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Search for a category target in clutter

MARY J.BRAVO, 1 HANY FARID 2

An airport security worker searching a suitcase for a weapon is engaging in an es-
pecially dif �cult search task: the target is not well-speci�ed, it is not salient and it
is not predicted by its context. Under these conditions, searchmay proceed item-by-
item. The experiment reported here tested whether the items for this form of search
are whole familiar objects. Our displays were composed of color photographs of
ordinary objects that were either uniform in color and texture (simple), or had two
or more parts with dif ferent colors or textures (compound). The observer 's task was
to detect the presence of a target belonging to a broad category (food). We found
that when the objects were presented in a sparse array, search times to �nd the tar-
get were similar for displays composed of simple and compound objects. But when
the same objects were presented as dense clutter , search functions were steeper for
displays composed of compound objects. We attribute this dif ference to the dif �-
culty of segmenting compound objects in clutter: compared with simple objects,
bottom-up grouping processesare less likely to organize compound objects into a
single item. Our results indicate that while search rates in a sparse display may be
determined by the number of objects, search rates in clutter are also affected by the
number of object parts.
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1 Introduction

The visual search paradigm has been an immensely popular tool for studying the ef�ciency of
visual processing (Neisser, 1967;Atkinson, Holmgr en, & Juola, 1969;Treisman & Gelade, 1980;
Treisman, 1988;Egeth & Yantis, 1997;Wolfe, 1998).Becausethe purpose of theseexperimenters is
to isolate and study a particular stimulus feature or a particular psychological mechanism, search
stimuli have traditionally been very simple and highly arti�cial. In addition to serving as a re-
search tool, the visual search paradigm also haspractical applications. We engagein visual search
numerous times each day (for our car, keys, glasses),and visual search is a central task in some
professions (baggage screening, X-ray reading). To understand everyday vision or to impr ove
task performance, it would be useful to extend visual search research to these real-world tasks.
Recently, a number of experimenters have begun to study visual search using photographs of real
objectsand real scenes(Zelinksy, Rao,Hayhoe, & Ballard, 1997;Moor es,Laiti, & Chelazzi, 2003).

Most visual search research focuses on the task of detecting a speci�c target object. In these
experiments, the sametarget is used on every trial, or, alternatively , an image of the search target
is shown to the observer prior to the search stimulus. In both cases,there is no uncertainty, not
even lighting or viewpoint uncertainty, asto the target's appearance.Theseexperiments have led
to the hypothesis that observers maintain an image of the search target in working memory and
use this image as a ”search template” (Duncan & Humphr eys, 1989;Rao, Zelinsky, Hayhoe, &
Ballard, 2002).This template is matched, in a parallel process,against the search stimulus. Neuro-
physiological experiments in which monkeys perform a comparable task have beeninterpr eted in
a similar way. Theseexperiments indicate that top-down inputs from working memory enhance
the activity of extrastriate neurons selective for the target stimulus (Chelazzi, Duncan, Miller , &
Desimone, 1998). Thesetop-down effects can be very selective becausethe representation of the
target in working memory is very speci�c.

While a search template implemented through selective top-down enhancementmight explain
search for a speci�ed target, this kind of parallel processseemslesssuited to search for a category
target. This is the task faced, for example, by an airport security worker searching baggage for
potential weapons. In this case,the target could have a variety of colors, shapes,and sizes,and
it could even be an object that the observer has never seenbefore. It is dif �cult to imagine how a
search template could incorporate this high degreeof variance and still be selective for the target.
Instead of simple template or feature matching, search for category targetswould seemto require
that at least some regions of the display be processedto a deeper level.

