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Separating Reflections from Images
Using Independent Components Analysis
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The image of an object can vary dramatically depending on lighting, specularities, reflections
and shadows. It is often advantageous to separate these incidental variations from the intrinsic
aspects of an image. This paper describes a method for photographing objects behind glass and
digitally removing the reflections off the glass leaving the image of the objects behind the glass
intact. We describe the details of this method which employs simple optical techniques and
independent components analysis (ICA) and show its efficacy with several examples.



1 Introduction

The image of an object can vary dramatically de-
pending on lighting, specularities, reflections and
shadows, and yet our recognition of objects is amaz-
ingly robust despite these incidental variations. Our
visual system seems to separate the various com-
ponents that contribute to the formation of an im-
age, yielding stable and reliable percepts. One com-
monly occurring example is that of reflections from
dielectric surfaces (e.g., glass) where our visual sys-
tem seems to easily ignore reflections when, for ex-
ample, viewing a painting framed behind glass. To
facilitate such tasks as object recognition, visual-

based navigation, and scene segmentation we would

like to design computer systems that have a sim-
ilar ability to separate the incidental from the in-
trinsic aspects of an image. Along these lines, this
paper describes a method for photographing ob-
jects viewed through glass and digitally removing
the reflections off the glass leaving the image of the
objects behind the glass intact. Although we will
concentrate on this particular problem the general
methods used may be useful for a broader class of
image separation problems.

Light reflected off glass at an oblique angle is
partially polarized so that the strength of the re-
flection can be manipulated with a linear polarizer.
The reflection can however only be completely elim-
inated when the viewing angle to the glassis at the
Brewster’s angle [1]. Consider the pair of images
in Figure 1 of Renoir’s On the Terrace framed be-

hind glass with a reflection of a mannequin (“Sheila”).

These images were photographed through a linear
polarizer oriented to maximize the reflection (left)
and minimize the reflection (right). The camera
was oriented approximately 30°from frontal par-
allel. Note that even at the minimal polarization
angle the reflection is quite salient.

There is some history in the computer vision
community of trying to analyze and remove spec-
ular reflections from images. In these cases, re-
searchers concerned themselves with non-planar
reflective surfaces where the reflection is highly lo-
calized and poses a problem for various computer
vision algorithms such as stereo and motion es-
timation. These approaches fall into one of sev-
eral general categories: imposing a Lambertian as-

Figure 1: Renoir’s On the Terrace with a reflec-
tion of Sheila photographed through a linear
polarizer at orthogonal orientations, maximiz-
ing and minimizing the reflection.

sumption [2, 3], color-based [4, 5, 6], polarization-
based [7, 8, 9] and combinations thereof [10]. Here
we concern ourselves with the problem of remov-
ing reflections from a planar surface and take a
completely different computational approach than
previously suggested. Another important distinc-
tion is that in removing the reflections off the glass
we leave the image of objects behind the glass in-
tact.

Let’s first look more closely at the basic physics
of reflections from planar surfaces. Shown in Fig-
ure 2 is an idealized example of a photograph of
a painting behind a plate of glass. The final im-
age is a linear combination of the light that is re-
flected by the painting and the light that is directly
reflected by the glass. In actuality, light is reflected
off both the front and back face of the glass. For
simplicity we assume the simplified model of an
infinitely thin piece of glass with a single reflec-
tion. The reflection from the glass will itself be an
image of the scene in which the painting is viewed.
The amount of light at each point in the image can
be expressed as:

Il(‘Tay) = a’P(J"ay) + bR(.’L‘,y), (1)

where P and R are the amount of light contributed
by the painting and reflection, and a and b are mul-
tiplicative constants. We would like to remove the
contribution of the reflection R from the image I,
but the above equation only provides a single con-
straint in four unknowns. Additional constraints



may be added by exploiting the fact that reflec-
tions are partially polarized and that a linear po-
larizer can be used to adjust the relative strength of
the reflection. With respect to Equation (1), the lin-
ear polarizer has the effect of manipulating the rel-
ative contributions of the painting and reflection.
The second image takes on the similar form:

IQ(way) = CP(.’E,y) + dR(.’I,',’y), (2)

The above equation provides another constraint,
but two new unknowns have also been introduced,
leaving us with a total of two constraints in six
unknowns, and little hope of a solution without
making further assumptions. It would of course
be possible to manually find the amount of image
I, that needs to be subtracted from I; to remove
the reflection R, but we are interested in an auto-
matic procedure for accomplishing this.

