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ABSTRACT A common approach to pro- 
tein modeling is to propose a backbone struc- 
ture based on homology or  threading and then 
to attempt to build side chains onto this back- 
bone. A fast algorithm using the simple criteria 
of atomic overlap and overall rotamer proba- 
bility is proposed for this purpose. The method 
was first tested in the context of exhaustive 
searches of side chain configuration space in 
protein cores and was then applied to all side 
chains in 49 proteins of known structure, using 
simulated annealing to sample space. The latter 
procedure obtains the correct rotamer for 57% 
and the correct x1 value for 74% of the 6751 res- 
idues in the sample. When low-temperature 
Monte-Carlo simulations are initiated from the 
results of the simulated-annealing processes, 
consensus configurations are obtained which 
exhibit slightly more accurate predictions. The 
Monte-Carlo procedure also allows converged 
side chain entropies to be calculated for all res- 
idues. These prove to be accurate indicators of 
prediction reliability. For example, the correct 
rotamer is obtained for 79% and the correct x1 
value is obtained for 84% of the half of the sam- 
ple residues exhibiting the lowest entropies. 
Side chain entropy and predictability are 
nearly completely uncorrelated with solvent- 
accessible area. Some precedents for and impli- 
cations of this observation are discussed. 
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INTRODUCTION 
How an amino acid sequence encodes a protein’s 

three-dimensional structure is a major unsolved 
problem in molecular biology. Currently, x-ray crys- 
tallography and nuclear magnetic resonance spec- 
troscopy are the major methods of determining 
structure. These experiments are time-consuming 
and require elaborate equipment to carry out and 
extensive expertise to interpret. In addition, struc- 
ture determination by crystallography cannot be 
performed on all proteins because not all proteins 
can be crystallized. Protein and DNA sequencing, on 
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the other hand, are much less laborious procedures, 
which are carried out on a routine basis in thou- 
sands of laboratories equipped with the basic tools of 
molecular biology. Only about 3500 protein struc- 
tures have been determined, while tens of thousands 
of sequences are known. 

The utility of the information contained in pro- 
tein- and nucleic-acid-sequence databases would be 
greatly enhanced if one could predict protein three- 
dimensional structure from sequence alone. Much 
work on structure prediction has involved prediction 
of protein secondary and some work has 
done on packing such structures into a three-dimen- 
sional tertiary structure .7,8 Other successful at- 
tempts to predict tertiary structure are based on 
model-building techniques that make use of ob- 
served h o m o l ~ g y . ~ ~ ~ ~  This method is useful only 
when the sequence of unknown structure is found to 
be homologous to  that of a protein of known struc- 
ture. Loops and other regions exhibiting irregular 
secondary structure are usually the least conserved 
structurally, and can be modeled using a variety of 

finally, side chains are added and 
the whole structure is subjected to energy minimi- 
zation.” 

Other methods of protein tertiary-structure pre- 
diction are based the “inverse folding” con- 
~ept,Z’-’~ or alignment of sequence-to-structure (re- 
viewed in references 26 and 27). In this approach, 
the sequence of the unknown protein is “threaded” 
onto known backbone structures and a contact or 
other energy function is calculated for side chain- 
side chain and sometimes side chain-backbone in- 
teractions. Such an energy is determined for each 
“thread” or sequence-to-structure alignment. The 
backbone-threading combination is selected that 
gives the lowest energy. Like the homology-based 
methods, inverse folding methods give only back- 
bone predictions, and do not build side chain or, in 
many cases, even loop backbone conformations. 
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A recently published prediction algorithm uses a 
Monte Carlo strategy to iteratively search for local 
interactions in the protein backbone.” Local inter- 
actions are hierarchically accrued to obtain the 
backbone structure of small domains. Although SUC- 

cessful at predicting backbone topologies, this fold- 
ing algorithm does not build complete side chain 
configurations. 

