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Abstract— In this paper we propose a direct method for image [10]. One class of techniques directly use
estimating the orientation of a plane from a single view filtered outputs of the image intensities. As with
under perspective projection. Assuming that the underly- - {he feature-based techniques certain assumptions are
ing planar texture has random phase, we show that the made regarding the spatial texture properties. The
non-linearities introduced by perspective projection lea to . . b
higher-order correlations in the frequency domain. We also mQSt st_andard ass_umpt|on is one of hom(_)gene|_ty.
empirically show that these correlations are proportional With this assumption, the 3-D structure is esti-
to the orientation of the plane. Minimization of these mated by first measuring local deformations of the
correlations, using tools from polyspectral analysis, yiels texture, and then explicitly parameterizing them in

the orientation of the plane. We show the efficacy of this terms of surface slant and tilt. In this setting both

technique on synthetic and natural images. orthographic and perspective projections models
have been considered, e.g., [19], [5]. Additional
|. INTRODUCTION assumptions of isotropy, e.g., [6] and symmetry

gan also be made. In these cases the observed
E%Iation of the assumed statistical properties of
ture elements, characterized by their gradient
Ionentations, is used for estimating surface orien-
&tion. Frequency-based methods have also been
ﬁfgtensively explored. These techniques explicitly
odel the effects of perspective projection on the
equency or phase of an image. The estimation
ge typically employs measurements of instanta-

Many visual cues reveal the 3-D structure of
scene and relative pose of the camera with resp¥
to the scene. While many of these cues are pres
in multiple views (disparity, optical flow), severa
others are already present in a single view. Gibs
suggested, for example, the use of texture gradie
and vanishing lines [7], while others proposed t
use of shading gradients, e.g., [9], [16], [4]. Sinc

then several different computational models bas& ; 291 [23 del-based
on these mechanisms have been proposed. ThRERUS Trequency [22], [23], model-based measure-

techniques differ in the assumptions made abdENts of instantaneous phase [17], chirplets [14], or
wgyelets [8].

the scene appearance and structure, the types )
PP yP this paper, we extend the frequency-based

measurements used, and the computational meth?d . b loiting the fact that i
employed for estimating shape or pose. echniques by exploiting the tact that perspective

Feature-based techniques use elementary georﬁé?JeCt'on introduces higher-order frequency cor-

ric features (points, lines, circles) and addition ?Iat|ons (be_‘yond second-order). Like _aII texture_—
ased techniques we make an assumption regarding

assumptions (orthogonality, co-planarity, eccentri, underlying texture. In our case, it is assumed that
ity) to estimate the projective mapping betwee ' ' o
Y) pro) PpPIng he texture has random phase. Shown in Fig. 1, for

the world and the image plane, e.g., [1], [12]t. | I | ¢ ith and
These methods are most applicable when the desi mple, are several examples o teX“!re with an
without random phase — loosely speaking, random

features are easily extracted from the image. ? .
The class of techniques termed “shape froﬁzpase textures are those that do not contain spatially

texture” have also been popular, particularly Whecrprrelatec:horstrﬁcturfﬁ E[)attﬁrns. Utnd(tar th(;s alssump-

explicit features are not readily available in aHon, we then show that when a textured plane 1s

Imaged under perspective projection, the resulting

Corresponding author: H. Farid, 6211 Sudikoff Lab, Computdmage contains third-order frequency correlations.

Science Department, Dartmouth College, Hanover, NH 03758 U The correlations are due to the non-linearities intro-
(email: farid@cs.dartmouth.edu; tel/fax: 603.646.266B8/646.1672) . . . .