In order to separate the reflection from the de-
sired image we first photograph a scene through
a linear polarizer arranged at two distinct polar-
ization angles. To solve the underconstrained set
of equations we make the modest assumption that
the image of the painting and reflection are inde-
pendent. Intuitively this means that for each spa-
tial position the pixel intensity in one image pro-
vides no predictive information about the pixel in-
tensity in the second image. This is a reasonable
assumption since there is no reason to expect a
correlation between the image of objects behind
the glass and the image of objects reflected by the
glass. Given the linear model of image formation
and this assumption of independence we perform
independent components analysis (ICA) (e.g, [11,
12]) to separate the reflection from the desired im-
age. In the next section the details of this statis-
tical technique are outlined, and in the following
section several examples of its efficacy are given.

2 Separating Images

The general problem of image separation can be
stated as follows: given N distinct linear combi-
nations of IV images determine the original NV im-
ages. For our application we can restrict ourselves
to the case of just two images. Denoting these im-
ages in row vector form as z; and =z, the linear
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Figure 2: A photograph of a painting behind
glass contains a superposition of the light that
is reflected by the painting, and the light that is
reflected directly off the glass.

mixing of these images can be expressed in matrix
form as follows:

(w )=t 2 )
Y = MX ©)

where the matrix M embodies the linear mixing.
Note that with this model it is assumed that the
linear mixing is uniform over the entire image. The
mixed images in Y each contain a linear combina-
tion of the source images in X. Our job is to re-
cover the source images from the mixed images.
Of course given the full rank (i.e., invertible) ma-
trix M it would be trivial to estimate the source
images by left multiplying the mixed images with
the inverse mixing matrix:

X = MY 4)

But we don’t typically know the mixing matrix, so
our job will be to estimate it from the mixed im-
ages only.

Equation (3) provides two constraints in six un-
knowns and so cannot be solved without further
assumptions. The first assumption we make is that
the pair of source images are independent. De-
noting X; and X3 as the random variables from
which the pixel intensities of source images 1 and
x9 are drawn, this assumption can be expressed as
P(X1,Xs) = P(X;) - P(X3) (i.e., the joint proba-
bility distribution is separable). Although the con-
straint is expressed in terms of these continuous
random variables we will typically work with the
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Figure 3: Shown at the bottom left is an ide-
alized joint probability distribution for a pair of
independent images. The linear mixing of these
images, Equation (3), transforms this distribu-
tion, via a rotation, scaling, and rotation, from a
square into a parallelogram (left column). The
goal of ICA is to transform this parallelogram
back into a square, thus yielding the original in-
dependent images (right column).

histograms of sampled images that, because of the
dense sampling, are good approximations to the
continuous probability distributions. Note that no

constraint is placed on the specific form of the marginal

distributions P(X;) and P(X5,) . However, since
the separation will rely on higher-order statistical
moments, we will insist that the marginals be non-
Gaussian. This is a reasonable constraint since nat-
ural images are rarely Gaussian. The second mod-
est assumption is that the mixing matrix M is full
rank. With these assumptions the general estima-
tion problem is known as independent components
analysis (ICA) of which there is a large and varied
literature. Early contributors include [13, 11, 12,
14,15, 16, 17, 18] with some more recent work from
the learning community, e.g., [19]. We present an
analytic version of ICA based on higher-order sta-
tistical moments most similar to that of [11]. We
provide a different formulation based on maximiz-

ing a series of error functions that leads to a simple
and intuitive geometric interpretation.

We begin by attempting to gain some insight
into the structure of the mixing matrix by decom-
posing it according to the singular value decom-
position (SVD):

M = RiSRy, )

where R; and Ry are orthonormal (rotation) ma-
trices and S is a diagonal (scaling) matrix. Shown
in Figure 3 is a geometric interpretation of the ef-
fects of each of these matrices on the joint prob-
ability distribution of the source images X. Ac-
cording to our assumption of independence this
distribution should be separable; for illustration
purposes consider the case when the marginal dis-
tributions are uniform, then the joint distribution
is a square - in practice of course no such con-
straint is imposed on the marginal distributions.
The mixing matrix rotates, scales, and again ro-
tates this distribution transforming the square into
a parallelogram. Notice that the mixed images Y
are no longer independent. The estimation of the
independent source images reduces to determin-
ing how to transform the parallelogram back into a
square. Or more generally, transforming the two-
dimensional joint distribution into a separable prod-
uct of one-dimensional distributions. As Figure 3
suggests this may be accomplished by applying
the opposite rotations and scalings in reverse or-
der.

