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Abstract. The compositing of two or more people into a single image
is a common form of manipulation. We describe how such composites
can be detected by estimating a camera’s intrinsic parameters from the
image of a person’s eyes. Differences in these parameters across the image
are used as evidence of tampering.
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1 Introduction

From the creation of tabloid covers to
political advertisements to family por-
traits, the compositing of two or more
people into a single image is a com-
mon form of manipulation. Shown on
the right, for example, is a composite
of actress Marilyn Monroe (1926-1962)
and President Abraham Lincoln (1809-
1865).

Over the past few years the field
of digital forensics has emerged to de-
tect various forms of tampering. Foren-
sic techniques have been developed for
detecting cloning [2,13]; splicing [11];
re-sampling artifacts [1, 14]; color filter = P s
array aberrations [15]; disturbances of a Composite of Marllyn MOHI‘OG and
camera’s sensor noise pattern [10]; and Abraham Lincoln (by Jack Harris).
lighting inconsistencies [4, 6, 7]. Here we describe a new forensic technique specif-
ically designed to detect composites of people. This approach estimates a cam-
era’s principal point from the image of a person’s eyes. Inconsistencies in the
principal point are then used as evidence of tampering.

In authentic images, the principal point is near the center of the image.
When a person is translated in the image as part of creating a composite, the
principal point is moved proportionally. Differences in the estimated principal
point across the image can therefore be used as evidence of tampering. Shown in
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Fig. 1. Shown on the left is the projection of two circles (eyes) from a world plane
onto an image plane (blue, solid line), with camera center ¢ and principal point p. Also
shown is a translated image plane (red, dashed line) which is equivalent to translating
the image of the eyes in the original image plane (as shown on the right). Note that
the translation results in the movement of the principal point.

Fig. 1, for example, is the projection of two circles (eyes) from a world plane onto
an image plane. The point ¢ denotes the camera center and the point p denotes
the principal point (the projection of ¢ onto the image plane). Also shown in this
figure is a translated image plane which is equivalent to translating the image
of the eyes in the original image plane. Note that the translation results in the
movement of the principal point away from the image center.

We describe how to estimate a camera’s principal point from the image of
a pair of eyes. We then show how translation in the image plane is equivalent
to a shift of the principal point. Inconsistencies in the principal point across an
image are used as evidence of tampering. We show the efficacy of this approach
on synthetic and real images and visually plausible forgeries.

2 Methods

In general, the mapping between points in 3-D world coordinates to 2-D image
coordinates is described by the projective imaging equation:

z = PX, (1)

where the matrix P is a 3 X 4 projective transform, the vector X represents a
world point in homogeneous coordinates, and the vector @ represents an image
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Fig. 2. A 3-D model of a human eye consisting of two spheres (left) and a synthetic
eye rendered according to the model (right).

point in homogeneous coordinates. If all the world points X are coplanar, then
the world coordinate system can be defined such that the points lie on the Z = 0
plane. In this case, the projective transformation P reduces to a 3 x 3 planar
projective transform H, also known as a homography:

r=HX, (2)

where the world points X and image points x are represented by 2-D homoge-
neous vectors.

We first describe how the homography H can be estimated from an image of
a person’s eyes and show how this transform can be factored into a product of
matrices that embody the camera’s intrinsic and extrinsic parameters. We then
show how translation in the image plane can be detected from inconsistencies in
the estimated camera’s intrinsic parameters.

2.1 Homography Estimation

The homography H between points on a world plane and its projection on the
image plane can be estimated if there is known geometry in the world: parallel
lines, orthogonal lines, regular polygons, or circles [3,9]. We will focus primarily
on the known geometry of a pair of eyes (circles) to estimate the homography.

A simple 3-D model for an eye consists of two spheres [8]. The larger sphere,
with radius r; = 11.5 mm, represents the sclera and the smaller sphere, with
radius ro = 7.8 mm, represents the cornea, Fig. 2. The centers of the spheres are
displaced by a distance d = 4.7 mm [8]. The limbus, the boundary between the
iris and the sclera, is defined by the intersection of two spheres — a circle with
radius p = 5.8 mm.

With the assumption that the two circular limbi are planar, the homogra-
phy H, Equation (2), can be estimated from a single image of a pair of eyes.
Intuitively, the limbi will be imaged as ellipses (except when the eyes are directly
facing the camera) and the distortion of the ellipses away from circles will be
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related to the pose and position of the eyes relative to the camera. We therefore
seek the transform that aligns the image of the limbi to circles.