The variability of the target's appearanceis not the only dif �culty faced by the airport security
worker . The high degreeof clutter and the lack of predictive context also pose a problem. Under
some conditions, category targets can be detected very rapidly , but this has only been demon-
strated when the background clutter is minimal or the context is predictive (VanRullen & Thorpe,
2001;Li & R. Van Rullen, 2002),but also see(Johnson & Olshausen, 2003). These experiments
showing rapid categorization have used professional photographs in which the target is the sub-
ject. Thus, the target is generally centered in the frame, high contrast, unoccluded, and in a typical
setting. This last characteristic might be especially important becausethere is some evidence that
rapid scenecategorization may be crucial for rapid target categorization (Torralba & Oliva, 2003;
Torralba, 2003).We would argue then that the reports of rapid target categorization do not neces-
sarily indicate that it is possible to simultaneously recognize (or categorize) all of the objects in a
cluttered scene.In fact, we assumethat the opposite is true: that the recognition and categorization
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Figure 1: Clutter ed natural images. It is unlikely that preattentive grouping processescould orga-
nize the image on the right into a lamp, a book and a radio.

of multiple objects involves a serial process.Our assumption is basedin part on the well-known
theoretical argument that the highest levels of visual processingare likely to involve a distributed
feature representation. With such a representation, an ambiguity arises when numerous objects
are represented simultaneously (von der Malsburg, 1999). Thus, one role of selective attention
may be to limit the number of objects that are recognized at any given moment (Moran & Desi-
mone, 1985;Olshausen,Anderson, & VanEssen,1993;Treisman,1999),but alsosee(Riesenhuber&
Poggio, 1999;Ghose& Maunsell, 1999).

In this paper we are interested in examining search for a category target in clutter. The impor -
tant characteristics of this task are that the target is not known, the target is not salient, and the
target's existenceand location are not predicted by context. Under thesestringent conditions, we
assume that observers resort to an item-by-item search. Our speci�c aim is to characterize the
items of this search. There is a prevalent, but often implicit, assumption that theseitems are famil-
iar objects. The notion is that bottom-up grouping processesorganize the sceneinto objectsand
that visual attention then selectsa small number of objects for recognition (seefor example, (Ol-
son,2001)).While we agreewith the idea that visual attention may selectitems for recognition, we
doubt that theseitems correspond to familiar objects. This is because,in clutter, it may be impos-
sible to segment, bottom-up, whole familiar objects. Consider, for example, an object made from
two dif ferent materials (e.g., a table lamp with a linen shade and a metal base,Figure 1). When
this object is juxtaposed with other objects, the within-object boundaries may be as salient as the
between-object boundaries (Spelke,1990).Similarly , occlusions pose a problem for segmentation
becausethey may causean object to be visible only in fragments. Observersmay still group these
fragments using color or texture similarity if the object is made from a single material. 3 If the

3Of course,even if the object hasuniform color and texture, illumination and projection effectswill inevitably cause
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object has multiple parts made from dif ferent materials, however, it seemsless likely that preat-
tentive processeswill reliably group the object's fragments. In such cases,it may be necessaryto
recognize these objects in order to accurately segment them from their background. Thus, when
observerssearch a cluttered scenefor a category target, we question whether they canselectwhole
objects.

To test the idea that observers selectand reject whole objects,we used two kinds stimulus ar-
rangements. In one, photographs of familiar objects were placed in a sparse array. The objects
were clearly separated, even when viewed peripherally . This sparse arrangement is typical of
traditional search experiments. In the other arrangement, the familiar objects were positioned
randomly on the computer screen. This random arrangement, while clearly not typical of most
natural scenes,mimics the dense clutter that one might seein a suitcase, a kitchen drawer or a
toy chest. In our experiment, observers searched for a food target. Becausethese targets were
drawn from a diverse category and so varied in color, shapeand texture, observerscould not use
the ef�cient strategy of searching for a distinctive feature or set of features. Instead, we assumed
observers would resort to an item-by-item search. The question, then, is whether search times
would increasewith the number of objectsor with the number of object parts. (We are using the
term ”part” in non-standard way: here, parts must dif fer in their color or texture.) To test this,
we generated cluttered displays composed of simple objects (e.g.,a wooden stool) or compound
objects (e.g., a paint roller). If these familiar objects are the items for search, then we would ex-
pect that the time it takes observers to �nd the target would increasewith the number of objects,
regardless of the object type. On the other hand, if preattentive segmentation does not always
yield whole objects,especially when theseobjectsare composed of two materials, then we would
expect search times to increasemore rapidly for compound objectsthan for simple objects.

