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Blind Inverse Gamma Correction
Hany Farid'

The luminance non-linearity introduced by many imaging devices can often be described
by a simple point-wise operation (gamma correction). This paper presents a technique for
blindly estimating the amount of gamma correction in the absence of any calibration infor-
mation or knowledge of the imaging device. The basic approach exploits the fact that gamma
correction introduces specific higher-order correlations in the frequency domain. These cor-
relations can be detected using tools from polyspectral analysis. The amount of gamma
correction is then estimated by minimizing these correlations.
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1 Introduction

The luminance non-linearity introduced by many imaging devices can often be described with a simple
point-wise operation (gamma correction) of the form:

g(’LL) = uﬁfv (1)

where u € [0, 1] denotes the image pixel intensity. If the value of v is known then inverting this process
is trivial:

g7 (w) = u'l. 2)

The value of v is typically determined experimentally by passing a calibration target with a full range
of known luminance values through the imaging system (e.g., a Macbeth chart [1]). But often such
calibration is not available or direct access to the imaging device is not possible, for example when
downloading an image from the web. In addition, most commercial digital cameras dynamically vary
the amount of gamma. For many applications in digital photography, image processing, and computer
vision it would be advantageous to remove these non-linearities prior to subsequent processing stages.

In this paper a technique is presented for estimating the amount of gamma correction in the absence
of any calibration information or knowledge of the imaging device. We term this technique blind in-
verse gamma correction. The basic approach exploits the fact that gamma correction introduces specific
higher-order correlations in the frequency domain. These correlations can be detected using tools from
polyspectral analysis. The amount of gamma correction is then determined by minimizing these corre-
lations.

Higher-order statistics have previously been used for various forms of image restoration: noise re-
moval [2], deblurring [3, 4], and speckle removal [5]. See also [6, 7, 8] for general discussions on the use
of higher-order statistics in image processing. Previous work in this area however has not addressed
the issue of inverting the effects from gamma correction.
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Insight is gained into the proposed technique by considering a simple one-dimensional signal com-
posed of a sum of two zero-phase sinusoids:

y(n) = aysin(win) + ag sin(wan). 3)

When this signal is gamma corrected as in Equation (1) new harmonics are introduced with amplitudes
and phase that are correlated to the original harmonics [9]. To see this more explicitly g(-) is rewritten
in terms of it’s Taylor series expansion:
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Considering only the first three terms of this expansion, dropping the various scalar constants, and
rewriting using basic trigonometric identities yields:

g(y(n)) = y(n) +y*(n)
= ajsin(win) + ag sin(wan)
+  1ai(1+sin(2win)) + 2a3(1 + sin(2won)) + 2a1a2 sin(wy + wa) + 2a1a2 sin(wy — w). (5)

Notice the presence of several new harmonics, 2w, 2ws, wi + wp and w; — wy. Notice also that the
amplitudes of these new harmonics are correlated to the amplitudes of the original harmonics. For
example, the amplitude of w; + ws is proportional to the product of the amplitudes of w; and w,. For
purposes of exposition we have considered a simplified form of a signal and point-wise non-linearity.
However, this model generalizes to more complex signals and point-wise non-linearities. Note also that
a linear g(u) has no effect on the higher-order correlations, i.e., the Taylor series expansion contains no
terms beyond the first two linear terms.

We will show empirically that when an image is gamma corrected, higher-order correlations in the
frequency domain monotonically increase proportional to the deviation of v from unity. As such, the
value of 7 can be determined by simply minimizing these correlations. We first show how tools from
polyspectral analysis can be used to detect the presence of these higher-order correlations, and then
show the efficacy of this technique to the blind inverse gamma correction of synthetic and natural im-
ages.

