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Estimating Planar Surface Orientation Using
Bispectral Analysis
Hany Farid and Jana Košecḱa

Abstract— In this paper we propose a direct method for
estimating the orientation of a plane from a single view
under perspective projection. Assuming that the underly-
ing planar texture has random phase, we show that the
non-linearities introduced by perspective projection lead to
higher-order correlations in the frequency domain. We also
empirically show that these correlations are proportional
to the orientation of the plane. Minimization of these
correlations, using tools from polyspectral analysis, yields
the orientation of the plane. We show the efficacy of this
technique on synthetic and natural images.

I. INTRODUCTION

Many visual cues reveal the 3-D structure of a
scene and relative pose of the camera with respect
to the scene. While many of these cues are present
in multiple views (disparity, optical flow), several
others are already present in a single view. Gibson
suggested, for example, the use of texture gradients
and vanishing lines [7], while others proposed the
use of shading gradients, e.g., [9], [16], [4]. Since
then several different computational models based
on these mechanisms have been proposed. These
techniques differ in the assumptions made about
the scene appearance and structure, the types of
measurements used, and the computational methods
employed for estimating shape or pose.

Feature-based techniques use elementary geomet-
ric features (points, lines, circles) and additional
assumptions (orthogonality, co-planarity, eccentric-
ity) to estimate the projective mapping between
the world and the image plane, e.g., [1], [12].
These methods are most applicable when the desired
features are easily extracted from the image.

The class of techniques termed “shape from
texture” have also been popular, particularly when
explicit features are not readily available in an
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image [10]. One class of techniques directly use
filtered outputs of the image intensities. As with
the feature-based techniques certain assumptions are
made regarding the spatial texture properties. The
most standard assumption is one of homogeneity.
With this assumption, the 3-D structure is esti-
mated by first measuring local deformations of the
texture, and then explicitly parameterizing them in
terms of surface slant and tilt. In this setting both
orthographic and perspective projections models
have been considered, e.g., [19], [5]. Additional
assumptions of isotropy, e.g., [6] and symmetry
can also be made. In these cases the observed
violation of the assumed statistical properties of
texture elements, characterized by their gradient
orientations, is used for estimating surface orien-
tation. Frequency-based methods have also been
extensively explored. These techniques explicitly
model the effects of perspective projection on the
frequency or phase of an image. The estimation
stage typically employs measurements of instanta-
neous frequency [22], [23], model-based measure-
ments of instantaneous phase [17], chirplets [14], or
wavelets [8].

In this paper, we extend the frequency-based
techniques by exploiting the fact that perspective
projection introduces higher-order frequency cor-
relations (beyond second-order). Like all texture-
based techniques we make an assumption regarding
the underlying texture. In our case, it is assumed that
the texture has random phase. Shown in Fig. 1, for
example, are several examples of texture with and
without random phase – loosely speaking, random
phase textures are those that do not contain spatially
correlated or structured patterns. Under this assump-
tion, we then show that when a textured plane is
imaged under perspective projection, the resulting
image contains third-order frequency correlations.
The correlations are due to the non-linearities intro-
duced by perspective projection. These correlations,
measured using tools from polyspectral analysis,
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Fig. 1. Examples of texture with non-random (left) and random
(right) phase.

are minimized to yield the orientation of the plane.
This technique uses a similar approach as described
in our earlier work, where we showed that non-
linearities introduced by gamma correction and lens
distortion could be blindly estimated and corrected
for in the absence of any calibration information [2],
[3].

II. PERSPECTIVEPROJECTION INFREQUENCY

DOMAIN

Consider, for purposes of illustration, a simple
one-dimensional signal composed of two frequen-
cies (for simplicity we will assume zero-phase):

f(x) = a1 cos(ω1x) + a2 cos(ω2x). (1)

Consider now this signal placed onto a one-
dimensional plane oriented−45◦ from fronto-
parallel. Assuming a perspective projection model,
this signal can be written analytically as:

g(x) = a1 cos

(

ω1

fx′

z′

)

+ a2 cos

(

ω2

fx′

z′

)

= a1 cos

(

ω1

x′

x′ + 2

)

+ a2 cos

(

ω2

x′

x′ + 2

)

