
source of the artifacts, when these artifacts will be present, and
what any counter-forensic techniques might be able to exploit.

In a manipulated image, a portion of the image that was, for
example, resized, rotated, median iltered, or digitally inserted from
another image, is likely to have JPEG rounding artifacts that are
inconsistent with the rest of the image. We develop an algorithm
to simultaneously estimate these artifacts and segment an image
into regions (if any) that have inconsistent artifacts. The presence
of any such regions can be used to identify and localize image
manipulation.

This estimation and segmentation problem is formulated within
the expectation/maximization (EM) framework [15]. Each 8×8 pixel
block is assumed to belong to one of the two classesC1 (original) or
C2 (manipulated) each with unknown (and possibly non-existent)
rounding artifacts. On each EM-iteration, the rounding artifacts
within each class are estimated (as a 8 × 8 template in the intensity
domain) and the probability that each 8 × 8 block belongs to class
C1 is computed.

5The Fourier transform uses a sine and cosine basis to encode phase by adjusting the
relative contribution of these basis functions. In contrast, the DCT, with only a cosine
basis, must encode phase shifts by adjusting the relative contributions of the individual
cosine harmonics.
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Figure 6: Detection accuracy as a function of manipulation

size, from a maximum size of 512× 512 pixels to a minimum

size of 64×64. The AUC for thesemanipulation sizes is, from

largest to smallest, 0.90, 0.89, 0.87, and 0.81.

Because the rounding artifacts will be highly correlated across
color channels, only the luminance channel is analyzed. In order to
reduce the interference of image content, we use the residual of a
3×3 median ilter6. The luminance channel is tiled (by 8 pixels) into
overlapping square windowswi (x ,y) of size 256, 128, or 64 pixels.

For each window, the average block b⃗i of all non-overlapping 8 × 8
blocks in this window is computed. We simultaneously estimate

the probability that each of these blocks b⃗i belongs to C1 or C2

and the form of the template c⃗1 (i.e., the 64 intensity values that
make up the rounding artifacts) ś the classC2 is not parameterized
(i.e., it is an outlier class). This non-parametric second class allows
us to contend with the situation when an image has more than two
artifacts: one artifact will be characterized by the irst class C1 and
all others will fall into class C2.

The iterative EM algorithm progresses as follows. The values
c⃗1 are randomly initialized by drawing 64 values from a uniform
distribution in [0, 1]. In the E-step, the conditional probability that

each block b⃗i belongs to C1 is computed. This conditional probabil-

ity is estimated by irst computing the correlation between b⃗i and

the template c⃗1 as: ri = b⃗i ⊗ c⃗1, where ⊗ denotes 2-D correlation.

The conditional probability, P (b⃗i ∈ C1 |ri ), of each block belonging
to C1 given the correlation ri is then given by Bayes’ rule:

P (b⃗i ∈ C1 |ri ) =
P (ri |b⃗i ∈ C1 )P (b⃗i ∈ C1 )

P (ri |b⃗i ∈ C1 )P (b⃗i ∈ C1 ) + P (ri |b⃗i ∈ C2 )P (b⃗i ∈ C2 )
(5)

The conditional probabilities in the numerator and denominator
are computed numerically (and oline) as described below. The

prior P (b⃗i ∈ C1) is assumed to be 0.5. With only two models, the

6For most cameras, our proposed JPEG artifact manifests as a single darker (lighter)
pixel in 8× 8 intensity block, Figure 3. We, therefore, found that a simple median ilter,
which is good at iltering salt-pepper noise, performed better than other more complex
noise ilters like Wiener or BM3D [13].

Manipulation Size

(a)

(b)

(c)

(d)

Figure 7: Shown in each panel is the accuracy of detecting

manipulation speciied as the average area under the curve

(AUC): (a) Accuracy for diferent manipulation types and

sizes; (b) Accuracy for diferent EM window size w (x ,y) and

manipulation size; (c) Accuracy for diferent amounts of

JPEG compression and manipulation size; and (d) accuracy

for diferent camera manufacturers. The error bars in each

panel correspond to 10% quantile range.

conditional probability for the second class, P (b⃗i ∈ C2 |ri ), is simply

1 − P (b⃗i ∈ C1 |ri ).
In the M-step, the template c⃗1 is re-estimated using a weighted

average of all blocks b⃗i , where the weighting is the probability that
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Figure 8: Shown are examples of image splicing from the NC2017 evaluation dataset. The columns from left to right show the

original image, forged image, localizationmask, our estimated localizationmask (for the original and forgery) using a window

size of 256, 128, and 64. Shown below the horizontal divider are the optimal template c1 (Eq. 6) estimated by the EM algorithm

for the original and forged images.

each block belongs to model C1:

c⃗1 =

∑

i P (b⃗i ∈ C1 |ri )b⃗i
∑

i P (b⃗i ∈ C1 |ri )
(6)

The E- and M-steps are iteratively performed until the diference
between successive estimates of c⃗1 is below a speciied threshold.

