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Abstract

We describe a novel formulation of the range recovery problem based on computation of the differen-
tial variation in image intensities with respect to changes in camera position. This method uses a single
stationary camera and a pair of calibrated optical masks to directly measure this differential quantity.
We also describe a variant based on changes in aperture size. The subsequent computation of the range
image involves simple arithmetic operations, and is suitable for real-time implementation. We present
the theory of this technique and show results from a prototype camera which we have constructed.
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1 Introduction

Visual images are formed via the projection of light
from the three-dimensional world onto a two di-
mensional sensor. In an idealized pinhole camera,
all points lying on a ray passing through the pin-
hole will be projected onto the same image posi-
tion. Thus, information about the distance to ob-
jects in the scene (i.e., range) is lost. Range informa-
tion can be recovered by measuring the change in
appearance of the world resulting from a change
in viewing position (i.e., parallax). Traditionally,
this is accomplished via simultaneous measurements
with two cameras at different positions (binocular
stereo), or via sequential measurements collected
from a moving camera (structure from motion).

The recovery of range in these approaches fre-
quently relies on the assumption of brightness con-
stancy [1]: the brightness of the image of a point
in the world is constant when seen from different
viewpoints. Consider the formulation of this as-
sumption in one dimension (the extension to two
dimensions is straightforward). Let f(x; v) describe
the intensity function, as measured through a pin-
hole camera system. The variable v corresponds to
the pinhole position (along an axis perpendicular
to the optical axis). The variable x parameterizes
the position on the sensor. This configuration is
illustrated in Figure 1. According to the assump-
tion, the intensity function f(x; v) is of the form:

f(x; v) = I
�
x� vd

Z(x)

�
; (1)

where d is the distance between the pinhole and
the sensor and Z(x) is the range (distance from the
pinhole to a point in the world). That is, the image
of a point in the world appears at a position that
depends on both the pinhole position (v) and the
range of the point, but always has the same inten-
sity.

For the purpose of recovering range, we are in-
terested in computing the change in the appear-
ance of the world with respect to change in view-
ing position. It is thus natural to consider differ-
ential measurement techniques. Taking the partial
derivative of f(x; v) with respect to viewing posi-
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Figure 1: Geometry for a binocular stereo sys-
tem with pinhole cameras. The variable V

parameterizes the position of the camera pin-
holes. According to the brightness constancy
constraint, the intensity of a point in the world,
as recorded by the two pinhole cameras, should
be the same.

tion, and evaluating at v = 0 gives:

Iv(x) � @f(x;v)
@v jv=0

= � d
Z(x)I

0(x); (2)

where I 0(�) indicates the derivative of I(�) with re-
spect to its argument. Consider next the partial
derivative with respect to the spatial parameter:

Ix(x) � @f(x;v)
@x jv=0

= I 0(x): (3)

Combining these two differential measurements gives:

Iv(x) = � d
Z(x)Ix(x): (4)

Clearly, an estimate of the range,Z(x), can be com-
puted using this equation. With this formulation,
the difficulty typically lies in obtaining an accu-
rate and efficient measurement of the viewpoint
derivative, Iv(x).

Many traditional range algorithms may be framed
in terms of this differential formalism. The view-
point derivatives are typically computed by cap-
turing images from a set of discrete viewpoints, ei-
ther simultaneously (using two or more cameras),
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or sequentially (using a single moving camera). In
the case of binocular stereo (e.g., [2]), Iv(x) is ap-
proximated as the difference of two images taken
from cameras at different viewpoints. Similarly,
differences of consecutive images are often used to
compute viewpoint derivatives for structure from
motion. However, these differences are generally
a poor approximation to the viewpoint derivative.
In addition, these approaches require precise knowl-
edge of the camera position associated with each
image.

In this paper, we describe a technique for direct
measurement of the viewpoint derivative using a
single camera at a fixed location. We begin by de-
scribing the conceptual framework for a simplified
world consisting of a single point-source. These
concepts are then generalized in Section 3, and are
followed by a description of the implementation
and results from a prototype camera.

2 Optical Differentiation

We now show a direct method for the measure-
ment of the required derivatives (Equation (4)) from
a single stationary camera and a pair of optical at-
tenuation masks. Conceptually, this is made possi-
ble by replacing the pinhole camera model with a
more realistic “thin lens” model, in which the cam-
era collects light from a range of viewpoints. This
viewpoint information is lost once the light is im-
aged on the sensor plane. Nonetheless, at the front
of the lens, the information is available. It is pre-
cisely this information that we exploit.