The first step in separating the images is to ap-
ply a rotation that aligns the long and short axis
of the parallelogram with the primary axis (Fig-
ure 3). These axes are easily determined since they
are the axes with the maximal/minimal variance.
Assuming zero mean measurements, the variance
at an arbitrary orientation is given by:

B(6) = g[mm w) (0N o

The axis of maximal variance is determined by find-
ing the angle 0> that maximizes this error function
(Figure 4). The axis of minimal variance will be
orthogonal to this axis oriented at #; — 7/2. These
axes correspond to the principle axis as determined
by principle components analysis (PCA). Since this



Second Moment

Figure 4: Shown is the variation in the sec-
ond moment (variance) as the joint probability
distribution is rotated and projected onto the
horizontal axis (Equation (6)). The variance is
minimal along the short axis of the parallelo-
gram and maximal at the orthogonal orienta-
tion. Note that this error function is a 2-cycle
sinusoid.

error function is quadratic in its unknown it can be
maximized analytically by differentiating with re-
spect to 6, setting equal to zero and solving (Ap-
pendix A), to yield:

6, — Lian lziiw(i) sin(26(1))
i1 (3) cos(26(1))

2
where, because it takes on a particularly simple

], )

form, the solution is given in polar coordinates (i) =

y1(1)* +y2(i)” and ¢(i) = tan™"(y2(4) /y1(4)). Then,
the first rotation matrix in the separation is:

- cos(fy)  sin(fs)
Ry = (—sin(;g) cos(ez)) ®

Following the first rotation, the now aligned par-
allelogram needs to be transformed into a diamond
(Figure 3). More precisely, the axes need to be in-
dependently scaled so that the variance is rotation-
ally invariant. The scaling of each axis is deter-
mined by first computing the variance along the
axis of maximal and minimal variance, i.e., the axis
oriented at 62 and 0 — 7/2:

N
S1 =

Fourth Moment

Figure 5: Shown is the variation in the fourth
moment as the joint probability distribution is
rotated and projected onto the horizontal axis
(Equation (13)). The fourth moment is minimal
at the orientation required to transform the di-
amond into a square, which in turn yields the
independent images. Note that this error func-
tion is a 4-cycle sinusoid.

and then the scaling matrix is constructed by plac-
ing the inverse standard deviations along the di-

agonal:
VN
S = ( 01 1/\/5>. (11)

Combined, the first rotation and scaling are equiv-
alent to PCA plus whitening. But notice from Fig-
ure 3 that this is insufficient for separating the mixed
images into their independent components (the mixed
images are only decorrelated, a necessary but in-
sufficient condition). That is, in this example the
joint probability distribution is in the shape of a
diamond (i.e., is not separable), a final rotation is
required to transform this diamond into a square,
yielding the independent components (i.e., sepa-
rability).

One approach to the determination of this fi-
nal rotation is to find the orientation 6, that mini-
mizes the fourth statistical moment (Figure 5). The
fourth moment at an arbitrary orientation is given

by:

B(6:) = §[<ya<i) ) (209 o

where ¢} and y) are the result of rotating and scal-
ing the initial mixed images 1 and y» according to



Equations (8) and (11). Note that the above error
function cannot be solved analytically. But, the fol-
lowing normalized fourth moment does lend itself
to an analytic solution:

[ w6 (209 e

The axis where the fourth moment is minimal is
determined by finding the angle 6, that minimizes
this error function (Figure 5). As before, we dif-
ferentiate with respect to 6y, set equal to zero and
solve (Appendix B) yielding the minimal solution:

N 2/ . .
6, = tan! [2?1 RULLICVIO)
4 Yim1 72(3) cos(44(2))
again, for convenience, expressed in polar coor-

dinates. The final rotation matrix then takes the
form:

] , (14)