2 Stimuli

Our stimuli were composed of color photographs of familiar objects. We hand-selected from the
Hemera photo-object collection (www .hemera.com) 132 distractor objects, Figure 2, and 44 tar-
get objects, Figure 3. Half of the distractor and target objects were selected becausethey were
composed of one material. That is, they appeared to have largely uniform re�ectance and surface
texture (e.g.,a cucumber, a �r e hydrant). We refer to theseas ”simple” objects. The other half of
the objects were selectedbecausethey had two parts with obviously dif ferent colors or textures
(e.g.,a pineapple, a hand trowel). These”compound” objectswere not simply multi-color ed; the
dif ferent colors had to correspond to dif ferent parts, and soa striped sockwould not beconsidered
compound object.

Displays were composed of 6, 12,or 24 objects. In half the displays, one of theseobjectswas a
food target. The distractor objects were selectedrandomly and without replacement from either
the simple or compound sets. Thus, the distractors in a given display were dif ferent examples of
a single object type. The target object, when it appeared, was selectedfrom either set. Thus, the
sametargetswere used in both the compound displays and the simple displays.

The objectsdepicted in the imagesranged in sizefrom a garbagecan to a car key, but the images
themselves were all scaled to have the samearea (16; 000pixels). Before an image was added to

color and texture variation in the image of the object. This may make grouping such fragments non-trivial, but at least
it is plausible.
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Figure 2: Examples of simple (top) and compound (bottom) distractors.

Figure 3: Examples of simple (top) and compound (bottom) targets.
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Figure 4: A sparsedisplay composed of compound objectsand a simple food target.

a display, its area was rescaledby a random factor between 1:0 and 0:5 and its orientation was
rotated by 0, 90,180or 270degrees.

In addition to using two kinds of objects, we also used two kinds of object arrangements. In
the sparse arrangement, the objects were positioned on a uniform array of size 2 � 3, 3 � 4, or
4 � 6, Figure 4. The average width and height of an object was 120 pixels (about 3 degreesof
visual angle), and the average spacebetween objects was 60 pixels. In the clutter arrangement,
the objectswere positioned randomly as in Figure 5. The area of the display was scaled with the
number of objectsto keep the averageoverlap between objects�xed at 20%. If more than 40%an
object was obscured, the display was recreated. Each target had an average occlusion of 20%for
both the composed and simple displays.

The stimulus generation required both manual and automated steps. First, anti-aliased masks
were created for each image. This manual step was done in Adobe Photoshop. Then the masks
and images were randomly scaled,rotated and positioned in eachstimulus. This automated step
was done in MatLab. The stimuli were generated off-line, and a new stimulus was generated for
eachof the observer's 1,056trials. The stimuli were displayed on an Apple PowerBookG4 using
MatLab and PsychToolbox routines (Brainard, 1997;Pelli, 1997).
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Figure 5: Clutter ed displays composed of simple (left) and compound (right) objects. A target is
presenton the left but not on the right.

2.1 Procedure

In all, therewere24conditions: two arrangements (sparseor clutter); two distractors types (simple
or compound), threelevels of distractor number (6, 12or 24)and target presentor absent.The two
arrangement conditions were varied across observers. All other conditions were varied within
observers and were completely intermixed within blocks of trials. Each observer participated in
two sessionswithin a one week period. During these sessions,the observers ran a total of 22
blocks of 48 trials each.

The observer initiated the �rst trial in each block, and the stimulus remained on until the ob-
server responded by pressing either the 8 key (food absent)or the 9 key (food present). Auditory
feedback was given after incorrect responses.The next stimulus was presentedafter a one second
delay. The �rst two trials of eachblock were discarded aspractice.

2.2 Participants

The observers were fourteen Rutgers-Camden students who participated to ful�ll a course re-
quir ement for Intr oductory Psychology. None of the observers were aware of the purpose of the
study.