Consider a world consisting of a single point
light source and a lens-based imaging system with
a variable-opacity optical mask, M(u), placed di-
rectly in front of the lens (left side, Figure 2). The
light striking the lens is attenuated by the value
of the optical mask function at that particular spa-
tial location (we assume that the values of such a
mask function are real numbers in the range [0,1],
and that the optical transfer function of the imag-
ing system is constant). With such a configuration,
the image of the point source will be a scaled and

-I  (x) = 1/α M’(x/α)
 v

M’(u)
M(u)

Point Light Source

Optical Mask

Lens

Sensor

Z
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d/dx

I(x) = 1/α M(x/α)

I  (x) = 1/α   M’(x/α)2
x

Figure 2: Illustration of direct differential range
determination for a single point source. Images
of a point light source are formed using two dif-
ferent optical masks, corresponding to the func-
tion M(u) and its derivative, M 0(u). In each
case, the image formed is a scaled and dilated
copy of the mask function (by a factor �). Com-
puting the spatial (image) derivative of the im-
age formed under mask M(u) produces an im-
age that is identical to the image formed under
the derivative mask, M 0(u), except for a scale
factor �. Thus, � may be estimated as the ra-
tio of the two images. Range is then computed
from � using the relationship given in Equa-
tion (6).

dilated version of the optical mask function:

I(x) = 1
�M( x� ); (5)

as illustrated in Figure 2. The scale factor, �, is
a monotonic function of the distance to the point
source, Z , and is easily derived from the imaging
geometry and the lens equation:

� = 1� d
f + d

Z ; (6)

where d is the distance between lens and sensor,
and f is the focal length of the lens.

2.1 Optical Viewpoint Differentiation

In the system shown on the left side of Figure 2,
the effective viewpoint may be altered by translat-
ing the mask, while leaving the lens and sensor
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stationary. For example, consider a mask with a
single pinhole; different views of the world are ob-
tained by sliding the pinhole across the front of the
lens. The generalized image intensity function for
a mask centered at position v is written as:

f(x; v) = 1
�M

� x
� � v

�
; (7)

assuming that the non-zero portion of the mask
does not extend past the edge of the lens.

The differential change in the image with respect
to a change in the mask position is obtained by tak-
ing the derivative of this equation with respect to
the mask position, v, and evaluating at v = 0:

Iv(x) � @
@v f(x; v)jv=0

= � 1
�M

0 � x
�

�
; (8)

where M 0(�) is the derivative of the mask function
M(�) with respect to its argument. Observe that
this equation is of the same general form as Equa-
tion (5). Thus, the derivative with respect to view-
ing position, Iv(x), may be measured directly by imag-
ing with the optical mask M 0(�). The spatial deriva-
tive of I(x) may also be written in terms of M 0(�):

Ix(x) � @
@x f(x; v)jv=0

= 1
�2M

0 � x
�

�
(9)

Combining these two equations gives a relation-
ship between the two derivatives:

Ix(x) = � 1
�Iv(x): (10)

From this relationship, the scaling parameter �
may be computed as the ratio of the spatial deriva-
tive of the image formed through the optical mask
M(u), and the image formed through the deriva-
tive of that optical mask, M 0(u). This computa-
tion is illustrated in Figure 2. The distance to the
point source can subsequently be computed from
� using the monotonic relationship given in Equa-
tion (6). Note that the resulting equation for dis-
tance is identical to that of Equation (4) when d =
f (i.e., when the camera is focused at infinity). In
practice, the mask M 0(u) cannot be directly used
as an attenuation mask, since it contains negative
values. This issue is addressed in Section 5.2.

2.1.1 Least-Squares Solution

The relationship in Equation (10) holds at all im-
age positions, x, within the image. In order to
compute a reliable estimate of the distance to the
point source (and avoid problems with localized
singularities where Ix(x) = 0 in Equation (10)),
information can be combined over image position
using a least-squares estimator (e.g., [2]). Specifi-
cally, an error measure is defined as follows:

E(�) =
X
x2P

(Iv(x) + �Ix(x))
2; (11)

whereP is a set of image positions in a local neigh-
borhood around the origin. This assumes that the
parameter � (and therefore range) is constant over
this neighborhood. Taking the derivative with re-
spect to �, setting equal to zero and solving for �
yields the minimal solution:

� = �

P
x2P Iv(x)Ix(x)P

x2P I
2
x(x)