- cos(0y)  sin(6y)
Ry = (—sin(94) cos(04))' (15)

To ensure that the final rotation is a minimum and
not a maximum, we suggest measuring the mu-
tual information with the distribution rotated to 6,
and 6, + /4. The mutual information is defined as
35 Y (i) log(¥ (i, )Y (i)Y (j)], with Y (4, ) the
joint histogram, and Y (i) and Y (j) the individual
histograms. The rotation angle with minimal mu-
tual information will yield the independent com-
ponents. This last check is also sometimes neces-
sary because we have found that in practice the
fourth moment is sometimes maximal (not min-
imal) along the desired axis. This can occur oc-
casionaly when one of the image histograms has
long tails relative to the other.

The estimation of the source images X from the
mixed images Y is now a simple matter of apply-
ing the three matrices in Equations (8), (11), and
(15):

X = (RySR)Y (16)

There are two inherent ambiguities in the recov-
ery of the independent components. First is the

ordering ambiguity, that is, the following mixings
are indistinguishable:

D@ -GDE) »

Second is a scale ambiguity, that is the indepen-
dent components can only be determined within a
scale factor since, for example, the following mix-
ings are also indistinguishable.

(£ 96 = (6 4G
c d) \z c/y djé) \ oz
For our purposes, the first of these ambiguities is
not critical, and the second is dealt with by scaling
the final images to fill the full intensity range.
There are several extensions to ICA that may
improve the separation of the mixed signals. Most
notably, the linear mixing model of Equation (3)
assumes a spatially uniform linear combination of
source images that is unlikely to be true. In our
case, the mixing will vary spatially because the po-
larization of reflected light depends on the angle to
the camera, and this angle varies across the field of
view. To account for this variation, we could em-
ploy a mixture model approach to fit multiple lin-
ear models [20]. Another possible extension would
be to employ a more generic version of ICA that al-
lows for a redundant system with more measure-
ments than unknowns (e.g., [21]). In our case, this
would mean photographing a scene at multiple
polarization angles. Note though that since the po-
larization of a scene is fully characterized by three
distinct angles, there will be a point of diminishing
returns.

3 Results

3.1 Synthetic Images

Our first experiment is intended to show the gen-
eral efficacy of the image separation outlined in
the previous section. Shown along the top row
of Figure 6 are a pair of images and their normal-
ized joint histogram (i.e., sampled joint probabil-
ity distribution). In the next row are a pair of im-
ages formed by applying a random 2 x 2 mixing
matrix as in Equation (3). In the subsequent three
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Figure 6: Along the top row are the original im-
ages and their normalized joint histogram. The
second row contains the mixed images and be-
low are the intermediate steps leading to the
separation. See also Table 1.

Actual Estimated

M 1.00 —-0.49 1.00 —-0.63
0.50 —0.66 0.49 -0.79

01 35.7° 37.4°
S1 /82 441 4.55
02 35.4° 41.4°

Table 1: Results from the separation of the cats,
Figure 6.
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Figure 7: Separating in the presence of uniform
zero-mean white noise. Shown is the root mean
square (RMS) error between the separated and
original images plotted as a function of the sig-
nal to noise ratio (SNR).

rows are the results of applying the rotations and
scalings specified by Equations (8), (11), (15) and
(16) to this pair of images. As desired, the mixed
images have been separated into their original in-
dependent components. Note also the similarity
in the transformations of the normalized joint his-
togram with the idealization of Figure 3. Shown in
Table 1 are the initial and estimated parameters of
the mixing matrix. The pair of rotations are deter-
mined correctly within 1.7°and 6°, and the scaling
within 3%.

To measure the sensitivity to noise, varying amounts
of uniform zero-mean noise were added to the mixed
images y; and y, before separating the indepen-
dent components. Shown in Figure 7 is the root



mean square (RMS) error between the separated
and original images. The RMS errors are averaged
over one hundred independent trials.