Points on the limbus in world coordinates satisfy the following implicit equa-
tion of a circle:

f(X;a)= (X, —C1)* + (Xo — Co)? =% =0, (3)

where oo = (C7 Co 7 )T denotes the circle center and radius. Consider a collec-
tion of points, X;, ¢ = 1,...,m, each of which satisfy Equation (3). Under an
ideal pinhole camera model, the world point X; maps to the image point x; as:

; — HXi, (4)

where H is the 3 x 3 homography.

The estimation of H can be formulated in an orthogonal distance fitting
framework. Let E(-) be an error function on the parameter vector o and the
unknown homography H:

2

; ()

m
E(a,H) = Z min Ha:l -HX

— X

=1
where X is on the circle parametrized by a. This error embodies the sum of the
squared errors between the data, x;, and the closest point on the model, X. One
circle provides five constraints on the nine unknowns of H. In order to estimate
H, at least one other circle is required. With two circles, the above error function
takes the form:

E(auy, Hi, 09, Hy) = E(ou, Hy) + E(o, Ha)
+w (|H1 — Ha|]* + (r1 —5.8)* + (ro — 5.8)%),  (6)

where w is a scalar weighting factor. The first two terms are the individual
error functions, Equation (5), for the two circles. The remaining terms constrain
the transforms for both circles to be the same,! and the radius to be equal
to 5.8 mm. This error function is minimized using non-linear least squares via
the Levenberg-Marquardt iteration [6]. When the two circles are co-planar with
respect to the camera plane, the eyes will be imaged as circles regardless of where
they are in the world coordinate system. In this case, the principal point cannot
be uniquely determined, and is assumed to be at the image center.

2.2 Camera Calibration

Once estimated, the homography H can be decomposed in terms of its intrinsic
and extrinsic camera parameters [16, 18]. The intrinsic parameters consist of the
focal length f, principal point (c1, ¢2), skew o, and aspect ratio . The extrinsic
parameters consist of a rotation matrix R and translation vector ¢ that define

! The notation H; expresses the matrix H; as a vector.
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the transformation between the world and camera coordinate systems. Since the
world points lie on a single plane, H can be decomposed in terms of the intrinsic
and extrinsic parameters [3] as:

H:AK(T‘l T2 t), (7)
where )\ is a scale factor and the 3 x 3 intrinsic matrix K is:
af o ¢
K= 0 f e . (8)
0 01

For simplicity, we will assume that the skew (o) is zero and that the aspect ratio
() is 1. Under these assumptions, the matrix K is:

f0ca
K=|0fc|. 9)
00 1

The camera’s intrinsic components can be estimated by decomposing H ac-
cording to Equation (7). It is straightforward to show that that ry = %K‘lhl
and r9 = %K ~1hy where hqy and hs are the first two columns of the matrix H.
The constraint that ry and 7y are orthogonal (they are columns of a rotation
matrix) and have the same norm (unknown due to the scale factor ) yields two
constraints on the unknown matrix K:

riry =hl (K"K )hy =0, (10)
riry —riry =hT(K-TKYh) — hl (K"K 1)hy = 0. (11)
With only two constraints, it is possible to estimate the principal point (¢, ¢2)

—_—

or the focal length f, but not both [18]. As such, we will assume a known foca
length.

For notational simplicity we solve for the components of Q = K- TK!,
which contain the desired coordinates of the principal point and the assumed
known focal length:

1 1 0 —C1
Q= 7 0 1 —cy . (12)
—c1 —cy A +c3+ f?

In terms of @, the first constraint, Equation (10), takes the form:
hiho + hahs — (h2h7 + h1h8)61 — (h5h7 + h4hg)02
+hrhs(ci + 3+ ) =0,  (13)

where h; is the i*" element of the matrix H in row-major order. Note that this
constraint is a second-order polynomial in the coordinates of the principal point,
which can be factored as follows:

(c1 — 1)’ + (c2 — B1)* =4, (14)
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where:
oy = (h2h7 + hlhg)/(2h7h8)7 (15)
B1 = (hshr + hahg)/(2h7hs), (16)
7 =ai 4+ 87 — 2 = (hiha + hahs)/(hrhs). (17)

Similarly, the second constraint, Equation (11), takes the form:

h% + hi + Q(hghg — h1h7)01 + 2(h5h8 — h4h7)02 — h% - hg
+ (07 = h)(cf + 3+ %) =0, (18)

or,
(c1 — a2)? + (c2 — (2)* = 3, (19)

where:
g = (h1h7 — hghg)/(h% — hg), (20)
Bs = (hah7 — hshs)/(h% — h3), (21)
Vs = a3+ B3 — (b + hi—h3 — h3)/(hi - h3) — 2. (22)

Both constraints, Equations (14) and (19) are circles in the desired coordinates
of the principal point ¢; and co, and the solution is the intersection of the two
circles.?