: (12)

By integrating over a small patch in the image, the
least-squares solution avoids singularities at loca-
tions where the spatial derivative, Ix(x), is zero.
However, since the denominator still contains an
Ix(x) term (integrated over a small image patch),
a singularity still exists when Ix(x) is zero over
the entire image patch. This singularity may be
avoided by considering a maximum a posteriori
(MAP) estimator with a Gaussian prior on � (as
in [3]). For a prior variance of �2, the resulting es-
timate is:

� = �

P
x2P Iv(x)Ix(x)P
x2P [Ix(x)]

2 + �2
: (13)

This algorithm extends to a two-dimensional im-
age plane: we need only consider two-dimensional
masks M(u;w), and the horizontal partial deriva-
tive Mu(u;w) � @M(u;w)=@u. For a more robust
implementation, the vertical partial derivative mask,
Mv(u;w) � @M(u;w)=@w, may also be included.
The least-squares error function becomes:

E(�) =
X

(x;y)2P

[Iu(x; y) + �Ix(x; y)]
2

+[Iw(x; y) + �Iy(x; y)]
2: (14)
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As above, the MAP estimator gives:

� = �

P
(x;y)2P

Iu(x; y)Ix(x; y) + Iw(x; y)Iy(x; y)P
(x;y)2P

[Ix(x; y)]2 + [Iy(x; y)]2 + �2
:(15)

2.2 Optical Aperture Size Differentiation

Here we show a similar technique for estimating
range that is based on the derivative with respect
to aperture size. Discrete versions of this concept
have been studied and are generally called “range
from defocus” (e.g., [4, 5, 6, 7, 8, 9]). The gener-
alized intensity function for a mask with aperture
size A is written as:

f(x;A) = 1
A�M

� x
A�

�
: (16)

The 1
A factor is included to ensure that the changes

in the aperture size do not change the mean inten-
sity of the image.

The differential change in the image with respect
to aperture size may be computed by taking the
derivative of this equation with respect to aperture
size, A, evaluated at A = 1:

IA(x) � @
@A f(x;A)jA=1

= � 1
�M

� x
�

�
� x

�2M
0 � x

�

�
= � 1

�

�
M

� x
�

�
+ x

�M
0 � x

�

��
: (17)

Since this equation is again of the general form of
Equation 5, the derivative with respect to aperture
size, IA(x), may be computed directly by imaging with
the optical mask �(M(u) + uM 0(u)). Similar to the
viewpoint derivative, one can compute a related
image by spatial differentiation. In particular, the
image formed using the optimal mask �uM(u) is:

J(x) = � x
�2
M

�
x
�

�
; (18)

and the spatial derivative of this image is:

Jx(x) = � 1
�2

�
M

�
x
�

�
+ x

�M
0 � x

�

��
; (19)

which is equal to Equation (17) with an additional
factor of �. Thus, the ratio of these two image mea-
surements could be used to compute � (and thus
range).

A particularly interesting choice for a mask func-
tion is a Gaussian:

M(u;A) = 1
A exp

�
� u2

2A2

�
;

for which

IA(x) = 1
�M

00 � x
�

�
(20)

which may be related to the spatial second deriva-
tive:

Ixx(x) = 1
�3M

00 �x
�

�
= 1

�2 IA(x) (21)

Similar relationships are derived in [7, 9]. This
equation may be used to compute the square of
the scaling parameter � as the ratio of a spatial
and aperture size derivative. Again, the important
point is that the derivative with respect to aperture
size is measured directly by imaging through the
appropriate optical mask.

As in the previous section, this formulation can
be extended to 2-D and a least-squares formula-
tion can be used to combine information over spa-
tial location. We write an error function of the
form:

E(�2) =
X

(x;y)2P

�
IA(x; y)� �

2(Ixx(x; y) + Iyy(x; y))
�2
;(22)

and solving for the minimizing �2 gives:

�
2 =

P
(x;y)2P

IA(x; y)[Ixx(x; y) + Iyy(x; y)]P
(x;y)2P

[Ixx(x; y) + Iyy(x; y)]2 + �2
: (23)

There are several notable differences between
this formulation based on aperture size derivatives
and the previous formulation based on viewpoint
derivatives. First, a second-order spatial deriva-
tive is required. Second, the ratio of the aperture
size derivative and spatial derivative is proportional
to the square of the parameter �. As such, only the
absolute value of � can be determined. A second
look at the optical masks reveals why this must be
so. Whereas the viewpoint derivative mask is anti-
symmetric with respect to the center of the lens,
the aperture size derivative mask is symmetric. As
a result, points positioned on opposite sides of the
focal plane will differ by a sign in the case of the
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anti-symmetric mask, but could appear identical
in the case of the symmetric mask. This ambigu-
ity may be eliminated by focusing the camera at
infinity, thus ensuring that � > 0.