Huced by perspective projection. These correlations,

J. Kosecka, Department of Computer Science, George Ma > ]
University, Fairfax, VA 22030 measured using tools from polyspectral analysis,



Consider now this signal placed onto a one-
dimensional plane oriented-45° from fronto-
parallel. Assuming a perspective projection model,
this signal can be written analytically as:

/ /
g(x) = ajcos (w1f_;1/:) + ay cos (wgf—gf)
z z
/ /
x x
= @ajCos (wlx’ n 2) + as cos (wQCE/ n 292)

where z denotes image coordinates amtland 2’
denote camera coordinate systems. Without loss of
generality, we assume that the focal length= 1,

and that the plane is a unit length along the optical
axis away from the sensor, which, when coupled
with a —45° oriented plane, yields the distance from
the sensor;’, to be simplyx’ + 2, Fig. 2. Example
fronto-parallel and projected signals are shown in
Fig. 2 (with frequenciesvy; = 87 andwy; = 32,
and amplitudesa; = ay; = 1). Shown below
each signal is the central portion of the magnitude
of each signal’'s Fourier transform. Note that the
original signal has exactly two frequencies (the
Fourier magnitude is symmetric about its origin),
and the projected signal contains a multitude of
frequencies. Of particular interest to us are the
frequency correlations introduced by the non-linear
perspective projection. While in this simple example
the power spectrum may reveal these correlations,
when presented with more complex signals these
correlations are less likely to be so evident. As in
our previous work [2], [3] we turn to measuring
higher-order correlations in the frequency domain.
Specifically, we will show empirically that higher-
order correlations between triples of frequencies -
are minimized to yield the orientation of the planepairs of frequencies and their sum - are propor-
This technigue uses a similar approach as descridghal to the amount of distortion introduced by
in our earlier work, where we showed that norperspective projection. We first discuss how these
linearities introduced by gamma correction and lerggher-order correlations are measured, and then
distortion could be blindly estimated and correcteghow how the minimization of these correlations
for in the absence of any calibration information [2]yields an estimate of surface orientation.

[3].

Fig. 1. Examples of texture with non-random (left) and rando
(right) phase.

ll. PERSPECTIVEPROJECTION INFREQUENCY Ill. BISPECTRALANALYSIS

DOMAIN Consider a stochastic one-dimensional signal
Consider, for purposes of illustration, a simplg(z), and its Fourier transform:
one-dimensional signal composed of two frequen-
cies (for simplicity we will assume zero-phase):

Flw) = > f(k)e ™" 3)

f(z) = ajcos(wiz) + agcos(waz). (1) PR



by the expected value operator will cause the bis-
pectrum to vanish. If, on the other hand, the triple
of frequencies are non-linearly coupled, then the
phases will be correlated and thus the statistical av-
eraging will not cause the bispectrum to vanish. As
a result, non-linearities can be revealed by analyzing
the magnitude of the bispectrum.

If it is assumed that the signdl(x) is ergodic,
then the bispectrum can be estimated by dividing
f(z) into N (possibly overlapping) segments, com-
puting Fourier transforms of each segment, and then
averaging the individual estimates:

0 0 N
sensor Blon,wn) = 1= 3 Filwn) Fu(wn) Fi (wr-+2), (6)
k=1
e o o 1____&:2"'8‘”6 where F,(-) denotes the Fourier transform of the
— 7 k" segment. This arithmetic average estimator is
______________ \ unbiased and of minimum variance. However, it
""""""""" has the undesired property that its variance at each
X A bi-frequency (w;,w;) depends onP(w;), P(ws),

and P(w; + ws) (see e.g., [11]). We desire an
: : . : estimator whose variance is independent of the bi-
Fig. 2. Shown in the left column is a signal composed of tw? . .
frequencies (top) and the central portion of the magnitufiét Trequency. To this end, we employ the bicoherence,

Fourier transform (bottom). Shown in the right column is s@me a normalized bispectrum, defined as:
signal placed onto a 1-D plane rotated5° from fronto-parallel and
projected under perspective projection. Note how thisaligontains \B(wl, wg) |2

a multitude of frequencies. Shown below is the camera ingaginb2(wlaw2) = 5{‘F(w1)F(wg)|2}5{‘F(w1 T w2)‘2(}7')

geometry.

