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Abstract
The past two decades have seen remarkable advances in photo-realistic rendering of everything
from inanimate objects to landscapes, animals, and humans. We previously showed that despite
these tremendous advances, human observers remain fairly good at distinguishing computer-
generated from photographic images. Building on these results, we describe a series of follow-
up experiments that reveal how to improve observer performance. Of general interest to anyone
performing psychophysical studies on Mechanical Turk or similar platforms, we find that observer
performance can be significantly improved with the proper incentives.
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Introduction

Advances in computer graphics have yielded stunningly photo-realistic images. Of particular
challenge is the rendering of portraits of people with photo-realistic skin, hair, and facial
features. Previous work, dating from 2007 through 2016, found that human observers’
ability to distinguish computer-generated from photographic portraits of people has been
slowly declining (Farid & Bravo, 2007, 2012; Fan, Ng, Herberg, Koenig, & Xin, et al., 2012;
Holmes, Banks, & Farid, 2016). Previous work has also found that it is difficult to
computationally discriminate between computer-generated and photographic images
(Conotter et al., 2014; Dang-Nguyen et al., 2012a; Dang-Nguyen et al., 2012b; Dehnie
et al., 2006; Dirik et al., 2007; Gallagher & Chen, 2008; Khanna et al., 2008; Lalonde &
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Efros, 2007; Lyu & Farid, 2005; Ng et al., 2005; Wang & Moulin, 2006; Wen et al., 2007).
Building on our earlier work in Holmes et al. (2016), we show that observer accuracy may be
better than previously thought. In particular, we show that with proper training, feedback,
and incentives, observer performance on distinguishing computer-generated from
photographic images can be significantly improved.

The accuracy with which observers can distinguish computer-generated from photographic
images has both legal and scientific consequences. On the legal front, the prosecution of child
pornography crimes can be complicated if the images in question cannot be reasonably proven
to be of real children (the reason for this is that the legal statute classifies computer-generated
child pornography differently than real photographic images; Ashcroft v. Free Speech
Coalition, 2002). On the scientific front, quantitative measures of photo-realism provide
valuable information for the advancement of even more photo-realistic rendering.

We begin by briefly describing our previous results (Holmes et al., 2016) that provide a
baseline accuracy for observer accuracy in discriminating computer-generated and
photographic images. We then describe two new experiments that present the conditions
that lead to greater accuracy. And lastly, we describe two additional experiments designed to
determine what cues observers use to perform this discrimination task.

Methods

Using techniques as described in Holmes et al. (2016), we collected 30 high-quality computer-
generated images and 30 matching photographic images (Figures 1–3). These 60 images
constitute the testing images. We collected an additional 10 computer-generated images and
10 matching photographic images (Figure 4). These images constitute the training images.

All computer-generated and photographic images were matched for brightness and
contrast (in luminance/chrominance space) to ensure that observers could not classify
images based on systematic differences in a low-level image statistic—see Holmes et al.
(2016) for details on how this image matching was performed.

We recruited participants from Amazon’s Mechanical Turk on-line work force. After a
Mechanical Turk user opted to participate in our experiment, they were given a brief
summary of the task and were asked to consent to the terms of the experiment.

After an image was presented, the observer was asked to make a judgment as to whether it
was computer generated (CG) or photographic and whether the person in the image was
female or male. Observers saw one image at a time and the matched CG and photographic
images were randomly distributed throughout the block. To ensure that observers did not rush
their judgment, the experimental program did not allow an observer tomake their selection for
3 seconds after image onset. After this delay, the observer could click a button to indicate their
choice: ‘‘male/CG,’’ ‘‘male/photographic,’’ ‘‘female/CG,’’ or ‘‘female/photographic.’’ The
order in which images were presented was randomized. Each participant was paid for their
time. The observer’s ability to correctly identify the person’s gender in each image was used as
a means of discarding the results from observers who responded randomly. A threshold of
95% accuracy on this gender-identification task was set prior to data collection.