3 Range Map Estimation by Optical
Differentiation

Equations (10) and (21) embody the fundamental
relationships used for the optical differential com-
putation of range for a single point light source.
A world consisting of a collection of many such
point sources imaged through an optical mask will
produce an image consisting of a superposition of
scaled and dilated versions of the masks. In par-
ticular, in the case of the viewpoint derivative, an
expression for the image can be written by inte-
grating over the images of the visible points, p, in
the world:

f(x; v) =

Z
dxp

1
�(xp)

M

�
x�xp
�(xp)

� v

�
L(xp); (24)

where the integral is performed over the variable
xp, the position in the sensor of a point p projected
through the center of the lens. The intensity of
the world point p is denoted as L(xp), and �(xp)
is monotonically related to the distance to p (as in
Equation (6)). Note that each point source is as-
sumed to produce a uniform light intensity across
the optical mask (i.e., brightness constancy). Again,
consider the derivatives of f(x; v) with respect to
viewing position, v, and image position, x, evalu-
ated at v = 0:

Iv(x) � @
@v
f(x; v) jv=0

= �

Z
dxp

1
�(xp)

M
0

�
x�xp
�(xp)

�
L(xp); (25)

and

Ix(x) � @
@x
f(x; v) jv=0

=

Z
dxp

1
�2(xp)

M
0

�
x�xp
�(xp)

�
L(xp): (26)

An exact solution for �(xp) is nontrivial, since it is
embedded in the integrand and depends on the in-
tegration variable. Nevertheless, the computation
of Equation (10) gives an estimate:

�̂(xp) � �
Iv(x)

Ix(x)

= �

R
dxp �(xp)

1
�2(xp)

M 0

�
x�xp
�(xp)

�
L(xp)R

dxp
1

�2(xp)
M 0

�
x�xp
�(xp)

�
L(xp)

:(27)

The estimate �̂(xp) is seen to be a local average of
�(xp), weighted by 1

�2(xp)
M 0

�
xp

�(xp)

�
L(xp). In

particular, the more out of focus the image, the
larger the magnitude of �, and the larger the size
of this averaging region. Of course, if the points in
a local region lie on a frontal-parallel plane relative
to the sensor, the estimate will be exact.

4 Related Work

The idea of optical differentiation and its appli-
cation to range estimation is novel to this work,
however the concept of single-lens range imaging
is not. Below are brief descriptions of several such
systems.

The use of optical attenuation masks for range
estimation has been considered in the work of Dowski
and Cathey [10] and Jones and Lamb [11]. The for-
mer employs a sinusoidal aperture mask and com-
putes range by searching for zero-crossings in the
local frequency spectra. The latter system employs
an aperture mask consisting of a pair of spatially
offset pinholes. Imaging through such a mask pro-
duces a superimposed pair of images from differ-
ent viewing positions. Range is determined us-
ing standard stereo matching or visual echo tech-
niques. The masks used in both these systems are
not based on differential operations. Furthermore,
these systems operate on a single image and must
therefore rely on assumptions regarding the spec-
tral content of the scene.

Adelson and Wang [12] describe a single-lens,
single-image range camera, termed the “plenoptic
camera”. This approach is based on the same un-
derlying principles as our own, but is quite differ-
ent in implementation. The authors place a lentic-
ular array (a sheet of miniature lenses) over the
sensor, allowing the camera to capture images from
several viewpoints. More specifically, a group of
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5�5 pixels under each lenticule (termed a macropixel)
captures a unique viewpoint. From only a single
image, a viewpoint derivative can be computed
across several macropixels. An image derivative
is computed on the mean values of the macropix-
els, and range is determined by the familiar ratio
of these derivative measurements. Note however,
that the viewpoint derivative is computed from a
discrete set of viewpoints. The authors noted sev-
eral technical difficulties with this approach, most
notably, aliasing and the difficulty of precisely align-
ing the lenticular array with the CCD sensor.