2 Bispectral Analysis

Consider a one-dimensional signal y(n), and its Fourier transform:
Y(w) = > ylkje ™~ 6)
k=—o00

It is common practice to use the power spectrum to estimate second-order correlations:
Plw) = &{Y(w)Y (W)}, )

where £{-} is the expected value operator, and * denotes complex conjugate. However the power spec-
trum is blind to higher-order correlations of the sort introduced by a non-linearity, Equation (5). These
correlations can however be estimated with higher-order spectra (see [10] for a thorough survery). For
example the bispectrum estimates third-order correlations and is defined as:

B(W1,WQ) = E{Y(wl)Y(wg)Y*(wl —|—WQ)}. (8)



Note that unlike the power spectrum the bispectrum of a real signal is complex-valued. Comparing the
bispectrum with Equation (5) we can see intuitively that the bispectrum reveals the sorts of higher-order
correlations introduced by a non-linearity. That is, correlations between harmonically related frequen-
cies, for example, [wq, w1, 2w Or [wy,ws, w1 + wa|. The bispectrum can be estimated by dividing the
signal, y(n), into IV (possibly overlapping) segments, computing Fourier transforms of each segment,
and then averaging the individual estimates:

N
B wl,wg = Z w1 Yk w2 Yk (w1 —|—WQ) 9)

where Y;(-) denotes the Fourier transform of the k' segment. This arithmetic average estimator is un-
biased and of minimum variance. However, this estimator has the undesired property that its variance
at each bi-frequency (wi,ws) depends on P(w;), P(w2), and P(w; + ws) (see e.g., [11]). We desire an
estimator whose variance is independent of the bi-frequency. To this end, we employ the bicoherence, a
normalized bispectrum, defined as:

| B(wi, wp)?
E{IY (w1)Y (w2) PIE{|Y (w1 +w2)[?}

It is straight-forward to show using the Schwartz inequality that this quantity is guaranteed to have
values in the range [0, 1]. As with the bispectrum, the bicoherence can be estimated as:

| 2ok Vi (w1) Ve (w2) Y (wr + ws)] '
VE Sk Vi (@) Yi(w2) P& S [Yi(wr + wa) 2

Note that the bicoherence is now a real-valued quantity. This quantity is used throughout this paper to
measure higher-order correlations.

bz(wl, CUQ) (10)

6(&)1,&)2) = (11)

3 Results

For simplicity, it is assumed that gamma correction can be modeled with the one-parameter family
of functions: g(u) = u”, where v € [0, 1] denotes the image pixel intensity. Note that the scaling of
intensities into this range has no effect on the bicoherence [10]. Given only the gamma corrected image,
our task is to determine the value of v. To accomplish this we apply a range of inverse gamma values
g~ (u) = u!/7 to the image and select the value of v that minimizes the following measure of third-order

correlations: _ _
Z Z w1 5 WQ (12)
wil= o=

where b(wy,ws) is the bicoherence defined in Equation (11). In practice this simple search strategy is ef-
fective because the function being minimized is typically well-behaved, i.e., contains a single minimum.
This is illustrated in Figure 3 where the bicoherence is plotted as a function of varying inverse gamma
values. In this example a 1-D fractal signal y(n) with 512 samples, a 1/w power spectrum and random
phase was subjected to a gamma of v = 1.5. Note that the bicoherence reaches a unique minimum at
v~ =1.5.

To avoid the memory and computational demands of computing an image’s full four-dimensional
bicoherence, our analysis is restricted to the one-dimensional horizontal scan lines of an image (vertical
scan lines could have equally well been used). This is reasonable since gamma correction is a point-
wise non-linearity and the correlations introduced in 1-D will be similar to those in 2-D. The amount of
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Figure 1: Shown on the left is a 1-D fractal signal y(n) and this signal after gamma correction y'(n).
Shown on the right is the average bicoherence (Equation (12)) computed for a range of inverse gamma
values, [y"®(n)]”"". The bicoherence reaches a unique minimum aty~' = 1/1.5.

gamma is blindly estimated for an image by averaging over the estimates for each horizontal scan line (or
a subset of them). The amount of gamma for a scan line is estimated by a brute force search for the inverse
gamma value that minimizes the average bicoherence. In the results reported here, the bicoherence
for each 1-D image slice y(n) is computed by dividing the signal into overlapping segments of length
64 with an overlap of 32. A 128-point windowed DFT Yj(w) is estimated ! for each segment from
which the bicoherence is estimated, B(wl, ws) as in Equation (11). There is a natural tradeoff between
segment length and the number of samples from which to average. We have empirically found that
these parameters offer a good compromise, however their precise choice is not critical to the estimation
results.