Results

In our original study (Holmes et al., 2016), we performed two experiments that are briefly
reviewed here. In the first experiment—with no training or feedback—observers classified an
image as CG or photographic. Observer performance was assessed as a function of image
resolution. The second experiment was similar, except this task was preceded by a short
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Figure 1. Computer-generated images (first and third columns) paired with their photographic matches
(second and fourth columns). See Figures 2 and 3.
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Figure 2. Computer-generated images (first and third columns) paired with their photographic matches
(second and fourth columns). See Figures 1 and 3.
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Figure 3. Computer-generated images (first and third columns) paired with their photographic matches
(second and fourth columns). See Figures 1 and 2.
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Figure 4. Training computer-generated images (first and third columns) paired with their photographic
matches (second and fourth columns).
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training session in which observers were shown 20 examples of computer-generated and
photographic images (Figure 4). These 20 distinct training images were selected and
processed in the same way as the full set of 60 images. Each image was labeled as
photographic or CG and observers were forced to view the image for a minimum of 3
seconds before proceeding to the next training image. Following the training stage,
observers saw the same 60 images used in the first experiment. During this testing stage,
no feedback was provided. In each experiment, we collected responses from 250 Mechanical
Turk participants. Participants were paid $0.50 for their time. Shown in Figure 5(a) and (b)
is the average observer accuracy in correctly identifying computer-generated and
photographic images as a function of image resolution. Percent correct response is not
necessarily the best measure of observer performance because an observer might have a
bias to say that most images are photographic (or CG) for all images. In that case,
overall percent correct is reduced due to bias. The appropriate way to assess observer
performance independent of bias is provided by signal-detection methods as described next.

Figure 5. Percent correct for (a) no training or feedback (Holmes et al., 2016); (b) training but no feedback
(Holmes et al., 2016); (c) training and feedback; and (d) training, feedback, and incentives. Error bars
represent 95% confidence intervals.
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Shown in Table 1(a) and (b) are these results expressed as d 0 and !.1 d 0 represents observer
sensitivity (independent of bias) and ! represents observer bias. In a two-alternative task
such as ours, d 0 is a measure of sensitivity and if there is no bias, d 0 ¼ 1 corresponds to an
overall accuracy of 76%. A value of !5 1 corresponds to a bias to classify an image as CG,
!4 1 corresponds to a bias to classify an image as photographic, and !¼ 1 corresponds to
no selection bias. In our previous work, we pooled all of the observer data and computed a
single d 0 and ! (Holmes et al., 2016). Here, we compute the average individual d 0 and !, thus
allowing us to perform statistical tests for significance.

In summary, we previously showed that observers with no training have a clear bias for
classifying an image as photographic (Holmes et al., 2016). Across all six resolutions, the
average ! was 2.25. Resolution had only a relatively small effect on performance from d 0 of
1.65 (at the maximum resolution of 600) to d 0 of 1.43 (at the minimum resolution of 100). A
small amount of training was surprisingly effective at reducing the bias and increasing the
sensitivity. Across all resolutions, the average ! fell from 2.25 to 1.60, and the average d 0

increased slightly from 1.65 to 1.87.
There are three rationales for testing multiple resolutions in each of these two

experiments: (a) provide a direct comparison to our original study (Holmes et al.,
2016); (b) in the legal setting, it is common for jurors to be asked to assess the
realism of images of varying resolution from small thumbnail-sized to full-resolution
images; (c) by looking at how performance changes over resolution, we may be able
to infer something about what content observers do or do not rely on when classifying
images as CG or photographic.

We hypothesize that because a small amount of training was so effective at reducing bias,
most of our observers were simply unaware as to the high quality of modern computer-
generated images. One of the goals of the present paper is to further assess this hypothesis.

Feedback

Because a small amount of training had such a dramatic increase in performance, we
wondered whether our previous study had fully characterized the photo-realism of
computer-generated content. Understanding the limits of human performance is
important in the legal setting where it is critical to understand observer sensitivity and
bias, and for the computer-graphics community where it is valuable to understand the
successes and failures of photo-realistic rendering.