A series of single-lens stereo systems have also
been developed [13, 14, 15]. In the first of these
systems, a stereo pair of images is generated by
two fixed mirrors, at a 45� angle with the camera’s
optical axis and a rotating mirror made parallel to
each of the fixed mirrors. In the second system,
a rotating glass plate placed in front of the main
lens, shifts the optical axis, simulating two cam-
eras with parallel axis. The last system places two
angled mirrors in front of a camera producing an
image where the left and right half of the image
correspond to the view from a pair of verged vir-
tual cameras. In each case, range is calculated us-
ing standard stereo matching algorithms. The ben-
efit of these approaches is that they eliminate the
need for extrinsic camera calibration (i.e., deter-
mination of the relative positions of two or more
cameras), but they do require slightly more com-
plicated intrinsic calibration of the camera optics.

5 Experiments

We have verified the principles of optical differ-
entiation for range estimation both in simulation
and experimentation [16]. This section discusses
the construction of a prototype camera, and shows
example range maps computed using this camera.

5.1 Prototype Camera

We have constructed a prototype camera for val-
idating the differential approach to range estima-
tion. As illustrated in Figure 3, the camera con-
sists of an optical attenuation mask sandwiched

between a pair of planar-convex lenses, and placed
in front of a CCD camera. This arrangement places
the mask at the center of the optical system, where
the viewpoint information is isolated. The cam-
era is a Sony model XC-77R, the lenses are 25mm
in diameter, 50mm focal length, and were placed
31mm from the sensor. Thus, the camera was fo-
cused at a distance of 130mm. We have employed
a liquid crystal spatial light modulator (LC SLM),
purchashed from CRL Smectic Technology (Mid-
dlesex, UK), for use as an optical attenuation mask,
also shown in Figure 3. This device is a fully pro-
grammable, fast-switching, twisted nematic liquid
crystal display measuring 38mm (W) � 42mm (H)
� 4.3mm (D), with a display area of 28.48mm (W)
� 20.16mm (H). The spatial resolution is 640� 480
pixels, with 4 possible transmittance values. The
display is controlled through a standard VGA video
interface, supplied by the manufacturer. The LC
SLM refreshes its display at 30 Hz; when synchro-
nized with the camera, the pair of images may be
acquired by temporal interleaving at a rate of 15
Hz. Alternatively, a pair of images could be ac-
quired simultaneously (i.e., 30 Hz), by employing
an additional camera, some beam-splitting optics,
and two fixed optical masks, as in [8]. The subse-
quent processing (i.e., convolutions and arithmetic
combinations) can be performed in real-time on a
general-purpose DSP chip or perhaps even on a
fast RISC microprocesser.

5.2 Optical Masks

The most essential component of our range cam-
era is the optical attenuation mask. The functional
form of any such mask must only contain values
in the range [0; 1], where a value of 0 corresponds
to full attenuation and a value of 1 corresponds
to full transmittance. The viewpoint and aperture
size derivative masks both contain negative val-
ues, and thus may not be used directly. Further-
more, adding a positive constant to the derivative
mask destroys the derivative relationship. Nonethe-
less a pair of non-negative masks can be constructed
by taking the appropriate linear combination of
the original masks. In particular, consider the fol-

7



Figure 3: Prototype Camera. Illustrated on the
top is a fast switching liquid crystal spatial light
modulator (LC SLM) employed as an optical at-
tenuation mask. Illustrated below right is our
range camera consisting of an off-the-shelf CCD
camera and the LC SLM sandwiched between a
pair of planar-convex lenses. The target consists
of a piece of paper with a random texture pat-
tern.

lowing construction of a pair of non-negative masks:

M1(u) = �1M(u) + 
1M
0(u)

M2(u) = �2M(u)� 
2M
0(u); (28)

where the scaling parameters �(1;2) and 
(1;2) are
chosen such that M1(u) and M2(u) lie in the range
[0; 1]. The desired masks, M(u) and M 0(u) can
then be reconstructed through a simple linear com-
binations of the non-negative masks, M1(u) and
M2(u):

M(u) =

2M1(u) + 
1M2(u)


2�1 + 
1�2

Figure 4: Gaussian aperture masks. Top: A
two-dimensional Gaussian mask, M(u;w) and
its partial derivative, M 0(u;w). Bottom: Two
non-negative aperture masks, M1(u;w) and
M2(u;w). These are computed from the pair of
left-most masks using Equation (28).