The conditional probabilities in the right-hand side of Equa-
tion (5) are estimated using a large-scale simulation. The luminance

channel of 1000 raw images [14] are extracted and JPEG compressed
with 18 random compression settings estimated in Section 3.2. A
single window of size N × N aligned to the 8 × 8 JPEG-block lat-
tice was extracted from each of the resulting 18, 000 images. All
non-overlapping 8 × 8 pixel blocks were then averaged to yield an
estimate of the rounding artifacts. The correlation between these
18, 000 blocks and their matching templates yields an estimate of the

conditional probability P (ri |b⃗i ∈ C1). The conditional probability
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Original Forgery
Original Forgery Actual 256 128 64 256 128 64

(a)

(b)

(c)

Figure 9: Three representative failure cases in which: (a) the white exposed regions in the sky are incorrectly lagged as manip-

ulated; (b) multiple small manipulated regions are missed; (c) the large manipulation is missed because in this forgery, a noise

residual was added back to the image as part of a counter-forensic attack. The columns from left to right show the original

images, forged images, localization mask, our localization mask (for the original and forgery) using a window size of 256, 128,
and 64.

for mis-matched templates P (ri |b⃗i ∈ C2) is computed by generating
a new set of 18, 000 compressed blocks using loating-point DCT
(which does not introduce any rounding bias) and correlating these
with the same camera templates.

5 RESULTS

We tested our forensic technique on a subset of 580 of the 1, 694
images described in Section 3.2. These images spanned 24 difer-
ent camera models and ranged in resolution from 1200 × 1600 to
4000 × 6000. Each image was subjected to one of four manipula-
tions: (1) copy-move: a region in the image is duplicated; (2) median

ilter: a region is modiied with a 3 × 3 median ilter; (3) rotation:
a region is randomly rotated by 10 to 80 degrees; and (4) content-
aware ill: a region is removed using a standard content-aware ill
algorithm [12]. The position of the square manipulated region was
selected at random and ranged in size from 512, to 256, 128, or 64
pixels. This region may or may not be aligned to the 8 × 8 JPEG
lattice. For the irst set of experiments, the manipulated image was
saved as a lossless PNG. In the second set of experiments, the ma-
nipulated image was saved as a lossy JPEG with varying qualities
using JPEGLib with the slow-integer DCT implementation.

A total of 580 images, four manipulations, and four manipulation
sizes yields 9, 280 manipulated images. Each image was analyzed
with our EM-based detection algorithmwith a window size,w (x ,y),
of size 64× 64. Shown in Figure 6 are the receiver operating charac-
teristic curves (ROC) for each manipulation size and averaged over
all images and manipulation types. In this igure, the true positive
rate (TPR) corresponds to correctly classifying a manipulated pixel
as manipulated, and a false positive rate (FPR) corresponds to incor-
rectly classifying an original pixel as manipulated. Varying TPRs
were achieved by adjusting the probability threshold for classifying
a pixel as manipulated or not across all images and manipulation
types. The area under the curve (AUC) ranges from a maximum of
0.90 for the largest manipulated region (512 × 512) to a minimum
of 0.81 for the smallest manipulated region (64 × 64). The average
TPR of 23.4% and 46.7% is obtained at FPR of 5% and 10%. These

accuracies are computed on a per-pixel basis and are therefore
particularly stringent and do not necessarily relect the efective
accuracy of isolating (if not precisely) a manipulated image region.

Shown in Figure 7(a) is a breakdown of the AUC for each manipu-
lation type and size where we see that detection accuracy is similar
regardless of manipulation type and that detection is slightly more
diicult for smaller manipulations.

Shown in Figure 7(b) is the AUC for varying EM window size
(previously ixed at 64×64), manipulation size, and averaged overall
all manipulation types. As expected, the AUC is higher for a larger
window size because it afords a more accurate estimate of the
rounding artifact. Also as expected, the AUC is lower when the
window size is larger than the manipulation size. For example, the
AUC with a window size of 256 and manipulation size of 512 is 0.96,
which falls to 0.58 for the same window size and manipulation size
of 64.