Table 1. d0 and ! for (a) no training or feedback (Holmes et al., 2016); (b) training but no feedback (Holmes
et al., 2016); (c) training and feedback; (d) training, feedback, and incentives; and (e) masked eyes.

Resolution

(a) (b) (c) (d) (e)

d0 ! d0 ! d0 ! d0 ! d0 !

100 1.43 2.29 1.52 1.75 1.70 1.71 1.85 1.54 1.08 1.38
200 1.59 2.22 1.80 1.71 1.92 1.60 2.18 1.40 1.44 1.24
300 1.78 2.23 1.84 1.54 2.09 1.29 2.19 1.38 1.34 1.23
400 1.72 2.15 2.02 1.53 2.10 1.49 2.27 1.28 1.54 1.31
500 1.75 2.36 2.04 1.45 2.10 1.47 2.23 1.19 1.52 1.32
600 1.65 2.27 2.00 1.62 2.14 1.40 2.35 1.46 1.54 1.45
Average 1.65 2.25 1.87 1.60 2.01 1.49 2.18 1.37 1.41 1.32
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Building upon our two previous experiments, we attempted to further explore the limits of
human performance on this task. To do so, we provided observers with the same training as
in the second experiment, and we provided feedback during testing. After each response in
this third experiment, the image was annotated with the correct classification (photographic
or CG). To make sure that the observer noted the feedback, he or she had to click the button
corresponding to the correct answer. The correct answer was displayed in red if the
observer’s response was incorrect and in green if it was correct.

Shown in Figure 5(c) is the average observer accuracy in correctly identifying computer-
generated and photographic images as a function of image resolution. Shown in Table 1(c)
are these results expressed as d 0 and !. With training and feedback, sensitivity (d 0) increased
and bias (!) decreased. As compared to the condition with training but no feedback, average
d 0 increased from 1.87 to 2.01 and ! fell from 1.60 to 1.49.

Interestingly, we observed that over the course of the experiment, observer sensitivity was
relatively constant and bias steadily decreased as observers received more feedback. In
particular, shown in Figure 6 is the sensitivity and bias averaged over a sliding window of
20 trials. With this sliding window, the first data point is the average response over trials 1
through 20, the second data point is the average response over trials 2 through 21, and so
forth. The average sensitivity (the open (blue) data points) fluctuates from a minimum of
1.92 to a maximum of 2.03 but shows no discernible trend over time. In contrast, the bias
(the filled [red] data points) starts out at a high of 1.59 and gradually decreases to 1.24. These
results imply that the sort of feedback provided in this experiment helps observers reduce
their bias but does not help them improve their sensitivity.

Incentives

In this fourth experiment, we attempted to further improve observer performance
by incentivizing our observers with both a sense of imperative, a financial reward,

Figure 6. Sensitivity d0 (blue open circles) and bias ! (red filled circles) computed over a sliding window of
20 images for Experiment 3 (training and feedback). The error bars correspond to a 95% confidence interval.
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and a sense of competitiveness. Specifically, we added the following text to the
instructions:

Child pornographers in the United States can escape justice by claiming that their images are
computer generated. Your performance in this study will help to evaluate if jurors can reliably
determine if an image is computer generated or not. We ask, therefore, that you try your best at
this task.

We also increased the payment from $0.50 to $1.00 and observers were told at the beginning
of the experiment that they would receive a $4.00 bonus if their overall accuracy was 90% or
higher (their accuracy was shown after each trial). And lastly, to tap into their
competitiveness, observers were told on each trial if their performance was below or
above average performance from our previous observers.

Shown in Figure 5(d) is the average observer accuracy in correctly identifying
computer-generated and photographic images as a function of image resolution. Shown
in Table 1(d) are these results expressed as d 0 and !. The addition of incentives led to an
increase in sensitivity (d 0) and reduction in bias (!). As compared to the condition with
training and feedback, average d 0 increased from 2.01 to 2.18 and ! fell from 1.49
to 1.37.