M 0(u) =
�2M1(u)� �1M2(u)


1�2 + 
2�1
: (29)

If the imaging system is linear, the desired im-
ages formed under the masks M(u) and M 0(u) can
be determined from the images formed under the
masks M1(u) and M2(u):

I(x) =

2I1(x) + 
1I2(x)


2�1 + 
1�2

Iv(x) =
�2I1(x)� �1I2(x)


1�2 + 
2�1
: (30)

where I1(x) and I2(x) are the images formed un-
der the masksM1(u) andM2(u), respectively. Clearly,
this construction extends to 2-D optical masks as
well. Illustrated in Figure 4 is a 2-D Gaussian mask,
M(u;w) = 1

2��2
e�(u

2+w2)=2�2 , and its partial deriva-
tives with respect to u (viewpoint derivative). Also
illustrated are the non-negative masks computed
from Equation (28).

5.2.1 Dithering

The LC SLM described in the previous section is
a 2-bit display (i.e., only 4 transmittance levels).
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In order to minimize the quantization effects due
to this low resolution, a standard stochastic error
diffusion dithering algorithm based on the Floyd/
Steinberg algorithm [17] was employed. The value
of a pixel is first quantized to one of the four avail-
able levels. The difference between the quantized
pixel value and the desired value is computed and
distributed in a weighted fashion to its neighbors.
In [17], the authors suggest distributing the error
to four neighbors with the following weighting:

1
16 �

�
� 7

3 5 1

�
;

where the � represents the quantized pixel, and
the position of the weights represent spatial posi-
tion on a rectangular sampling lattice. Since this
algorithm makes only a single pass through the
image, the neighbors receiving a portion of the er-
ror must consist only of those pixels not already
visited (i.e., the algorithm should be causal). In or-
der to avoid some of the visual artifacts due to the
deterministic nature of this algorithm, stochastic
variations may be introduced. Along these lines,
we have taken the standard error diffusion algo-
rithm and randomized the error (by a factor dis-
tributed uniformly between 90% and 110%) before
distributing it to its neighbors, and alternated the
scanning direction (odd lines are scanned from left
to right, and even lines are scanned from right to
left).

5.2.2 Calibration

In our system, there are at least two potential non-
linearities that need to be eliminated. The first is
the non-linearity in the light transmittance of the
optical attenuation masks. A non-linearity at this
stage will affect the derivative relationship of the
optical masks. As illustrated in Figure 5, the LC
SLM used to generate the optical masks is highly
non-linear. Shown in the first panel of this figure
is the light transmittance (measured with a pho-
tometer) through a uniform mask set to each of the
four LCD levels. If this device were linear, then
these measurements would lie along a unit-slope
line. Clearly they do not.

This non-linearity may be corrected in the dither-
ing process. More specifically, in the dithering al-
gorithm the error between the quantized pixel value
and the desired value is distributed to its neigh-
bors. In order to correct for the non-linearity in the
LC SLM, the diffused error may be assigned the
difference between the desired and measured light
transmittances of the quantized pixel. Note that
we are assuming that the LC SLM pixels are in-
dependent (i.e., there are no interactions between
neighboring transmittance values). Illustrated in
Figure 5 is the measured light transmittance through
32 constant masks, dithered using to this technique.
The data are seen to be much more linear than the
original measurements.

The second potential non-linearity to consider
is in the imaging sensor. With the optical mask
linearized, it is possible to test the linearity of the
imaging sensor by measuring the pixel intensity of
the image of a point light source imaged through a
series of (dithered) uniform gray masks. As shown
in Figure 5, the imaging sensor is fairly linear. In
particular, the data in this figure closely resembles
the measured light transmittance of the LC SLM
after linearization (Figure 5). Thus, it is assumed
that the imaging sensor is linear, and a second lin-
earization correction is not necessary.

The final calibration that needs to be considered
is that of the camera’s intrinsic point spread func-
tion (PSF). More specifically, in describing the for-
mation of an image through an optical attenuation
mask we have been assuming that the camera’s
PSF is constant across the lens diameter (i.e., the
image of a point light source is assumed to be a
hard-edged rectangular function). This is gener-
ally not the case in a real camera: the PSF typically
takes on a Gaussian-like shape. The PSF and the
optical mask will be combined in a multiplicative
fashion. Whereas before, we employed a matched
pair of masks,M(u) andM 0(u), with dM(u)

du = M 0(u),
we now require a pair of masks, M(u) and M̂(u),
that obey the following constraint:

M̂(u)H(u) =
d(M(u)H(u))

du
; (31)

where H(u) is the camera PSF. That is, the deriva-
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Figure 5: Calibration of LCD mask and CCD
sensor. Shown in the top left panel is the
normalized light transmittance (in cd/m2, as
measured with a photometer) through constant
masks set to each of the four LCD values.
Shown in top right panel is the normalized light
transmittance measured through each of 32 uni-
form dithered and gamma-corrected masks, av-
eraged over five trials. If our dithering and
gamma-correction were perfect, the measure-
ments (circles) would lie along a unit-slope line
(dashed line). Shown in the lower panel is the
normalized CCD pixel intensity of a point light
source as imaged through a series of 32 uni-
form, dithered optical masks (with gamma cor-
rection), averaged over five trials, and spatially
integrated over a 5 � 5 pixel neighborhood. If
both the optical mask and imaging sensor were
linear, then these measurements (circles) would
lie along a unit-slope line (dashed line).

tive relationship should be imposed on the prod-
uct of the optical mask and the PSF. We have not
included this calibration in our experiments.

5.3 Results

We have verified the principles of range estima-
tion by optical differentiation with a prototype cam-
era which we have constructed (see Figure 3). Ac-
cording to our initial observation we expect that
the image of a point light source to be a scaled and
dilated copy of the mask function. Illustrated in
Figure 6 is an example of this behavior: shown are

Figure 6: Illustrated in the top two panels
are 1-D slices of the image of a “point light
source” taken through a pair of non-negative
Gaussian-based masks, I1 and I2. Shown in
the bottom left panel are 1-D slices of the linear
combination of the measurements (see Equa-
tion (30)). Shown in the bottom right panel are
1-D slices of the resulting images Ix (solid) and
�Iv (dashed). These images should be related
to each other by a scale factor of � (see Equa-
tion (10)).

1-D slices of images taken through a pair of non-
negative Gaussian-based optical masks printed onto
a sheet of transparent plastic (later experiments uti-
lized the LC SLM described above). The appropri-
ate linear combination of these slices (Equation (30)),
and the resulting slices of Ix(x) and Iv(x).

In the remaining experiments the target consisted
of a sheet of paper with a random texture pattern
and back-illuminated with an incandescent lamp
to help counter the low light transmittance of the
LC SLM optical mask. Spatial derivatives were
computed using a pair of 5-tap filter kernels de-
scribed in [18]. For example, the x-derivative is
computed via separable convolution with the one-
dimensional derivative kernel in the x direction,
and with a one-dimensional blurring kernel in the
y direction. The viewpoint derivative was filtered
with the blurring kernel in both spatial directions.
Range was estimated using the least-squares for-
mulation (Equations (15) or (23)), with a spatial in-
tegration neighborhood of 31 � 31 pixels.
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Illustrated in Figures 7 and 8 are a pair of re-
covered range maps for frontal-parallel surfaces
placed at distances of 11 and 17 cm from the cam-
era. These figures illustrate the range maps com-
puted using optical viewpoint and aperture size
differentiation, respectively. The camera is focused
at a distance of 13 cm. In the case of the viewpoint
differentiation, the recovered range maps had a
mean of 10.9 and 17.0 cm, with a standard devia-
tion of 0.27 and 0.75 cm, and a minimum/maximum
estimate of 10.1/11.8 cm and 15.1/19.4 cm, respec-
tively. In the case of the aperture size differen-
tiation, the recovered range maps had a mean of
11.0 and 17.0 cm, with a standard deviation of 0.06
and 0.16 cm and a minimum/maximum estimate
of 10.8/11.2 cm and 16.5/17.5 cm, respectively. It
was somewhat surprising to discover that the aper-
ture size differentiation gave significantly better
results than the viewpoint differentiation (in terms
of standard deviation). We suspect that one possi-
ble reason for this is that the aperture size masks
have a higher total light transmittance: for the Gaussian-
based optical masks, the mean light transmittance
is 0.37, as compared to a mean of 0.20 for the view-
point masks. Increased light transmittance pro-
duces a higher signal-to-noise ratio in the measure-
ments. Although the aperture size differentiation
has smaller errors in this example, it suffers from
a sign ambiguity (i.e., surfaces on either side of the
focal plane can be equally defocused). Illustrated
in Figure 9 is a recovered range map for a planer
surface oriented approximately 30 degrees relative
to the sensor plane, with the center of the plane
14 cm from the camera, and a pair of occluding
surfaces placed at 11 and 17 cm. The recovered
range maps in this figure were determined using
the viewpoint differentiation formulation. Quali-
tatively, these range maps look quite reasonable.