Shown in Figure 7(c) is the efect of JPEG compressing the ma-
nipulated images using JPEGLib with varying qualities (on a scale
of 100 (highest) to 1 (lowest)). As expected, the AUC is lower for
lower quality images. At typical qualities of 80 and above, however,
the AUC remains relatively high.

Shown in Figure 7(d) is a breakdown of the AUC for diferent
camera manufacturers with a ixed manipulation size of 128 × 128.
Each bar in this graph corresponds to all models per manufacturer.
The AUC varies from 0.99 to 0.59 with Olympus being the easi-
est to detect and Motorola being the most diicult to detect. This
is consistent with the magnitude of the rounding bias for these
manufacturers, Figure 3.

Shown in Figure 8 are example images from the Nimble Chal-
lenge 2017 (NC2017) evaluation dataset 7. Shown, from left to right,
are an original image, a manipulated image, the ground-truth ma-
nipulation mask, and our estimated manipulation masks for the
original and manipulated images, each with a window size of 256,
128, or 64. Each mask is displayed on a scale of [0, 1], where a value

7www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
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Table 2: The average AUC for each forgery type. Our pro-

posed forgery detection performs better or similar to previ-

ous techniques.

copy-move median ilter rotate region ill

BAG [28] 0.58 0.66 0.61 0.69

CDA [29] 0.66 0.65 0.65 0.68

I-CDA [7] 0.71 0.74 0.74 0.68

BG-CDA [6] 0.66 0.63 0.66 0.66

FDF-A [2] 0.51 0.51 0.50 0.48

CAGI [20] 0.58 0.61 0.58 0.51

SB [11] 0.64 0.81 0.82 0.81

OURS 0.83 0.79 0.84 0.84

0 indicates an original pixel and a value of 1 indicates a manipu-
lated pixel. The examples correspond to object insertion, object
removal, object replacement, and copy-move manipulation . From
top to bottom, the original JPEG images are recorded from (a) Sony
Nex-5T, (b)-(e) Panasonic DMC-ZS40, (f) Sony DSC-S600, (g) Sony
Nex-5T, (h) Panasonic DMC-ZS40, (i) Sony Nex-5T, and (j) Asus
Nexus 7. In each case, a smaller window size is better at capturing
small manipulations, but also leads to more false positives. Shown
below the horizontal divider are the optimal template c1 (Eq. 6)
estimated by the EM algorithm for the original and forged images.
The templates in each column are displayed on the same intensity
scale. In each case, the estimated templates exhibit the same type
of artifacts shown in Figure 3, indicating that our EM algorithm is
latching onto the proposed rounding artifacts.

Lastly, the examples in Figure 9 correspond to representative
failure cases. In each example, the failure occurs regardless of the
window size.

6 COMPARISON WITH RELATED WORK

We compare our proposed method with seven other popular JPEG-
based forensic algorithms: two are based on JPEG blocking artifacts
(BAG [28] and CAGI [20]), three are based on AC coeicient dis-
tributions (CDA [29], I-CDA [7], and BG-CDA [6]), one is based
on irst digit distribution of AC coeicients (FDF-A [2]), and one is
based on noise residuals (SB [11]).

In each case, we used the publicly available implementation for
each algorithm. Speciically, implementations for BAG, CAGI, CDA,
and FDF-A are downloaded from the Matlab image forensics tool-
box 8 [43], and the remaining implementations were downloaded
from the respective authors’ webpages. The tampering probability
maps from BAG, BG-CDA, and FDF-A algorithms are normalized
by a logistic non-linearity as speciied in [24]. The block size of
64 × 64 and the unsupervised scenario was used for our evaluation
of SB. Except where noted above, we used the default parameters
for all of the techniques.

In [24], the author evaluated diferent algorithms on a dataset [25]
where forgeries were created using raw camera images. Since our
algorithm relies on the artifacts associated with JPEG implemen-
tation within cameras, this dataset cannot be used to evaluate our

8https://github.com/MKLab-ITI/image-forensics

algorithm. Instead, we evaluate all the algorithms on the diverse
forgeries described in Section 4. We present the results for all four
types of forgeries of size 512 × 512, recompressed with a quality in
the range [80, 100].