,(2)

where x denotes image coordinates andx′ and z′

denote camera coordinate systems. Without loss of
generality, we assume that the focal lengthf = 1,
and that the plane is a unit length along the optical
axis away from the sensor, which, when coupled
with a−45◦ oriented plane, yields the distance from
the sensor,z′, to be simplyx′ + 2, Fig. 2. Example
fronto-parallel and projected signals are shown in
Fig. 2 (with frequenciesω1 = 8π and ω2 = 32π,
and amplitudesa1 = a2 = 1). Shown below
each signal is the central portion of the magnitude
of each signal’s Fourier transform. Note that the
original signal has exactly two frequencies (the
Fourier magnitude is symmetric about its origin),
and the projected signal contains a multitude of
frequencies. Of particular interest to us are the
frequency correlations introduced by the non-linear
perspective projection. While in this simple example
the power spectrum may reveal these correlations,
when presented with more complex signals these
correlations are less likely to be so evident. As in
our previous work [2], [3] we turn to measuring
higher-order correlations in the frequency domain.
Specifically, we will show empirically that higher-
order correlations between triples of frequencies -
pairs of frequencies and their sum - are propor-
tional to the amount of distortion introduced by
perspective projection. We first discuss how these
higher-order correlations are measured, and then
show how the minimization of these correlations
yields an estimate of surface orientation.

III. B ISPECTRAL ANALYSIS

Consider a stochastic one-dimensional signal
f(x), and its Fourier transform:

F (ω) =

∞
∑

k=−∞

f(k)e−iωk. (3)
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Fig. 2. Shown in the left column is a signal composed of two
frequencies (top) and the central portion of the magnitude of its
Fourier transform (bottom). Shown in the right column is thesame
signal placed onto a 1-D plane rotated−45

◦ from fronto-parallel and
projected under perspective projection. Note how this signal contains
a multitude of frequencies. Shown below is the camera imaging
geometry.

It is common practice to use the power spectrum to
estimate second-order correlations:

P (ω) = E {F (ω)F ∗(ω)} , (4)

where E{·} is the expected value operator, and
∗ denotes complex conjugate. However the power
spectrum is blind to higher-order correlations intro-
duced by non-linearities such as perspective projec-
tion. These correlations can however be estimated
with higher-order spectra (e.g., [11], [15], [25]).
For example the bispectrum estimates third-order
correlations and is defined as:

B(ω1, ω2) = E {F (ω1)F (ω2)F
∗(ω1 + ω2)} . (5)

Note that unlike the power spectrum the bispectrum
of a real signal is complex-valued. The bispectrum
measures the statistical dependence between fre-
quency triples, (e.g.,[ω1, ω1, 2ω1] or [ω1, ω2, ω1 +
ω2]). Specifically, if a triple of frequencies have
independent phases, then the statistical averaging

by the expected value operator will cause the bis-
pectrum to vanish. If, on the other hand, the triple
of frequencies are non-linearly coupled, then the
phases will be correlated and thus the statistical av-
eraging will not cause the bispectrum to vanish. As
a result, non-linearities can be revealed by analyzing
the magnitude of the bispectrum.

If it is assumed that the signalf(x) is ergodic,
then the bispectrum can be estimated by dividing
f(x) into N (possibly overlapping) segments, com-
puting Fourier transforms of each segment, and then
averaging the individual estimates:

B̂(ω1, ω2) =
1

N

N
∑

k=1

Fk(ω1)Fk(ω2)F
∗

k (ω1+ω2), (6)

where Fk(·) denotes the Fourier transform of the
kth segment. This arithmetic average estimator is
unbiased and of minimum variance. However, it
has the undesired property that its variance at each
bi-frequency (ω1, ω2) depends onP (ω1), P (ω2),
and P (ω1 + ω2) (see e.g., [11]). We desire an
estimator whose variance is independent of the bi-
frequency. To this end, we employ the bicoherence,
a normalized bispectrum, defined as:

b2(ω1, ω2) =
|B(ω1, ω2)|

2

E{|F (ω1)F (ω2)|2}E{|F (ω1 + ω2)|2}
.

(7)
It is straightforward to show using the Schwartz
inequality that this quantity is guaranteed to have
values in the range[0, 1]. As with the bispectrum,
the bicoherence can be estimated as:

b̂(ω1, ω2) =
| 1

N

∑

k Fk(ω1)Fk(ω2)F
∗

k (ω1 + ω2)|
√

1

N

∑

k |Fk(ω1)Fk(ω2)|2
1

N

∑

k |Fk(ω1 + ω2)|2
.