Although we cannot say which of the incentives was most critical (imperative, financial, or
competitiveness), the introduction of incentives considerably improved observer
performance. We imagine that in a legal setting, where the stakes are quite high, jurors,
prosecutors, and judges would be equally incentivized.

Shown in Figure 7 is the average sensitivity (d 0) and bias (!) for each of the four conditions.
We performed a four-way ANOVA to determine if there was a main effect on d 0 and ! for the
four conditions (no training/no feedback; training/no feedback; training/feedback; training/
feedback/incentives). The ANOVA, however, failed Levene’s test for homogeneity of variance

Figure 7. Sensitivity d0 (blue open circles) and bias ! (red filled circles) for each of four conditions: (a) no
training and no feedback; (b) training and no feedback; (c) training and feedback; (d) training, feedback, and
incentives. The error bar for each condition is smaller than the data point.
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for both d 0 and !. We therefore performed a nonparametric permutation analysis which
revealed a significant (p< 0.05) effect of condition for both d 0 and !.

Follow-up Wilcoxon tests (one-sided) revealed the following pattern of significance for
training (T), feedback (F), and incentives (I). The p values were corrected for multiple
comparisons using the Holm method.

Conditions d0 b

no T/no F v. T/no F <0.001 <0.001
no T/no F v. T/F <0.001 <0.001
no T/no F v. T/F/I <0.001 <0.001
T/no F v. T/F <0.001 0.002
T/no F v. T/F/I <0.001 <0.001
T/F v. T/F/I <0.001 0.021

In summary, training, feedback, and incentives significantly increase sensitivity and
decrease bias.

Single Resolution

In the fifth experiment, we tested observers on just one resolution using the testing plus
feedback paradigm (Feedback section). We hypothesized that observers may use different
strategies to classify high-, medium-, and low-resolution images. If this were true, then we
would expect that more training/feedback at one resolution would improve performance.

A new set of observers was trained and tested on the full set of 20 training and 60 testing
images at one resolution of 600, 400, or 200 pixels in size. The 300 observers were divided
into three pools with 100 observers responding to each resolution. At a resolution of 600, the
average sensitivity and bias were 2.09 and 1.04, as compared to 2.14 and 1.40 in Experiment
3 (Feedback section). At a resolution of 400, the average sensitivity and bias were 2.09 and
1.22, as compared to 2.10 and 1.49 in Experiment 3. And, for a resolution of 200, the average
sensitivity and bias were 1.88 and 1.37, as compared to 1.92 and 1.60.

A two-sided Wilcoxon test reveals that d 0 for the variable-resolution is higher (p< .001)
and that there was no statistically significant effect on ! (p¼ .25). It seems, therefore, that
observers do not use a specialized resolution-based strategy.

We were surprised by this finding and by the general observation that across all conditions,
there was not a more dramatic effect of resolution on performance. We hypothesize that this is
a result of the fact that observers commonly see faces at different distances and so perhaps
have adapted to reasoning about faces at a range of resolutions. To test this theory, we ran a
control condition in which images were down-sized to each of six resolutions and then re-sized
back to their original resolution of 600 pixels. In this fixed-resolution condition, the images
had the same spatial frequency content as the variable-resolution condition. If our theory was
correct, then we would have expected to see lower performance on this condition. However,
the average d 0 and ! in the fixed-resolution condition was 2.03 and 1.59 as compared to 2.05
and 1.50 in the variable-resolution condition. A two-sided Wilcoxon tests reveals no
statistically significant difference in d 0 or ! between these conditions. Contrary to our
hypothesis, observer performance was not lower in the fixed-resolution condition.
Although somewhat surprising, our results are consistent with previous studies that
showed that images as small as 32" 32 pixels provide enough information to identify
objects and the semantic category of real-world scenes (Torralba, 2009).
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Masked Eyes

In the sixth and final experiment, we attempted to determine what cues observers may use to
differentiate photographic from computer-generated images. We hypothesized that highly
realistic computer-generated eyes may play a role in assigning animacy to a photo (see, for
example, Looser & Wheatley, 2010). To test this hypothesis, we placed a black bar over both
eyes in each of the 20 training and 60 testing images (Figure 8).