For certain homographies, however, this solution can be numerically unsta-
ble. For example, if hy ~ 0 or hg = 0, the first constraint becomes numerically
unstable. Similarly, if hy & hg, the second constraint becomes unstable. In or-
der to avoid these instabilities, an error function with a regularization term is
introduced.

We start with the following error function to be minimized:

E(c1,c2) = g1(c1,¢2)* + galer, c2)?, (23)

where ¢1(c1,c2) and ga(cq,ca) are the constraints on the principal point given
in Equations (13) and (18), respectively. To avoid numerical instabilities, a reg-
ularization term is added to penalize deviations of the principal point from the
image center (0,0) (in normalized coordinates). This augmented error function
takes the form:

E(c1,¢2) = gi(c1,2)* + ga(e1,e2)? + A(c] + ¢3), (24)

where A is a scalar weighting factor. This error function is a nonlinear least-
squares problem, which can be minimized using a Levenberg-Marquardt itera-
tion. The image center (0,0) is used as the initial condition for the iteration.

2 In fact, there can be zero, one, two or an infinite number of real solutions depending
on the configuration of the circles.
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2.3 Translation
The translation of two circles (eyes) in the image is equivalent to translating

the camera’s principal point. In homogeneous coordinates, translations are rep-
resented by multiplication with a translation matrix 7"

where:
10 d;
T=[(014d |, (26)
00 1

and the amount of translation is (di, d2). The mapping from world X to (trans-
lated) image coordinates y is:

y=THX
—ATK (1172 t) X
:AK(rl rat) X, (27)

where

A f 0 ¢ +d;
K = 0 f co +doy . (28)
00 1

Therefore, translation in image coordinates is equivalent to translating the prin-
cipal point. Assuming the principal point in an authentic image is near the
origin [17], large deviations from the image center, or inconsistencies in the es-
timated principal point across the image, can be used as evidence of tampering.

3 Results

We tested our technique for estimating the principal point from images of eyes
on synthetically generated images, real images, and visually plausible forgeries.
In all of these results, the principal point was estimated by minimizing Equa-
tion (24). Because of the regularization term used in this solution, we found
that the estimated principal point was biased towards the image center (0,0).
For purely aesthetic purposes, we rescaled the norm, n, of the estimated prin-
cipal point by 3n'7, where the form of this correction was chosen empirically.
Throughout, we will refer to normalized image coordinates where the image cen-
ter is (0,0) and the horizontal and vertical coordinates are normalized so that
the maximum of the dimensions is in the range [—1,1].
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Fig. 3. A 3-D model of a head in two different locations and orientations (left), and a
magnified view of the eyes with the extracted boundaries of the limbi (right).
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Fig. 4. Estimates of the principal point in normalized coordinates for 216 synthetically
generated images, Fig 3. Shown on the left are the unconditioned estimates (A = 0.0)
and on the right are the conditioned estimates (A = 1.0). Note that the conditioning
significantly improves the accuracy of the estimation — the actual principal point is the
origin (0,0). A circle at a threshold of 0.2 units is drawn for reference.
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3.1 Synthetic

Shown in Fig. 3 are two examples of synthetically generated heads rendered
using the pbrt environment [12]. Also shown in this figure is a magnified view
of the eyes whose shape conformed to the model described in Section 2.1. The
eyes were rendered with a full head model to provide a notion of size, though
only the shape of the limbi are used in the subsequent analysis. Each image was
rendered at 2400 x 2400 pixels and the radius of the limbus ranged from 24 to
34 pixels.

In the first set of simulations, the head model was rotated to 8 different
orientations (ranging from —15 to 15 degrees from parallel) and 27 different
locations, for a total of 216 images. Two sample images are shown in Fig. 3.
The elliptical shapes of the limbi in each image were automatically extracted,
Fig. 3. The homography H was estimated as described in the previous section,
with a regularization term A = 0.0 or A = 1.0, Equation (24). The actual
principal point in these synthetically generated images is the image center: (0, 0)
in normalized coordinates.

Shown in the left panel of Fig. 4 are the unconditioned estimates (A =
0.0) and in the right panel are the conditioned estimates (A = 1.0). Note that
the conditioning significantly improves the accuracy of the estimation: without
conditioning 80.6% (174/216) of the estimates are within 0.2 units of the origin
(red circle), and with conditioning 99.1% (214/216) are within 0.2 units of the
origin.