It is straightforward to show using the Schwartz

It is common practice to use the power spectrum fgeduality that this quantity is guaranteed to have
estimate second-order correlations: value_s in the rangén, 1]. As_W|th the bispectrum,
the bicoherence can be estimated as:

Pl) = iFF@), @) & 30 Fln) Bln) B 1 + w3

: b(wy, ws) =
where £{-} is the expected value operator, and(w1 w2)

* denotes complex conjugate. However the power ®)

spectrum is blind to higher-order correlations imroNote that the bicoherence is now a real-valued
duced by non-linearities such as perspective projeghl

oS B o) [ 3o i + )

. : . Jjantity. The bicoherence can be averaged across
tion. These correlations can however be estimat

with higher-order spectra (e.g., [11], [15] [25])re|;[%?196n0|es to obtain a measure of overall cor-
For example the bispectrum estimates third-order '

correlations and is defined as: 1 NZ/Q NZ/Q ; (2m;1 27m2) ©)
B(wi,wz) = E{F (w1)F(wa) F™ (w1 +w2)}.  (5) N w1=—N/2wp=—N/2 NN

Note that unlike the power spectrum the bispectruihis quantity is employed throughout this paper as
of a real signal is complex-valued. The bispectrua measure of higher-order correlations. In closing,
measures the statistical dependence between fme note that the bicoherence is invariant to linear
quency triples, (e.g.jwy,ws,2w;] Or [wy,ws,w; + transformation, thus making it applicable to a wide
wo|). Specifically, if a triple of frequencies haveange of imaging conditions (e.g., blurring or scal-
independent phases, then the statistical averaging).



IV. ESTIMATING SURFACE ORIENTATION ~50

The intuition behind our approach for estimating
surface orientation is as follows. If a texture on
a fronto-parallel plane has, as we assume, randon
phase, then the statistical averaging by the expected
value operator will cause the bispectrum to vanish,

Equation (5). If, on the other hand, the plane is
slanted from fronto-parallel, then the non-linear /
perspective projection will cause phase coupling
between the frequencies, and the statistical averag

25

ing will not cause the bispectrum to vanish. We
will show empirically that the magnitude of the
bispectrum is proportional to the deviation of the
plane from fronto-parallel, and that the slant can
therefore be estimated by minimizing the magnitude
of the bispectrum.

We first derive an algorithm for estimating surface |25
orientation for one-dimensional planes and then
show how this algorithm can be extended to estimate \
the surface orientation of two-dimensional planes.

A. Synthetic Signals 50

Fractal signals were synthesized from a sum of
sinusoids with amplitudesy, = 1/k, frequencies,
wr = 2km, and random phasesy, € [—x, 7], as
follows:

flx) = Z ay cos(wr + d,), (10)

k=1

with n = 512, andz € [—1,1), and where the "

length of the signal i8n. The perspective projection o2/ ]
of such a signal from an oriented one-dimensional

plane (by an amound) can be expressed analyt- 5§92 ]
ically. Without loss of generality, we assume that %0.227 |
the plane is a unit length away from the sensor anda

that the focal length is one. The projected signal, & o2} :
g(x), is synthesized directly as follows: e

n /
Xz
g(z) = E aj, Cos (wk? + qﬁk) . (11) 0.16/
k=1 -50 -40 -30 -20 -10 0 10 20 30 40 50
Orientation (deg)

re

Mea

where,
X! COS(Q) sin(Q) T 0 Fig. 3. Signals synthesized from a 1-D plane at several rdiffe
i = . Sin(e) COS(Q) 0 + E (12) orientations. Shown above are, from left to right, the 1-Bng, the
projected signal, and the bicoherence of this signal. Shbelow

. . . -_is the mean bicoherence, Equation (9), as a function of arfnige
with 2 defined as above. Slgnals were SyntheSIZ orientations. The filled circles correspond to the resdiftom a

in this manner to avoid possible interpolation artierspective projection model, and the open circles to theessignal

facts that would be introduced by standard warpirigpiected an orthographic projection. Note that under gesgve
techniques projection, the mean bicoherence generally increasesopiopal to

the deviation of the plane from horizontal®(.