5.4 Sensitivity

As with most other techniques, the inherent sensi-
tivity of our method of range estimation is depen-
dent on the basic rules of triangulation. In par-
ticular, from classical binocular stereo we know
that range is inversely proportional to disparity:
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Figure 7: Illustrated are the recovered range
maps using optical viewpoint differentiation
for a pair of frontal-parallel surfaces at a dis-
tance of 11 and 17 cm from the camera. The
computed range maps have a mean of 10.9 and
17.0 cm with a standard deviation of 0.27 and
0.75 cm, respectively.
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Figure 8: Illustrated are the recovered range
maps computed using optical aperture size dif-
ferentiation for a pair of frontal-parallel sur-
faces at a distance of 11 and 17 cm from the cam-
era. The computed range maps have a mean of
11.0 and 17.0 cm with a standard deviation of
0.06 and 0.16 cm, respectively.

Z = db
D , where d is the distance between lens and

sensor, b is the distance between the stereo camera
pair (i.e., the “baseline”), and D is the measured
disparity. The sensitivity in estimating range with
respect to errors in the disparity estimate can be
determined by differentiating with respect to this
parameter:

����@Z@D
���� =

���� dbD2

����
/

Z2

db
: (32)

In our system, � plays the role of disparity, and
effective baseline is proportional to lens diameter
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Figure 9: Illustrated on the left is the recovered
range map computed using optical viewpoint
differentiation for a slanted surface oriented ap-
proximately 30 degrees relative to the sensor
plane with the center of the plane at a depth of
14 cm. Illustrated on the right is the recovered
range map for a pair of occluding surfaces at a
depth of 11 and 17 cm.

and dependent on the choice of optical masks.
In addition, errors in estimating � will be pro-

portional to �2. More specifically, we consider the
effects of additive noise in the differential measure-
ments:

�̂ = �
Iv +�v

Ix +�x

= �
1
�M

0 +�v
1
�2
M 0 +�x

= �
�+ �2�v

M 0

1 + �2�x

M 0

: (33)

Expanding the denominator as a polynomial se-
ries in �x, the leading error terms of the full ex-
pression are seen to scale as the square of�. Rewrit-
ing in terms of depth (using Equation (6)) and in-
coporating with the above, we expect errors in the
differential measurements to produce range errors
of the form:

�Z /
Z2

db

�
1� d

f + d
Z

�2
�fv;xg: (34)

That is, measurement errors lead to range errors
that scale as the square of the distance from the
focal plane.

6 Discussion

We have presented the theory, analysis, and im-
plementation of a novel technique for estimating
range from a single stationary camera. The com-
putation of range is determined from a pair of im-
ages taken through one of two optical attenuation
masks. The subsequent processing of these images
is simple, involving only a few 1D convolutions
and arithmetic operations.

The simplicity of this technique has some clear
advantages. In particular, the use of a single sta-
tionary camera reduces the cost, size and calibra-
tion of the overall system, and the simple and fast
computations required to estimate range makes this
technique amenable to a real-time implementation.
In comparison to classical stereo approaches, our
approach completely avoids the difficult and com-
putationally demanding “correspondence” prob-
lem. In addition, with only a single stationary cam-
era, we avoid the need for extrinsic camera calibra-
tion. There are some disadvantages as well. Most
notably, the construction of a non-standard imag-
ing system, and the limited range accuracy due to
the small effective baseline.

A counterintuitive aspect of our technique is that
it relies on the defocus of the image. In particu-
lar, a perfectly focused image corresponds to � =
0, leading to a singularity in Equation (10). We
have partially overcome this problem by impos-
ing a prior density on � that biases solutions to-
ward the focal plane. But in general, accuracy will
be best for surfaces outside of the focal plane.

The results presented here can be improved in
a number of ways. A better mask design, which
includes the effects of the PSF of the camera optics
and optimizes light transmittance while satisfying
the desired derivative relationship could have a
large effect on the quality of the estimator. In the
proposed camera, a pair of images are acquired in
a temporally interleaved fashion, so that motion in
the scene will be misinterpreted as false range in-
formation. A more sophisticated algorithm should
be developed that compensates for any inter-frame
motion. Alternatively, the technique could be mod-
ified to measure the two images simultaneously

12



(using a beamsplitter, as in [8]). Finally, as with
all intensity-based range imaging approaches, the
results may be improved by illuminating the scene
with structured light.
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