(8)
Note that the bicoherence is now a real-valued
quantity. The bicoherence can be averaged across
all frequencies to obtain a measure of overall cor-
relation:

1

N2

N/2
∑

ω1=−N/2

N/2
∑

ω2=−N/2

b̂

(

2πω1

N
,
2πω2

N

)

. (9)

This quantity is employed throughout this paper as
a measure of higher-order correlations. In closing,
we note that the bicoherence is invariant to linear
transformation, thus making it applicable to a wide
range of imaging conditions (e.g., blurring or scal-
ing).
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IV. ESTIMATING SURFACE ORIENTATION

The intuition behind our approach for estimating
surface orientation is as follows. If a texture on
a fronto-parallel plane has, as we assume, random
phase, then the statistical averaging by the expected
value operator will cause the bispectrum to vanish,
Equation (5). If, on the other hand, the plane is
slanted from fronto-parallel, then the non-linear
perspective projection will cause phase coupling
between the frequencies, and the statistical averag-
ing will not cause the bispectrum to vanish. We
will show empirically that the magnitude of the
bispectrum is proportional to the deviation of the
plane from fronto-parallel, and that the slant can
therefore be estimated by minimizing the magnitude
of the bispectrum.

We first derive an algorithm for estimating surface
orientation for one-dimensional planes and then
show how this algorithm can be extended to estimate
the surface orientation of two-dimensional planes.

A. Synthetic Signals

Fractal signals were synthesized from a sum of
sinusoids with amplitudes,ak = 1/k, frequencies,
ωk = 2kπ, and random phases,φk ∈ [−π, π], as
follows:

f(x) =

n
∑

k=1

ak cos(ωkx + φk), (10)

with n = 512, and x ∈ [−1, 1), and where the
length of the signal is2n. The perspective projection
of such a signal from an oriented one-dimensional
plane (by an amountθ) can be expressed analyt-
ically. Without loss of generality, we assume that
the plane is a unit length away from the sensor and
that the focal length is one. The projected signal,
g(x), is synthesized directly as follows:

g(x) =

n
∑

k=1

ak cos

(

ωk
x′

z′
+ φk

)

, (11)

where,
[

x′

z′

]

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

x
0

]

+

[

0
2

]

, (12)

with x defined as above. Signals were synthesized
in this manner to avoid possible interpolation arti-
facts that would be introduced by standard warping
techniques.

−50

−25

0

25

50

−50 −40 −30 −20 −10 0 10 20 30 40 50

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Orientation (deg)

M
ea

n 
B

ic
oh

er
en

ce

Fig. 3. Signals synthesized from a 1-D plane at several different
orientations. Shown above are, from left to right, the 1-D plane, the
projected signal, and the bicoherence of this signal. Shownbelow
is the mean bicoherence, Equation (9), as a function of a fullrange
of orientations. The filled circles correspond to the results from a
perspective projection model, and the open circles to the same signal
projected an orthographic projection. Note that under perspective
projection, the mean bicoherence generally increases proportional to
the deviation of the plane from horizontal (0

◦).
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Shown in Fig. 3 is an example signal synthesized
from a 1-D plane oriented at−50◦,−25◦, 0◦, 25◦,
and50◦. Shown in the right-most column of Fig. 3 is
the estimated bicoherence - the bicoherence should
be read similar to a 2-D Fourier transform with the
origin in the center and the horizontal and verti-
cal axes corresponding to frequenciesω1 and ω2,
respectively. Note the increase in overall magnitude
as the plane deviates from fronto-parallel. Shown in
the bottom panel of Fig. 3 is the mean bicoherence,
Equation (9), as a function of a full range of orien-
tations (filled circles). Also shown, for comparison,
is the mean bicoherence when the fractal signal was
synthesized under orthographic projection (open cir-
cles). Under orthographic projection, there is no sys-
tematic relationship between orientation and mean
bicoherence. Under perspective projection, however,
the mean bicoherence generally increases propor-
tional to the deviation of the plane from horizontal
(0◦). This relationship suggests a simple algorithm
for estimating orientation.

1) select a range of possible orientations;
2) for each orientationθ, assume that the signal

lies on a 1-D plane orientedθ degrees away
from fronto-parallel. Warp the signal under
perspective projection to front-parallel, yield-
ing a new signalfθ;

3) compute the bicoherence, Equation (8), of
fθ. Repeat for all of the orientations in the
selected range;

4) select the value ofθ that minimizes the mean
bicoherence, Equation (9).

In subsequent sections, the range of possible ori-
entations is fixed to be[−30◦, 30◦] in steps of5◦.
The signal is warped using bi-cubic interpolation
and, because of the potential shortening of the signal
due to the warping, only the central512 samples are
used to estimate the bicoherence. The bicoherence
is computed by dividing the signal into overlapping
segments of length64 with an overlap of32. A 64-
point DFT (windowed with a symmetric Hanning
window) is estimated for each zero-mean segment
from which the bicoherence is estimated. These pa-
rameters were determined empirically, but in general
we find that the results are not particularly sensitive
to their choice. The value ofθ that minimizes
the mean bicoherence is taken to be the minimum
of a second-order polynomial fit to the estimates
across all orientations (this was done to yield more

reliable estimates in the face of potentially spurious
estimates). And finally, estimates at either end of
the orientation range,−30◦ or 30◦, are discarded as
outliers.