3.1 Synthetic Images

Fractal images of size 512 x 512 with a 1/w power spectrum and random phase are subjected to gamma
correction with v € [0.2,2.8], Equation (1). The amount of gamma is estimated by averaging over the
estimates from every sixteenth horizontal scan line. A range of possible gamma values from 0.1 to 3.8
are sampled in increments of 0.1. Shown in Figure 3.1 are the estimated values averaged across ten
independent images. Also shown in Figure 3.1 is the estimated gamma plotted as a function of the
actual gamma where each data point corresponds to one of the ten images. On average, the correct
gamma is estimated within 5.3%

3.2 Natural Images

Shown in Figure 3.2 are twenty images taken from the database of [12]. The 8-bit images are 1024 x
1536 in size and calibrated to be linear in intensity. Each image was printed, digitally scanned with a
flatbed scanner (8-bit, grayscale), and then subjected to a variety of gamma values in the range [0.4, 2.2].
Ground truth for the final gamma is determined by appending a small calibration strip to the bottom of
the image. The actual gamma correction is determined from this calibration information, but only the
original image is used in the blind estimation.

'The signal is windowed with a symmetric Hanning window prior to estimating the DFT.
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Figure 2: Shown on the left are estimated gamma values averaged over ten independent synthetically
generated fractal images. Each data point on the right corresponds to one of the ten images. On average,
the correct gamma is estimated within 5.3%.

The amount of gamma is estimated for a horizontal scan line by applying a range of inverse gamma
values between 0.1 and 3.6 in increments of 0.1 and selecting the value that minimizes the bicoherence,
Equation (12). The horizontal scan lines were used as they afforded a longer signal from which to
compute the bicoherence. The estimate for the entire image is determined by averaging the estimates
from every sixteenth scan line. Shown in Figure 3.2 are the estimated gamma values. On average, the
correct gamma is estimated within 7.5% of the actual value. Also shown in Figure 3.2 are results from a
single image, showing the gamma corrected and inverse gamma corrected images.

4 Discussion

Gamma correction introduces specific higher-order correlations in the frequency domain. Using tools
from polyspectral analysis, the amount of gamma can be blindly estimated by simply minimizing these
correlations. In so doing, neither calibration information nor knowledge of the imaging device is re-
quired. Results from a range of natural images have shown that the amount of gamma correction can
be accurately determined with errors averaging only 7.5%. Note, that because the bicoherence is unaf-
fected by additive noise [10] the presence of noise should not adversely effect this technique. In addi-
tion, the bicoherence is unaffected by a linear transform, e.g., brightness/contrast changes or low-pass
filtering [10].

There are several straight-forward extensions to this technique that may be easily realized. Although
the results presented in this paper are for grayscale images, this technique is easily generalized to color
images. For a multi-channel color image, the gamma for each channel can be individually estimated as
described here. Since the bicoherence over varying inverse gamma values seems to be well-behaved,
the brute force minimization should be replaced with a more efficient search (e.g., a gradient descent
minimization).
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Figure 3: Each initially linear image is printed, digitally scanned and then synthetically gamma corrected
with v € [0.4, 2.2]. Shown are the estimated gamma values determined by minimizing the bicoherence.
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Figure 4: Shown in the left column is one image that has been subjected to varying degrees of gamma
correction (see Figure 3.2). Shown on the right are the results of blindly inverting the gamma correction.



It should be pointed out that there are certain limitations and restrictions to these results. First, the
simple one-parameter gamma function that is assumed is unlikely to accurately model a full range of de-
vices (see e.g., [13]). This simple model was chosen in order to limit the minimization to one dimension.
A higher parameter gamma function will require a correspondingly higher-dimensional minimization.
We are currently investigating the stability of such an approach. Second, it is assumed that the gamma
correction is applied uniformally throughout the image. A device that employs local gamma correction
will require a more sophisticated inversion technique that allows for multiple spatially varying gamma
values. We are also investigating the feasibility of such a system.

It is intriguing to observe that such “unnatural” operations as gamma correction can fundamentally
change the statistics of an image while not dramatically altering the appearance of an image. Moreover,
the class of functions that modulate the higher-order correlations is not limited to point-wise operations.
Virtually any non-linearity will effect these correlations. This may prove to be particularly useful for
understanding and classifying the statistics of natural images (e.g., [14, 15, 16, 17, 18, 19, 20])
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