The overall performance of SB is the closest to the accuracy of
our algorithm. The average AUC of SB, however, is only 0.64 for
copy-move forgery compared to 0.83 obtained by our algorithm,
Table 2. As the forged region in copy-move forgeries is taken from
the same image without further modiications, the SB algorithm,
which relies on diferences in noise statistics, fails to detect this
type of forgery. The slightly lower performance of our algorithm
to detect median ilter is due to the fact that median ilter does not
completely remove the artifact from the forged region.

7 DISCUSSION

We have shown how certain design decisions in a JPEG encoder can
lead to a variety of diferent artifacts in JPEG-compressed images.
We used a generic JPEG encoder to demonstrate that a limited set
of values for a few compression parameters are suicient to explain
the structure and magnitude of the artifacts in many cameras. We
also showed how to exploit this artifact to detect a range of ma-
nipulations from copy-move, to median iltering, re-sampling, and
content-aware ill. Our approach out performs other JPEG-based
forensic techniques.

There are, however, some limitations to our approach. Like most
forensic techniques, our new technique sufers from the robustness
vs. detection trade-of in which larger integration windows aford
more robustness but also miss detecting small manipulations. Our
technique is less efective in cameras with smaller magnitude arti-
facts that result from speciic JPEG implementation choices by the
camera manufacturer. And, as with most forensic techniques, our
technique sufers from anti-forensic attacks where the artifact of
interest can be added back to the image after manipulation.

In spite of these limitations, we believe that the current forensic
technique nicely complements previous techniques and opens up
new areas of investigation. For example, because the artifacts vary
across camera manufacturer, the rounding artifacts can be used
to identify an image as originating from a small class of cameras.
And, because audio and video encoders implement similar transfor-
mations as JPEG encoders, seemingly innocuous encoding details
may introduce similar artifacts which can in turn be forensically
exploited.
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A DCT ALGORITHMS

d1 (v⃗, s⃗, fe (·), fo (·)) ▷ Ligtenberg-Vetterli-DCT

1: c0 = c4 = lt2ix(1/
√
2, 13)

c j = lt2ix(cos(jπ /16), 13) ▷ j ∈ {1, 2, 3, 5, 6, 7}

2: V⃗ = Mv⃗ ▷ 1-D DCT, M in Eq. 7

3: V⃗ (0) = fe (V⃗ (0), s (0)); V⃗ (2) = fe (V⃗ (2), s (2))

V⃗ (4) = fe (V⃗ (4), s (4)); V⃗ (6) = fe (V⃗ (6), s (6))

4: V⃗ (1) = fo (V⃗ (1), s (1)); V⃗ (3) = fo (V⃗ (3), s (3))

V⃗ (5) = fo (V⃗ (5), s (5)); V⃗ (7) = fo (V⃗ (7), s (7))

return V⃗

d2 (v⃗, s⃗, fe (·), fo (·)) ▷ Loeler-Ligtenberg-Moschytz-DCT

1: c0 = c4 = 1 << 13
c j = lt2ix(

√
2 cos(jπ /16), 13) ▷ j ∈ {1, 2, 3, 5, 6, 7}

2: V⃗ = Mv⃗ ▷ 1-D DCT, M in Eq. 7

3: V⃗ (0) = fe (V⃗ (0), s (0)); V⃗ (2) = fe (V⃗ (2), s (2))

V⃗ (4) = fe (V⃗ (4), s (4)); V⃗ (6) = fe (V⃗ (6), s (6))

4: V⃗ (1) = fo (V⃗ (1), s (1)); V⃗ (3) = fo (V⃗ (3), s (3))

V⃗ (5) = fo (V⃗ (5), s (5)); V⃗ (7) = fo (V⃗ (7), s (7))

return V⃗

M =

*.................
,

c0 c0 c0 c0 c0 c0 c0 c0
c1 c3 c5 c7 c0 c0 c0 c0
c1 c3 c5 c7 −c7 −c5 −c3 −c1
c2 c6 −c6 −c2 −c2 −c6 c6 c2
c3 −c7 −c1 −c5 c5 c1 c7 −c3
c4 −c4 −c4 c4 c4 −c4 −c4 c4
c5 −c1 c7 c3 −c3 −c7 c1 −c5
c6 −c2 c2 −c6 −c6 c2 −c2 c6
c7 −c5 c3 −c1 c1 −c3 c5 −c7

+/////////////////
-

(7)
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d3 (v⃗, s⃗, fe (·), fo (·)) ▷ Arai-Agui-Nakajima-DCT

1: c1 = lt2ix(cos(4π /16), 13)
c2 = lt2ix(cos(6π /16), 13)
c3 = lt2ix((cos(2π /16) − cos(6π /16)), 13)
c4 = lt2ix((cos(2π /16) + cos(6π /16)), 13)