In our current MatLab implementation, and run-
ning on a 3GHz processor, the algorithm takes
approximately0.6 seconds to process a single 1024-
length signal.

In the following section we show how this algo-
rithm can be extended to estimate the orientation
of two-dimensional planar surfaces, and show the
efficacy of this algorithm on synthetic and natural
images.

B. Synthetic Images

Similar to the synthetic signals of the previous
section, fractal images were synthesized from a
sum of two-dimensional sinusoids with amplitudes,
ak = 1/k, frequencies,ωk = 2kπ, and random
orientations,θk ∈ [−π, π], and random phases,
φk ∈ [−π, π], as follows:

f(x, y) =

n
∑

k=1

ak cos (ωk[cos(θk)x + sin(θk)y] + φk) ,(13)

where n = 512, x ∈ [−1, 1), y ∈ [−1, 1), and
where the image is of size2n × 2n. As before,
the perspective projection of such an image from
an oriented two-dimensional plane (by an amount
θx and θy) can be expressed analytically. Without
loss of generality, we assume that the plane is
a unit length away from the sensor and that the
focal length is one. The projected image,g(x, y),
is synthesized as follows:

g(x, y) =

n
∑

k=1

ak cos

(

ωk

[

cos(θk)
x′

z′
+ sin(θk)

y′

z′

]

+ φk

)

(14)

where,




x′

y′

z′



 = RyRx





x
y
0



 +





0
0
2



 , (15)

with x and y defined as above, and where the
rotation matrices are defined as:

Rx =





1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)



 (16)

Ry =





cos(θy) sin(θy) 0
0 1 0

− sin(θy) cos(θy) 0



 (17)
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Fig. 4. Synthesized images from a 2-D plane rotated about vertical
by −50

◦, 0
◦, and50

◦.
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Fig. 5. Shown are the estimation results from syntheticallygenerated
images. Each data point corresponds to the average estimatefrom
ten independently synthesized images (five of which correspond to
estimating orientation about vertical, and five about horizontal).

Shown in Fig. 4 are example images from a plane
rotated about vertical by−50◦, 0◦, and50◦.

In order to estimate the orientation about the ver-
tical axis we independently estimate the orientation
of each horizontal scan line, using the algorithm
from the previous section, and average the results
across the entire image. Similarly, in order to esti-
mate the orientation about the horizontal axis we av-
erage the estimates from each vertical scan line. It is
possible to perform a single two-dimensional search
instead of the pair of one-dimensional searches. This
would, of course, be more computationally demand-
ing, and we have found that these two approaches
yield very similar results.

Shown in Fig. 5 are the results of estimating
the orientation from synthetically generated images
rotated about either the vertical or horizontal axis.
Each data point corresponds to the average estimate
from ten independently synthesized images (five of
which correspond to estimating orientation about
vertical, and five about horizontal - these were aver-

-30 -15 0 15 30
-30 -28.6 -30.9 -32.9 -15.1 -34.7 -0.9 -32.0 16.3 -29.0 33.6
-15 -13.3 -31.1 -15.2 -14.4 -14.7 -1.0 -14.5 15.4 -13.1 33.7
0 0.7 -31.1 0.9 -14.0 1.0 -1.0 0.7 15.2 1.0 34.1
15 13.1 -30.5 13.9 -14.6 14.2 -1.1 14.2 15.4 13.4 34.2
30 26.9 -30.9 29.0 -15.0 30.8 -1.0 29.8 15.8 27.0 33.2

TABLE I

SHOWN ARE THE ESTIMATION RESULTS(IN DEGREES) FROM

SYNTHETICALLY GENERATED IMAGES. EACH ROW/COLUMN

HEADING CORRESPONDS TO THE ACTUAL HORIZONTAL/VERTICAL

ORIENTATION, AND EACH ENTRY CORRESPONDS TO THE

HORIZONTAL/VERTICAL ESTIMATE, AVERAGED ACROSS TEN

INDEPENDENTLY SYNTHESIZED IMAGES.

aged together since there were no significant differ-
ences between their estimates). Note that in all cases
the estimated orientation is approximately one-half
of the actual orientation (a fitted line yields a slope
of 0.4734 and intercept of0.0028). This bias in
the estimation is due to the correlations introduced
by the interpolation artifacts from warping each
scan line prior to estimating the bicoherence [18]
(bi-cubic interpolation was used in the warping).
Since this warping is performed in the same way
regardless of the underlying signal/image, the bias
is consistent and can therefore be calibrated for.