The focus of this paper is a fast, automated side 
chain conformation prediction algorithm that can be 
applied to backbone structures built using homology 
modeling or inverse folding or other computational 
methods. Existing algorithms for this purpose can 
be divided into three groups: knowledge-, database-, 
and rule-based  method^'^-^'; local optimization of 
one or a small group of side chain structures at one 

tive, optimization of all side  chain^.^'-^^ In some of 
these methods, the search space can be limited to a 
rotamer library, as suggested by Ponder and Rich- 
a r d ~ ~ ~  in another context. These methods will be 
discussed and compared to the current method in the 
Discussion section of this paper. 

We present a simple, automated, global optimiza- 
tion procedure for side chain prediction most similar 
to those of Holm and Sander4’ and Lee and Sub- 
biah?9 It begins with the demonstration by Ponder 
and Richards45 that each side chain conformation 
can be represented by a selection from among a 
small number of discrete rotamers. We show that 
this is a reasonable approximation of nativelike 
structure in protein cores and in entire proteins, es- 
pecially if the resulting structures will be further 
refined by energy minimization, as is often done in 
homology modeling and inverse folding problems. To 
compute the best set of side chain conformations, the 
scoring criteria of number of atomic overlaps and 
side chain probability from the rotamer library are 
used. We show that these simple criteria are ade- 
quate to  determine side chain conformations in the 
hydrophobic cores of several proteins. To sample the 
conformation space for all side chains in a given pro- 
tein, rotamer configurations are searched using a 
simulated annealing a l g ~ r i t h m . ~ ~  The “best” struc- 
ture found by this search strategy is similar to the 
native structure in most positions, suggesting that 
our search strategy adequately explores conforma- 
tional space and that our scoring criterion strongly 
selects for nativelike conformations. The algorithm 
can be applied to a complete protein containing 100 
moving residues in about 2 CPU minutes on a MIPS 
R4400/150 processor (Silicon Graphics Iris Indigo). 

Low-temperature Monte-Carlo sir nu la ti on^^^ ini- 
tiated from the results of the simulated-annealing 
runs provide both a consensus configuration and an 
assessment of prediction accuracy for each residue. 
The low temperature guarantees that only low-en- 
ergy configurations will be visited. From the frac- 
tion of times each rotamer is sampled, an entropy is 

time33-38. , and global, but not necessarily exhaus- 

calculated at each position. The side chain confor- 
mation prediction accuracy is highest at positions of 
low entropy (that is, a t  positions where the greatest 
consensus occurs), and becomes successively worse 
as the entropy increases. Thus, this method associ- 
ates a reliability factor or confidence level with the 
prediction of each side chain. This allows the user to 
pay attention to only the most reliable predictions. 
Obtaining convergent entropies raises the simula- 
tion time for a protein containing 100 moving resi- 
dues to about 15 minutes on a MIPS R4400/150 pro- 
cessor. 

It is intuitive to expect surface residues to  exhibit 
greater conformational freedom (greater entropy) 
than buried residues. However, this tendency is ob- 
served only very weakly: Surface residues are 
nearly as predictable, on average, as buried resi- 
dues, and exhibit very similar entropy distributions. 
Some implications of this are discussed. 

In addition to providing entropies of rotamer ap- 
pearance, the low-temperature Monte-Carlo proce- 
dure gives a consensus configuration, which we take 
to be the most frequently visited rotamer at each 
position. The consensus configuration proves to be a 
slightly better predictor of the native side chain con- 
figuration, on average, than is the configuration re- 
sulting from any single simulated-annealing run. 

This algorithm has been used in conjunction with 
backbone model-building techniques for fast and ac- 
curate side chain structure predi~tion?~-~’ The 
method presented here is global, rather than con- 
fined to use on a single side chain or a selected group 
of side chains, such as the buried residues. Its chief 
benefits are that it can be quickly applied to all res- 
idues of a protein, it provides an internally gener- 
ated measure of its own prediction accuracy, and its 
efficacy has been demonstrated by evaluation over a 
large test-set: 49 proteins of diverse structure, com- 
prising 6751 variable side chains. Aspects of this 
work were presented earlier.51,52 

METHODS 
Calculation of the Best Rotamer Configuration 

The term “side chain configuration” is used here 
to mean a list of rotamers, one per side chain posi- 
tion. Given a rotamer library, the best rotamer con- 
figuration (BRC) of a protein or part of a protein of 
known structure is that configuration whose side 
chain atoms exhibit the smallest atomic root mean 
square (RMS) distance from the corresponding at- 
oms of the native structure. The BRC is the best 
approximation that can be made to a known side 
chain configuration using the rotamers from the li- 
brary. 