3.2 Natural Images

In the next set of experiments we photographed
a painting framed behind glass with the reflection
of a mannequin (“Sheila”), Figure 8. The painting
with reflection was photographed twice through a
linear polarizer angled so that the reflection was
maximized, and then at the orthogonal angle to
minimize the reflection (all camera parameters were
held fixed between image capture). We chose the
maximum and minimum angles to reinforce the
fact that a linear polarizer alone is insufficient for
removing the reflection. In general, any two dis-
tinct angles could be used that are not symmetric
about the polarization angle of the reflected light.
No special care was taken to control the lighting,
several directional light sources provided ambient
light, and an additional light source was focused
on the object casting the reflection to make the re-
flection visually more salient. We used a color dig-
ital video camera (Canon Optura DV, Canon Inc.)
whose video signal was digitized through a S-video
connection onto a Silicon Graphics computer. The
camera was calibrated to ensure a linear response.
Each scene was photographed for one-third of a
second (10 frames) these frames were averaged in
order to reduce sensor noise. The final 24-bit three
channel (RGB) color images have a spatial resolu-
tion of 640 x 480 pixels. In our results the entire
three channel image was used in computing the
independent sources. More specifically, with re-
spect to the initial mixing model, Equation (3), the
input images y; and yy contain all three color chan-
nels strung out in row vector form.

Results are shown in Figures 9 and 10. Shown
along the top row of each of these figures are the
initial images and shown along the bottom row are
the results of separating the independent compo-
nents. In between are the intermediate steps lead-
ing to the separation as specified by Equations (8),
(11), (15) and (16). Note how the normalized joint
histogram (third column) transforms from a par-
allelogram to a square similar to the idealization
of Figure 3, thus yielding the independent compo-

Figure 8: Renoir’s On the Terrace, Sheila and
Sheila’s reflection.

nents - the painting and the reflection of Sheila. In
the final experiment images were taken outdoors
where the reflections from a storefront window are
removed; shown in Figure 11 are the initial and
separated images.

4 Discussion

We have developed a simple and effective method
for separating reflections from images. This tech-
nique begins with a pair of images taken through a
linear polarizer at two distinct angles. The reflec-
tion is separated from the image by applying an
analytic version of independent components anal-
ysis (ICA) based on higher-order statistical moments.
The technique depends on the assumption of sta-
tistical independence, which is reasonable in the
case of reflections; no restrictions are placed on the

individual image structure or spatial frequency. Given

the simplicity of the calculations, a real-time im-
plementation could be realized by synchronizing
the image capture of alternate or even/odd frames
with a liquid crystal polarizer (e.g, [22]). Such a
device could be generally useful when photograph-
ing reflective or glossy surfaces, or when photograph-
ing through glass or water. This technique may
also be useful in other domains. For example, re-
flections from the windshield of an autonomous
vehicle with inboard cameras may cause problems
for visually guided navigation systems. Another
possible application is in the field of surveillance
where activities behind a reflective window may
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Figure 9: Along the top row are a pair of im-
ages of Renoir’s On the Terrace with a reflec-
tion of Sheila photographed through a linear
polarizer at orthogonal orientations. Along the
bottom row are the independent components.
Also shown are the intermediate steps leading
to the separation of the independent compo-
nents. The third column shows the normalized
joint histogram of the pair of images to its left.

Inpu

t (1, Y2)

Rotate 1

Figure 10: Along the top row are a pair of
images of Renoir’s Lunching on the Boating
Party with a reflection of Sheila photographed
through a linear polarizer at orthogonal orien-
tations. Along the bottom row are the indepen-
dent components. Also shown are the interme-
diate steps leading to the separation of the inde-
pendent components. The third column shows
the normalized joint histogram of the pair of
images to its left.



Figure 11: Shown along the top row are the pair
of images photographed through a linear po-
larizer at orthogonal orientations, and shown
along the bottom row are the separated compo-
nents.

be revealed.
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Appendix A

The second statistical moment (variance) at an arbitrary angle 6, is given by:

N

E(6;) = Z[(yl(z’) y2(i))($§((g§))>r

=1

= Z[yl cos(02) + yo(i) sin(6,)]*

= Zy% cos?(02) + 2y1 (3)ya (1) cos(Bz) sin(6y) + 33 (i) sin(65). (19)

The angle that maximizes the variance can be determined by first differentiating this error function:

dE(6,)
b,

Qy%( ) sin(62) cos(02) + 2y1 (1) y2 (i)(cosQ(Hz) — sin? (62)) + 23/2(1')2 sin(6s) cos(62)