3 Results

We analyzed the data separately for the two target types and found no signi�cant dif ference.
So within each condition, the data from simple target and compound target trials were pooled.
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Figure 6: Averaged reaction times (top) and percent correct (bottom) asa function of the number of
objects in the display. Open circles correspond to simple objects,�lled circles to compound objects.
Dashed lines correspond to target absent trials, solid lines to target present trials. SeeFigure 7 for
the slope and intercepts.
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Sparse Clutter
present absent present absent

simple 45/700 112/666 53/760 197/631
compound 39/734 125/676 73/716 233/1,114
signi�cance -/- */- */- */*

Figure 7: Slopes (msec/item)/inter cepts (msec) from Figure 6. The asterisks in the bottom row
indicate signi�cant dif ferencesbetween the parameters for simple and compound objects (paired
t-test, p < 0:05).

We also analyzed the data separately for the two experimental sessionsrun by each observer.
Although observers were generally faster during the second session, they produced the same
pattern of results on both days. Thesedata were pooled aswell.

The average results for the seven observers in the sparsecondition are shown on the left side
of Figure 6. The open circlescorrespond to simple object displays, the �lled-cir cles to compound
object displays. The solid lines indicate that the target was present,the dashed lines indicate that
the target was absent.Thesereaction time functions werewell �t by lines, the slopesand intercepts
of which are given in Figure 7. Sincewe are interested in whether simple and compound objects
produce similar results, we used a paired t-test to compare the slope and intercept values for the
search functions corresponding to these two object types. When the target was present in the
sparsecondition, we found no dif ference in performance between displays composed of simple
objectsand those composed of compound objects. When the target was absent, the slope for the
compound objectswas slightly , but signi�cantly , greater than that for the simple objects.

The averageresults for the sevenobservers in the clutter condition are shown on the right side
of Figure 6. Here we seea more noticeable dif ferencein the reaction times for displays composed
of simple objects (open circles) and compound objects (�lled circles). Again, the data were well
�t by lines and the slope and intercepts of these lines are given in Figure 7. When the target was
present, the slope for the compound objectswere steeper than that for the simple objects. When
the target was absent, the slope and intercept for the compound objectswere greater than those
for the simple objects.

A MANOV A of the target-present data revealed main effects for set size (F[2; 24] = 79:6, p
= 0:00) and object type (F[1; 12] = 8:32, p = 0:014). The main effect of display arrangement did
not reach signi�cance (F[1; 12] = 4:64, p = 0:052). All two-way interactions were signi�cant, as
was the three-way interaction (F[2:24] = 5:64, p = 0:009). This last interaction bears dir ectly on
our hypothesis. We predicted that the set-size effect would be similar for compound and sim-
ple objects when these objects were sparsely arranged, but not when they were were randomly
arranged.

4 Discussion

To brie�y summarize our results, we found that when the compound and simple objects were
arranged in a sparsearray, they produced similar search times. In particular , we found no dif fer-
encein performance when the target was presentand only a small dif ferencewhen the target was
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absent. When the objectswere arranged asdenseclutter, however, a clear dif ferencebetween the
two types of objectsemerged. Observers were slower to determine the target's presenceamongst
compound objects, and they were extremely slow to determine the target's absencein displays
composed of compound objects.

The critical dif ferencebetween the sparseand clutter arrangements is in the dif �culty they pose
for object segmentation. In sparse displays, the objects are effectively ”pr e-segmented”, and so,
we argue, these displays measure the time it takes observers to judge whether a whole object is
a food target. Becausesearch times were similar for the simple and compound objects in sparse
arrays, theseobjectsappear to be similarly discriminable from food. In clutter displays, however,
the observersmust segmentthe objects.Thus, the dif ferent pattern of results for thesedisplays can
reasonably be attributed to dif ferencesin object segmentation. The �nding that, in clutter, search
times were considerably slower for the compound objects than for the simple objects suggests
that observers have greater dif �culty segmenting compound objects. In particular , we would
argue that when these objects appear in clutter, their parts cannot always be grouped through
bottom-up processes.