In the second set of simulations, the head model was positioned at the center
of the world coordinate system and rotated to 252 different orientations. The
rotations ranged from —30 to 30 degrees about each axis. Shown in Fig. 5 are four
sample images. To simulate tampering, the head in each image was translated
to various locations and the principal point was estimated at each location.
Superimposed on the images in Fig. 5 are level curves denoting the deviation of
the estimated principal point from the origin as a function of spatial position
in the image. The inner curve denotes a distance of 0.2, and each subsequent
curve denotes an increment of 0.1. With a threshold of 0.2, translations of the
head outside of the inner-most curve can be detected as fake. Note that the level
curves are typically asymmetric and depend on the orientation of the head.

In the third set of simulations, the 252 images from the previous experiment
were translated in the image by random amounts such that the displacement
was greater than 0.2 units in normalized coordinates (240 pixels in the original
2400 x 2400 image). Shown in the left panel of Fig. 6 are the estimated principal
points for the original 252 images, and in the right panel are the estimated results
for 1260 translated images. In both cases, the conditioned estimator (A = 1.0)
was used. Of the 252 authentic images, 99.2% had an estimated principal point
less than 0.2 units from the origin, and of the 1260 translated images, 94.6% had
an estimated principal point greater than 0.2 units from the origin.
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Fig. 5. A 3-D model of a head at four different orientations. The superimposed level
curves show the deviation of the estimated principal point from the origin as a function
of spatial position in the image.
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Fig. 6. Estimates of the principal point in normalized coordinates for 252 authentic
images (left) and 1260 doctored images (right), Fig. 5. The actual principal point is
the origin (0, 0), and a circle at a threshold of 0.2 units is drawn for reference.
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Fig. 7. Shown in each panel are authentic images with superimposed level curves show-
ing the deviation of the estimated principal point from the true principal point as a
function of spatial position in the image.

3.2 Real

Shown in Fig. 7 are four of 15 images taken with a Nikon D200 10-megapixel
camera set to record at the highest quality JPEG format. At a radius of 21
pixels, the size of the eyes in these images was slightly smaller than in the above
simulations. The principal point was estimated using the conditioned estimator,
Equation (24), with A = 1.0. The average deviation from the calibrated principal
point® was 0.15 units (in normalized coordinates) with a maximum distance of
0.24, a minimum distance of 0.05 and a standard deviation of 0.06 units. The
eyes in each of the four images were translated to various locations in the image
to simulate tampering. The level curves in Fig. 7 show the deviation of the
estimated principal point from the true principal point, as a function of spatial
position in the image. With a threshold of 0.2 units, translations in the image
outside of the innermost curve are classified as fake.

3 The camera was calibrated to determine the actual principal point which at
(—0.028,0.022) is close to the origin. The Camera Calibration Toolbox for Mat-
lab http://www.vision.caltech.edu/bouguetj/calib_doc was used for this cali-
bration.
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Fig. 8. Four authentic images. In each image, the ‘4’ marker denotes the image center
(0,0), and the dots denote the estimated principal points from each person (the eyes
from only three people in the top left image were visible). The circle with radius 0.2
units is centered at the average of the principal points.

Shown in Fig. 8 are four images acquired from Flickr, a popular image shar-
ing website. The images were captured with different cameras at different focal
lengths. The focal length was extracted from the metadata in the image and
used to estimate the principal point. In each image, the ‘4’ marker denotes the
image center (0,0) and the white dots denote the principal points estimated from
different people. The circle in each image has a radius of 0.2 and is centered at
the average of the principal points. Note that in each of the four images, the
estimated principal points fall within the circle, indicating relative agreement in
the positions of the camera’s principal point.

Since the homography can be estimated from other known geometries [5],
the estimation of the principal point is not limited to images of the eyes. Shown
in Fig. 9, for example, are results from a car’s wheels, and the known geometry
of a stop sign.
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Fig. 9. Shown in each panel are authentic images with superimposed level curves show-
ing the deviation of the estimated principal point from the true principal point as a
function of spatial position in the image. The principal point for the left image was de-
termined from the left-most car’s wheels, and for the right image, the known geometry
of the stop sign.

3.3 Forgeries

We created two forgeries by combining images from Fig. 7 and Fig. 8. As shown
in Fig. 10, the principal points estimated from the forged heads are inconsistent
with the other principal point(s) in the image.