Shown in Fig. 3 is an example signal synthesizedliable estimates in the face of potentially spurious
from a 1-D plane oriented at50°, —25°, 0°,25°, estimates). And finally, estimates at either end of
and50°. Shown in the right-most column of Fig. 3 ighe orientation range;30° or 30°, are discarded as
the estimated bicoherence - the bicoherence shoaldliers.
be read similar to a 2-D Fourier transform with the In our current MatLab implementation, and run-
origin in the center and the horizontal and verthing on a 3GHz processor, the algorithm takes
cal axes corresponding to frequencies and w,, approximately).6 seconds to process a single 1024-
respectively. Note the increase in overall magnitudength signal.
as the plane deviates from fronto-parallel. Shown in In the following section we show how this algo-
the bottom panel of Fig. 3 is the mean bicoherenagghm can be extended to estimate the orientation
Equation (9), as a function of a full range of orienef two-dimensional planar surfaces, and show the
tations (filled circles). Also shown, for comparisonefficacy of this algorithm on synthetic and natural
is the mean bicoherence when the fractal signal wiasages.
synthesized under orthographic projection (open cir-
cles). Under orthographic projection, there is no syB. Synthetic Images
tematic relationship between orientation and meangjmjlar to the synthetic signals of the previous
bicoherence. Under perspective projection, howevggction, fractal images were synthesized from a
the mean bicoherence generally increases propgfim of two-dimensional sinusoids with amplitudes,
tional to the deviation of the plane from horizonta| _ 1/k, frequenciesw, = 2k, and random

(0°). This relationship suggests a simple algorithgyientations, 9, < [—7, 7], and random phases,
for estimating orientation. i, € [—, ), as follows:

1) select a range of possible orientations; n

2) for each orientatio, assume that the signalf (z,y) = > _ a; cos (wi[cos(6)x + sin(0;)y] + ) ,(13)
lies on a 1-D plane oriented degrees away k=1
from fronto-parallel. Warp the signal undewheren = 512, = € [-1,1), y € [-1,1), and
perspective projection to front-parallel, yieldwhere the image is of sizén x 2n. As before,
ing a new signalfy; the perspective projection of such an image from

3) compute the bicoherence, Equation (8), @n oriented two-dimensional plane (by an amount
fo. Repeat for all of the orientations in the), and 6,) can be expressed analytically. Without
selected range; loss of generality, we assume that the plane is

4) select the value af that minimizes the meana unit length away from the sensor and that the
bicoherence, Equation (9). focal length is one. The projected imaggr, y),

In subsequent sections, the range of possible Olﬁ_synthesmed as follows:

entations is fixed to bé—-30°,30°] in steps of5°. RN . Yy

The signal is warped using bi-cubic interpolatioﬁ(%y) = Zak cos (w’f {COS(Q’C)Q +Sm(9k’)§ + i | (14)
and, because of the potential shortening of the signal h=1

due to the warping, only the central2 samples are Where,

/

used to estimate the bicoherence. The bicoherence x x 0
is computed by dividing the signal into overlapping y'| = RyR, |y|+ (0], (15)
segments of length4 with an overlap of32. A 64- 2! 0 2

point DFT (windowed with a symmetric HanningNith + and y defined as above, and where the

window) is estimated for each zero-mean segmeltation matrices are defined as:

from which the bicoherence is estimated. These pa-

rameters were determined empirically, but in general 1 0 ,0

we find that the results are not particularly sensitive Ry = |0 cos(6;) —sin(6,) (16)
to their choice. The value of that minimizes 0 sin(6z)  cos(6z)

the mean bicoherence is taken to be the minimum cos(6,) sin(6,) 0

of a second-order polynomial fit to the estimates R, = 0 1 0 a7
across all orientations (this was done to yield more | —sin(6,) cos(d,) O