In the results of Fig. 5 the synthetically generated
images were rotated either about vertical or hori-
zontal. In practice, of course, it is necessary to si-
multaneously measure both orientations. A full two-
dimensional search over both orientations would be
computationally costly. We have found, fortunately,
that each orientation can be computed (as above)
independent of one another. Shown in Fig. I are the
results of simultaneously estimating both vertical
and horizontal orientations. These results were av-
eraged across ten independently synthesized images
and passed through the calibration from Fig. 5.
Across all orientations, the average estimation error
is 1.4◦ with a standard deviation of0.9◦, and a
maximum error of4.7◦.

In our current MatLab implementation, and run-
ning on a 3GHz processor, the algorithm takes
approximately19 minutes to process an image of
size1024 × 1024 pixels.

C. Noise Sensitivity

We tested the sensitivity of our algorithm to
additive noise. Noise was added to a synthetic image
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Fig. 6. Shown on the left is the original perspectively distorted
image. Shown on the right is the image rectified by the estimated
surface orientation. The bottom panel demonstrates a failure of our
algorithm.

with a horizontal and vertical orientation of−15◦

and 0◦, Fig. 4. Uniform white noise, ranging from
15dB to 40dB, was added to the synthetic image.
Here we report on the errors in estimating the hor-
izontal orientation averaged over ten independently
synthesized images. At noise levels of40dB, 35dB,
30dB, 25dB, 20dB, and 15dB, the averaged esti-
mates were−15.0, −15.0, −14.5, −11.8, −8.8, and
−4.5, respectively. Note the graceful degradation
as the signal-to-noise ratio (SNR) decreases. At
low SNR, the additive noise, with random phase,
dominates and the image begins to appear as fronto-
parallel. The estimation is, nevertheless, reasonably
robust in the presence of noise.

D. Natural Images

Shown in the top four panels of Fig. 6 are
images of a carpet, grass, dirt road and stones (left).
Also shown are the rectified images after correcting
for the estimated horizontal orientation (right). The
estimation was identical to that described in the
previous section with all of the parameters of the
algorithm held fixed. A small planar calibration
target of known geometry was placed in each scene
and used to determine ground-truth as described
in [24]. With this technique, the actual orientation
of each planar surface about the horizontal axis is
33, 32, 28 and29 degrees, respectively, with a less
than one degree rotation about the vertical axis. The
estimated orientations using our bispectral method
was28, 33, 25 and26 degrees, for an average error
of 3 degrees. Note that the portion of the image
containing the calibration target was not used in the
estimation.

In the bottom panel of Fig. 6 is an example
of where our algorithm fails to accurately estimate
orientation. The reason for this failure is that the
basic assumption of random phase, Section III, is
violated in the periodic brick pattern. We verified
this by generating synthetic images whose phases
were correlated – the resulting estimation of ori-
entation degraded as a function of the amount of
correlation.

V. D ISCUSSION

We have presented a direct method for estimating
the orientation of a plane from a single view un-
der perspective projection. This technique exploits
higher-order correlations in the frequency domain
that are introduced by perspective projection. These
correlations, when minimized, yield the plane’s ori-
entation.

Our proposed method adds to an existing body
of literature in shape from texture. This technique
has the advantage that it is applicable to images in
which geometric features are not easily extracted.
Like all single-view techniques, we must make some
assumption regarding the underlying planar texture -
in our case, we make an assumption that the texture
has random phase. Specifically, if a texture on a
fronto-parallel plane has random phase, then the
statistical averaging by the expected value operator
will cause the bispectrum to vanish. If the plane is
slanted from fronto-parallel, however, the non-linear
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perspective projection will cause phase coupling
between the frequencies, and the averaging will not
cause the bispectrum to vanish. We have empirically
shown that the magnitude of the bispectrum is
proportional to the deviation of the plane from
fronto-parallel, and that the slant can be estimated
by minimizing the magnitude of the bispectrum.
If the phase of the original texture is not random,
however, then the correlations due to the non-linear
projection are confounded with the correlations due
to the structural properties of the texture. As a
result, the orientation cannot be reliably estimated,
as shown in the bottom panel of Fig. 6.

Our proposed technique builds on earlier work,
where we showed that luminance non-linearities
introduced by gamma correction, and geometric
non-linearities introduced by lens distortion could
be estimated and corrected for in the absence of
any other information or calibration. With the recent
interest in understanding and modeling the statis-
tics of natural images [20], [26], [13], [21], these
techniques may provide interesting insights into the
statistical properties of images.
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