Il
.MZ

~
Il
—

(45 (3) — y7 (1)) sin(82) cos(B2) + 1 (i)y2 (i) (cos® (82) — sin’(62))

Il
'pqu

~
Il
—_

I
p’%z

(45 (5) — y7(0) (5 5in(262)) + 1 (2)y2(5) (5 (L + cos(262)) — 5(1 — cos(262)))
1

I
Mzﬂ

)) sin(262) + 2y1 (2)y2(7) cos(262), (20)
z:l
setting equal to zero and solving;:
dE(02) 0
doy

sin(26s) _ —2 Zfi1 y1(i)y2(i)

cos(265) Y v3() — y3 (i)
6, — Liant l 25 (Z)ys(f)] . (21)

2 2im1Y) (i) — Y1 (4)

And finally converting into polar coordinates with y; (i) = 7(i) cos(¢(i)) and ya(7) = r(7) sin(¢(i)) yields
the maximal solution as in Equation (7):

0 — mll 25 (i) cos (i) (i) sin(4(i) ]
SV, 2(i) sin? ($(7)) — 2(3) cos(9(0)

) mll 2y, Lr2(i) sin(26(0) ]
SN @11 — cos(20()) — 31+ cosZ0)))
1 [ ) sinee)]
A lz?m(z) cos(2 <>)] 22

12



Appendix B

The fourth statistical moment at an arbitrary angle 6, is given by:

N

E(6s) = Z[(yl(i) yz(i))((;?zég:))W

=1

[
™M=

[y1(6) cos(6a) + y2 (i) sin(64)]*

=1

y1(3) cos* (04) + 4y (i)y2 (i) cos®(04) sin(8y) + 613 (i)ya (i) cos? (8,) sin®(4)

I
M=

1
+ 4y1 (1) y5 (i) cos(04) sin®(04) + v (i) sin® (64)

<.
Il

y%(i)(3 + 4 cos(264) + cos(464)) + yl( )y2(4) (sin(204) + 5 sin(404))

Il
oo

=1

+ §uE(0)y3 (1) (5 — 5 cos(464)) + y1(i)y3(i)(sin(264) — 5 sin(464))
+ 2y7(3)(3 — 4cos(2604) + cos(46y4)). (23)

The angle that minimizes the fourth moment can be determined by differentiating this error function:

N
dEdéiél) _ %y%(z)(—S sin(204) — 4sin(46,)) + y:l)’ (4)y2(7) (2 cos(264) + 2 cos(46y))
=1
+ 3yt 1)y (1) (25in(464)) + y1(9)y3(9)(2 cos(264) — 2 cos(464))
+ Ly3(i)(8in(264) — 4sin(464)) (24)

Note that this error function cannot be solved analytically, but that the following normalized error function
does lend itself to an analytic solution:

' B N 1 ' . cos(61) 4
Bl = ; m [( v y2(i) (sin(04) )] (25)
and
dE' (6 N 1 | | | |
d0(44) ) z:zl v1(0)? +y2()2 [(53(5) — v () sin(202) + (291 ()y3 (i) + 243 (0)y(0)) cos(26)]
1 .
T2 1 ) [(—3y1() — 3y3 () + 33 ()3 (5)) sin(464)

+ @) — 21 ()u()) cos(461)
N
= 3 o (b0 = b0 + B3 0) sinan)

=1 y
+ 2y} ()20 — 201 (D)3 (3)) cos(46s)] , (26)

where the 26, terms cancel from the earlier maximization (see Appendix A). This error function can now
be minimized by setting equal to zero and solving:

dE' (6,)

doy 0
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sin(46,) — Y g Qv (y2(0) — 201(0)y3 ()
cos(404) S g (Cavi () — 5930 + 3yt (0)y3(0)
1 1 [ _Zi]il TO) iyz(z’) (247 (1)y2(6) — 241 (4)y3(4))

2z ) '

0y, = -—tan~ - - ; ;
4 i1 gt 3yt (@) — 593 (0) + 3yE ()43 (9)

~_—

(27)

Y2

And converting into polar coordinates with y; (i) = 7 (%) cos(¢(7)) and yo (i) = () sin(¢(7)) yields the mini-
mal solution as in Equation (14):

1
0y = —tanll

! Sy (i) sin(49(0)) ] _ (28)

Yy r2(d) cos(4(i))
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