This failur e to group object parts could cause observers to treat each part of the object as a
separate item which they must select and reject independently . To illustrate this idea, consider
an observer searching for food in a display with a partially occluded table lamp. The observer
might selectan image chunk corresponding to the lamp baseand reject it as not being food. This
rejection need not involve recognition, it could be based on the decision that the item is made
from some inedible material like wood or metal, or it could be that the item simply doesn't look
like any familiar food. Later, the observer might independently selecta chunk corresponding to
the lamp shade and reject it. Since our compound objects had at least twice as many parts as
our simple objects,one might expect search slopes for the compound displays to be at least twice
that for simple displays. But the parts within compound objects were not randomly arranged,
and so grouping cueslike colinearity sometimes allowed the preattentive segmentation of whole
objects. In addition, becausethe objectsthemselveswere randomly positioned, someobjectswere
not obscured by clutter. 4

An alternative explanation for our result is that observers select and reject compound objects
in their entirety, but they do so only after recognition-driven segmentation. Consider again an
observer searching for food in a display with a table lamp. By this second account, the observer
might selectthe baseand recognize it as the bottom of a lamp. This would cue the observer to se-
lect the shadeand then rejectthe entire lamp. In this case,there are two selectionsteps,one involv-
ing the results of image-driven grouping processes,the other involving the results of recognition-
driven grouping processes.Thus, the items of the item-by-item search would be whole objects,
but the amount of processing required to select and reject whole objects would depend on the
complexity of the object. We have some preliminary data suggesting that under the conditions of
our experiment, observersuse the former strategy. But regardlessof which account bestdescribes
this process,our results show that clutter can have a signi�cant effect on the processesunderlying
visual search.

4The idea that search rates depend upon the number of object parts might also suggest that search for compound
targets will be faster than search for simple targets. (Compound objects,having twice asmany parts as simple objects,
would seemto provide twice as many targets.) But this reasoning assumesthat the observer has two separatechances
of landing on the target. If observersusean orderly scanpath, then given the closespatial proximity of the target parts,
the chancesof landing on eachof the target parts would be highly correlated.
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We wish to emphasize again that our task of searching for a category target in clutter dif fers in
a fundamental way from the search for a known target. When the observer knows the size, color,
shape or likely location of the target, the observer can use a search template or speci�c target
feature to guide search. Only those stimuli that share this feature would be given further process-
ing (Cave & Wolfe, 1990;Egeth, Virzi, & Garbart, 1984;Nakayama & Silverman, 1986;Treisman &
Sato, 1990;Folk, Remington, & Johnston, 1992;Rossi & Paradiso, 1995). It is important to keep
this distinction in mind when contrasting our experiment with another experiment that examined
the effect of clutter on search (Wolfe, Oliva, Hor owitz, Butcher, & Bompas, 2002). In this earlier
experiment, the observer searched for a known target (a yellow ”T” ) amongst distractors that
closely resembled the target (yellow ”L”s). These letter stimuli were superimposed on either a
blank background or a cluttered scene.The clutter causedan increasein the intercept but not the
slope of the search function. The authors interpr eted this as evidence that observers could ”seg-
ment out” the clutter in a single step. Presumably, observers eliminated the clutter by selecting
only those items that possessedthe distinctive target feature (e.g.,yellow). In our experiment, the
targetshad no common distinctive feature and so observerscould not use the absencethis feature
to eliminate the clutter.

We undertook this experiment becausewe questioned the view that visual attention selects
whole objectsprior to recognition. We were skeptical of this view becausewe believe that bottom-
up grouping processescannot always extract whole objects from cluttered scenes. In particular ,
when an object'sparts aremade from dif ferent materials, it may be impossible to group theseparts
through a purely bottom-up process.The results of this experiment support this idea: observers
were slower to �nd targets in scenescomposed of compound objects than scenescomposed of
simple objects. We have offered two explanations for this result: observer may treat compound
objects as multiple items, or they may segment these objects with a recognition-driven process.
Either way, theseresults suggeststhe need to modify simple accountsof segmentation, attention
and recognition.
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