-30 -15 0 15 30
-30| -28.6 -30.9|-32.9 -15.1|-34.7 -0.9 | -32.0 16.3|-29.0 33.6
-15| -13.3-31.1|-15.2 -14.4|-14.7 -1.0|-14.5 15.4|-13.1 33.7
0| 07 -31.1| 09 -140| 1.0 -1.0| 0.7 15.2| 1.0 341
15| 13.1 -30.5| 13.9 -14.6| 14.2 -1.1| 14.2 15.4| 13.4 34.2
30| 26.9 -30.9| 29.0 -15.0| 30.8 -1.0| 29.8 15.8| 27.0 33.2

TABLE |
Fig. 4. Synthesized images from a 2-D plane rotated aboticgér SHOWN ARE THE ESTIMATION RESULTY(IN DEGREES FROM
o o o
by =507, 0%, and50°. SYNTHETICALLY GENERATED IMAGES. EACH ROW/COLUMN

HEADING CORRESPONDS TO THE ACTUAL HORIZONTAILVERTICAL

ORIENTATION, AND EACH ENTRY CORRESPONDS TO THE

[
o
T

HORIZONTAL/VERTICAL ESTIMATE, AVERAGED ACROSS TEN

N
o

INDEPENDENTLY SYNTHESIZED IMAGES

= N w
o o o
T T T

aged together since there were no significant differ-
ences between their estimates). Note that in all cases
the estimated orientation is approximately one-half
of the actual orientation (a fitted line yields a slope

Estimated Orientation (deg)
o

29 | of 0.4734 and intercept of0.0028). This bias in

40 ] the estimation is due to the correlations introduced

-0 by the interpolation artifacts from warping each
~50-40-30-20-10 0 10 20 30 40 50 scan line prior to estimating the bicoherence [18]

Orientation (deg) . L. . . .
o (bi-cubic interpolation was used in the warping).

Fig. 5. Shown are the estimation results from synthetiogdigerated Since this warping is per_formgd 'n_the same W_ay

images. Each data point corresponds to the average estimate regardless of the underlying signal/image, the bias
ten independently synthesized images (five of which cooedfo 5 consistent and can therefore be calibrated for.

estimating orientation about vertical, and five about ramtal). . .

In the results of Fig. 5 the synthetically generated

images were rotated either about vertical or hori-

Shown in Fig. 4 are example images from a pIarFé?nl:al' In pgactlce, of ct())utrse, It Its ?ecesia?’”tto SI-

rotated about vertical by-50°, 0°, and50°. mu ane_:ously meaﬁure Ob tﬁ”en atlotr_ls. u l\é\/%'

In order to estimate the orientation about the vefiMensional search over both orientations would be

tical axis we independently estimate the orientati Tputaﬁonz_illytc?stly. We Qave foun?,;ortunai)ely,
of each horizontal scan line, using the algorithn at each orientation can be computed (as above)

from the previous section, and average the resu'l'f's,dependent. of one another. S_hown in Fig. | are the
esults of simultaneously estimating both vertical

across the entire image. Similarly, in order to est}s d horizontal orientat Th it
mate the orientation about the horizontal axis we a@-'? norzontal orientations. These resuits were av-

erage the estimates from each vertical scan line. Itq%ged acrc()jsst;en mﬁet[k)]endelr_lgy f_ynthfesaeld:_lmages
possible to perform a single two-dimensional sear@ld Passed throug € callbration 1rom Fig. .
instead of the pair of one-dimensional searches. TAISMSS all onentations, the average estimation error

would, of course, be more computationally demantf 1.4° with a standard deviation 00.9°, and a

ing, and we have found that these two approac imum errortoﬁ.zl_. b impl tati q
yield very similar results. n our current MatLab implementation, and run-

ing on a 3GHz processor, the algorithm takes

Shown in Fig. 5 are the results of estimatin§§ roximatelv19 minutes to or nim p
the orientation from synthetically generated imag proximately L minutes 1o process an image o
size 1024 x 1024 pixels.