4 Discussion

When creating a composite of two or more people it is often necessary to move
a person in the image relative to their position in the original image. When
done well, this manipulation is rarely visually obvious. We have shown how
to detect such manipulations by estimating the camera’s principal point (the
projection of the camera center onto the image plane) from the image of a
person’s eyes. This approach relies on estimating the transformation from world
to image coordinates and then factoring this transformation into a product of
matrices containing intrinsic and extrinsic camera parameters. With a known
focal length, the principal point can be determined from the intrinsic matrix.
Inconsistencies in the estimated principal point can then be used as evidence of
tampering.

We have shown the efficacy of this technique on simulated and real images.
The major sensitivity with this technique is in extracting the elliptical boundary
of the eye. This process will be particularly difficult for low-resolution images,
but with a radius of 20 — 30 pixels reasonably accurate estimates can be made
from a person’s eyes.

We expect this technique, in conjunction with a growing body of forensic
tools, to be effective in exposing digital forgeries.
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Fig. 10. Two forgeries made by combining images from Fig. 7 and Fig. 8. The ‘+’
marker denotes the image center (0,0), and the dots denote the estimated principal
points from each person. The circle with radius 0.2 units is centered at the average of
the principal points. Notice that the estimated principal points are inconsistent with
one another.

Acknowledgments

This work was supported by a Guggenheim Fellowship, a gift from Adobe Sys-
tems, Inc., a gift from Microsoft, Inc., a grant from the United States Air Force
(FA8750-06-C-0011), and by the Institute for Security Technology Studies at
Dartmouth College under grant 2005-DD-BX-1091 from the Bureau of Justice
Assistance and Award Number 2006-CS-001-000001 from the U.S. Department
of Homeland Security. Points of view or opinions in this document are those
of the author and do not represent the official position or policies of the U.S.
Department of Justice, the U.S. Department of Homeland Security, or any other
Sponsor.

References

1. Ismail Avabas, Seving Bayram, Nasir Memon, Biilent Sankur, and Mahalingam
Ramkumar. A classifier design for detecting image manipulations. In 2004 Inter-
national Conference on Image Processing, ICIP ’04, volume 4, pages 2645—2648,
2004.

2. Jessica Fridrich, David Soukal, and Jan Luk&as. Detection of copy-move forgery
in digital images. In Proceedings of Digital Forensic Research Workshop, August
2003.

3. Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2004.

4. Micah K. Johnson and Hany Farid. Exposing digital forgeries by detecting incon-
sistencies in lighting. In ACM Multimedia and Security Workshop, 2005.

5. Micah K. Johnson and Hany Farid. Metric measurements on a plane from a single
image. Technical Report TR2006-579, Department of Computer Science, Dart-
mouth College, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

18.

Detecting Photographic Composites of People 15

Micah K. Johnson and Hany Farid. Exposing digital forgeries through specular
highlights on the eye. In 9th International Workshop on Information Hiding, Saint
Malo, France, 2007.

Micah K. Johnson and Hany Farid. Exposing digital forgeries in complex lighting
environments. IEEE Transactions on Information Forensics and Security, 2007 (in
press).

Aaron Lefohn, Richard Caruso, Erik Reinhard, Brian Budge, and Peter Shirley.
An ocularist’s approach to human iris synthesis. IEEE Computer Graphics and
Applications, 23(6):70-75, 2003.

David Liebowitz and Andrew Zisserman. Metric rectification for perspective images
of planes. In Computer Vision and Pattern Recognition, pages 482-488, 1998.
Jan Lukés, Jessica Fridrich, and Miroslav Goljan. Detecting digital image forgeries
using sensor pattern noise. In Proceedings of the SPIE, volume 6072, 2006.
Tian-Tsong Ng and Shih-Fu Chang. A model for image splicing. In IEEE Inter-
national Conference on Image Processing (ICIP), Singapore, October 2004.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, 2004.

Alin C. Popescu and Hany Farid. Exposing digital forgeries by detecting duplicated
image regions. Technical Report TR2004-515, Department of Computer Science,
Dartmouth College, 2004.

Alin C. Popescu and Hany Farid. Exposing digital forgeries by detecting traces of
re-sampling. IEEE Transactions on Signal Processing, 53(2):758-767, 2005.

Alin C. Popescu and Hany Farid. Exposing digital forgeries in color filter array
interpolated images. IEEE Transactions on Signal Processing, 53(10):3948-3959,
2005.

Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf cameras and lenses. IEEE Journal of
Robotics and Automation, RA-3(4):323-344, August 1987.

Reg G. Willson and Steven A. Shafer. What is the center of the image? Journal
of the Optical Society of America A, 11(11):2946-2955, November 1994.
Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.