Shown in Table 1(e) are these results expressed as d 0 and !. Across each resolution,
sensitivity (d 0) decreased but there was almost no bias (! # 1). As compared to the
previous condition (with training and feedback, Feedback section), the average d 0

decreased from 2.01 to 1.41 and ! fell slightly from 1.49 to 1.32. A nonparametric
permutation analysis reveals a significant (p< 0.05) effect of condition for both d 0 and !.
This suggests that the eyes are helpful in distinguishing photographic from computer-
generated faces.

To make sure that the differences in performance were in fact due specifically to the eyes
being masked out, we repeated this experiment with a mask of the same size placed randomly
in each image. In this condition, the average d 0 and ! were 1.98 and 1.70, similar to the
original unmasked condition (Experiment 3). It would seem then that the eyes do play an
important role in assigning animacy: Their absence removes bias and also makes the task
considerably more difficult. A more in-depth examination found no consistent benefit
afforded by different facial features (Holmes, 2016).

Familiar Faces

Several of the faces in our testing data set were of famous actors (Robert DeNiro, Pete
Dinklage, Russel Crowe, Tom Cruise, Bryan Cranston, and AnnaSophia Robb). Because
it has been established that familiar and unfamiliar faces are processed differently
(Johnston & Edmonds, 2009), we wondered if these differences transferred to our task

Figure 8. Original (top) and masked eyes (bottom) photographic (Columns 1 and 3) and computer-
generated (Columns 2 and 4) images.
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of differentiating computer-generated from photographic images. We separately analyzed
performance between the seven pairs of familiar faces from the remaining 23 pairs of
unfamiliar faces. In the training, feedback, and incentives condition, observers performed
better across all resolutions. Averaged across all resolutions, observer accuracy on
familiar CG and photo faces was 81.6% and 90.4% (d 0 ¼ 2:48 and ! ¼ 1:21) as
compared to performance on unfamiliar faces of 84.4% and 84.0% (d 0 ¼ 2:18 and
! ¼ 1:36). A nonparametric permutation analysis reveals a significant (p< 0.05) effect
of familiarity on both d 0 and !.

As with other aspects of face perception and recognition, observer’s performance with
familiar faces is somewhat better.

Discussion

Modern-day computer graphics is capable of rendering highly photo-realistic imagery.
Despite these advances, we find that with the appropriate training and incentives,
observers are able to reliably distinguish between computer-generated and photographic
portraits: depending on the resolution of the images, observer accuracy ranges from 85%
to 90%. We were struck by the impact of incentivizing observers with a sense of imperative
and competitiveness along with a financial reward. The effect of these incentives is
particularly important to anyone performing psychophysical studies on Mechanical Turk
or similar platforms (Buhrmester, Kwangand, & Gosling, 2011; Horton, Rand, &
Zeckhauser, 2011; Paolacci, Chandler, & Ipeirotis, 2010).

It could be argued that the increase in performance in the training condition is a result of
observers noting that the number of computer-generated and photographic images were
balanced (they were not told the distribution in any of the conditions). If this were the
case, then we would not have expected to see a continuing improvement in the feedback
and incentive conditions. While there may have been some benefit to knowing the
distribution of images, we believe that the more likely explanation for the improved
performance is that our observers simply learned differentiating characteristics through
training and feedback.

Precisely what image features or properties that observers are using is still not clear. We
expect that by better understanding how observers are performing, we can train observers to
perform even better at this task and, paradoxically, improve the photo-realism of computer-
generated content.
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Note

1. Denote the hit-rate H as the accuracy of correctly identifying a computer-generated image and the
false-alarm rate F as 1 minus the accuracy of correctly identifying a photographic image. Observer
sensitivity d 0 is z Hð Þ & z Fð Þ, where z 'ð Þ corresponds to the z-transform. Observer bias ! is
g z Hð Þð Þ=g z Fð Þð Þ, where g 'ð Þ is a zero-mean, unit-variance normal distribution.
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