rotated about either the vertical or horizontal axi
Each data point corresponds to the average estimate o

from ten independently synthesized images (five 6f Noise Sensitivity

which correspond to estimating orientation about We tested the sensitivity of our algorithm to
vertical, and five about horizontal - these were aveadditive noise. Noise was added to a synthetic image



D. Natural Images

Shown in the top four panels of Fig. 6 are
images of a carpet, grass, dirt road and stones (left).
Also shown are the rectified images after correcting
for the estimated horizontal orientation (right). The
estimation was identical to that described in the
previous section with all of the parameters of the
algorithm held fixed. A small planar calibration
target of known geometry was placed in each scene
and used to determine ground-truth as described
in [24]. With this technique, the actual orientation
of each planar surface about the horizontal axis is
33, 32, 28 and 29 degrees, respectively, with a less
than one degree rotation about the vertical axis. The
estimated orientations using our bispectral method
was 28, 33, 25 and26 degrees, for an average error
of 3 degrees. Note that the portion of the image
containing the calibration target was not used in the
estimation.

In the bottom panel of Fig. 6 is an example
of where our algorithm fails to accurately estimate
orientation. The reason for this failure is that the
basic assumption of random phase, Section Ill, is
violated in the periodic brick pattern. We verified
this by generating synthetic images whose phases
were correlated — the resulting estimation of ori-
entation degraded as a function of the amount of
correlation.

Fig. 6. Shown on the left is the original perspectively ditd V. DISCUSSION
image. Sh_own on the right is the image rectified by the_ eséthat  \\e have presented a direct method for estimating
surface orientation. The bottom panel demonstrates aréadfi our . - . .
algorithm, the orientation of a plane from a single view un-
der perspective projection. This technique exploits
higher-order correlations in the frequency domain
that are introduced by perspective projection. These
with a horizontal and vertical orientation 6f15° correlations, when minimized, yield the plane’s ori-
and 0°, Fig. 4. Uniform white noise, ranging fromentation.
15dB to 40dB, was added to the synthetic image. Our proposed method adds to an existing body
Here we report on the errors in estimating the hoof literature in shape from texture. This technique
izontal orientation averaged over ten independentias the advantage that it is applicable to images in
synthesized images. At noise levels40dB, 35dB, which geometric features are not easily extracted.
30dB, 25dB, 20dB, and 15dB, the averaged esti-Like all single-view techniques, we must make some
mates were-15.0, —15.0, —14.5, —11.8, —8.8, and assumption regarding the underlying planar texture -
—4.5, respectively. Note the graceful degradatioim our case, we make an assumption that the texture
as the signal-to-noise ratio (SNR) decreases. Bas random phase. Specifically, if a texture on a
low SNR, the additive noise, with random phaséronto-parallel plane has random phase, then the
dominates and the image begins to appear as frongtatistical averaging by the expected value operator
parallel. The estimation is, nevertheless, reasonallill cause the bispectrum to vanish. If the plane is
robust in the presence of noise. slanted from fronto-parallel, however, the non-linear



perspective projection will cause phase couplingg]
between the frequencies, and the averaging will not
cause the bispectrum to vanish. We have empiricall[g?]
shown that the magnitude of the bispectrum is
proportional to the deviation of the plane frontl0l
fronto-parallel, and that the slant can be estimateg,
by minimizing the magnitude of the bispectrum.
If the phase of the original texture is not random
however, then the correlations due to the non-Iine%f’]
projection are confounded with the correlations due
to the structural properties of the texture. As a
result, the orientation cannot be reliably estimateB,?’]
as shown in the bottom panel of Fig. 6.

Our proposed technique builds on earlier work,
where we showed that luminance non-lineariti ]
introduced by gamma correction, and geometric
non-linearities introduced by lens distortion could
be estimated and corrected for in the absence [bF
any other information or calibration. With the recent
interest in understanding and modeling the statigs]
tics of natural images [20], [26], [13], [21], thes«?ﬂ]
techniques may provide interesting insights into the

statistical properties of images. 18]
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