2: m0 = v (0) + v (7);m7 = v (0) − v (7)
m1 = v (1) + v (6);m6 = v (1) − v (6)
m2 = v (2) + v (5);m5 = v (2) − v (5)
m3 = v (3) + v (4);m4 = v (3) − v (4)

3: n0 =m0 +m3; n1 =m1 +m2

n2 =m1 −m2; n3 =m0 −m3

n4 =m4 +m5; n5 =m5 +m6

n6 =m6 +m7; n7 =m7

4: o0 = (n0 << 13); o1 = (n1 << 13)
o2 = (n3 << 13); o3 = (n7 << 13)
o4 = (n2 + n3)c1; o5 = (n4 − n6)c2
o6 = n4c3; o7 = n6c4; o8 = n5c1

5: V⃗ (0) = fe (o0 + o1, s (0)); V⃗ (2) = fe (o2 + o4, s (2))

V⃗ (4) = fe (o0 − o1, s (4)); V⃗ (6) = fe (o2 − o4, s (6))
6: p1 = fo (o3 + o8, s (1)); p2 = fo (o3 − o8, s (3))

p3 = fo (o5 + o6, s (5)); p4 = fo (o5 + o7, s (7))

7: V⃗ (1) = p1 + p4; V⃗ (3) = p2 − p3
V⃗ (5) = p2 + p3; V⃗ (7) = p1 − p4
return V⃗

B ROUNDING OPERATORS

lt2ix(x ,k ) ▷ convert from loating- to ixed-point

1: z = int(x × 2k + 0.5) ▷ eliminate fractional part
return z

loor(x ,y,b = 1) ▷ Compute z = loor(x/y)

1: if b == 1 then
2: z = x >> (log2 (y)) ▷ bit shift
3: else

4: z = int(x/y) ▷ ignore fractional part

return z

halfup(x ,y,b = 1) ▷ Compute z = halfup(x/y)

1: x = x + (y >> 1) ▷ add 0.5 before rounding
2: z = loor(x ,y,b)

return z

trunc(x ,y,b = 1) ▷ Compute z = trunc(x/y)

1: s = sign(x )
2: x = |x |
3: z = loor(x ,y,b)
4: z = s × z ▷ set the correct sign

return z

round(x ,y,b = 1) ▷ Compute z = round(x/y)

1: s = sign(x )
2: x = |x |
3: x = x + (y >> 1) ▷ add 0.5 before rounding
4: z = loor(x ,y,b)
5: z = s × z ▷ set the correct sign

return z

C JPEG IMPLEMENTATION

block-jpeg(I )

Require: d ( ·), s , s⃗h , s⃗v , Q , fq ( ·), f2 ( ·), fe ( ·), fo ( ·), fs ( ·)
▷ d ( ·): 1-D DCT operator (see d1, d2, and d2)

▷ s⃗h : 8 1-D row DCT divisors for de-scaling

▷ s⃗v : 8 1-D column DCT divisors for de-scaling

▷ s : 1 scalar for 2-D de-scaling

▷ Q : 8 × 8 2-D DCT (scaled) quantization values

▷ fq ( ·): rounding operator after quantization
▷ f2 ( ·): rounding operator after quantization with power of two

▷ fe ( ·): rounding operator for even DCT coeicients in 1-D DCT de-

scaling

▷ fo ( ·): rounding operator for odd DCT coeicients in 1-D DCT de-

scaling

▷ fs ( ·): rounding operator 2-D de-scaling

1: I = I − 128 ▷ normalize into [-128,127]

▷ 2-D block DCT from two, 1-D DCTs

2: for all rows i in I do ▷ 1-D DCT on row

3: I (i, :) = d (I (i, :)′, s⃗h, fe ( ·), fo ( ·))

4: for all columns j in I do ▷ 1-D DCT on column

5: I (:, j ) = d (I (:, j ), s⃗v , fe ( ·), fo ( ·))

▷ Scale and quantize DCT coeficients

6: for all rows i in I do

7: for all columns j in I do

8: I (i, j ) = fs (I (i, j ), s ) ▷ 2-D de-scale

9: if Q (i, j ) is a power of 2 then

10: I (i, j ) = f2 (I (i, j ), Q (i, j )) ▷ quantize

11: else

12: I (i, j ) = fq (I (i, j ), Q (i, j ), 0) ▷ quantize

return I
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