Alanine and glycine do not have side chains, and 
therefore do not appear in the list of rotamers defin- 
ing the BRC. In the rotamer library we use, the pyr- 
rolidine ring of proline is regarded as fixed, so pro- 
line does not appear either. S-S bonded cysteines 
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were also removed from the list, as were prosthetic 
groups and residues bonded to them. Finally, resi- 
dues reported as ASX and GLX were excluded, as 
were residues whose numbers differed only by a suf- 
fix (such as VAL62 and ASN-62A of elastase, PDB 
entry53 lhne), and only the first chains of multiple- 
subunit proteins were studied. Our programs are ca- 
pable of dealing with these situations, but not all the 
programs used to calculate solvent-accessible sur- 
face handled these variations correctly. It was our 
initial intent to report results on the common subset 
of residues that could be handled by all the pro- 
grams in use; however, certain of the above excep- 
tions became apparent only during the subsequent 
analysis. Thus, surface-area analysis could not be 
applied to all residues for which we give simulation 
data. The simulation dataset includes 6751 residues; 
when we report surface areas, a subset of 6535 res- 
idues is utilized. 

In determining the BRC, the following equation is 
used to compute the RMS interatomic displacement 
from the known native side chain conformation: 

where Di,nat-rot, is the distance between atom i in the 
native structure and the corresponding atom in rot- 
amer j and N ,  is the number of atoms in residue m. 
The summation is carried out only over “moving at- 
oms”: side chain atoms beyond Cp; these are the 
ones whose positions change when x angles are al- 
tered. Throughout this paper, we follow this conven- 
tion in the calculation of RMS interatomic differ- 
ences in side chain atom positions. Some, but not all, 
other researchers include Cp in such calculations. 
This lowers the resulting RMS value for a residue by 
the factor 

I N ,  

This factor amounts to a 29% reduction in the worst 
case (serine, N ,  = 1) and 5% in the best case (tryp- 
tophane, N ,  = 9). For this reason, our RMS values 
may not be directly comparable to those of other 
authors. 

For an entire protein, or for some subset of its 
residues, we have for the RMS interatomic displace- 
ment of the side- chain atoms: 

where m ranges over the residues in question, and 
N ,  is the number of moving atoms in residue m. 

In using Equation (l), allowance is made for num- 

ber-order symmetry, as in x2 of phenylalanine, ty- 
rosine, and aspartate and x3 of glutamate. If rota- 
tion of one of these torsions by 180” gives a lower 
value of DmS,m, then the rotated conformation is 
the one utilized in the calculation. 

Since the BRC rotamers are, for a given rotamer 
library, the ones that best fit the native side chains, 
the BRC represents the best possible fit to the native 
structure which one can obtain using the rotamer 
library from which the BRC was derived. Thus, in a 
rotamer-based side chain prediction method, one 
must consider both how well the BRC fits the native 
structure and how well the method predicts the 
BRC . 
Use of Rotamers to Model Side 
Chain Conformations 

We employed a rotamer library based on that de- 
scribed by Ponder and Richardsd5 We extended the 
library, however, to encompass all x angles, whereas 
Ponder and Richards reported significant popula- 
tions only through x2 in most cases. The extension 
was performed by adding the missing rotamers 
based on the simplest of chemical considerations. 
For example, if three-way torsions were to be added, 
as for x3 and x4 of lysine, we added them with the 
three “generic” values of k60” and 180”. The nine 
rotamers thus added to fill out a “parent” rotamer 
with x1 and x2 values given by Ponder and Richards 
were each given a probability of appearance equal to 
one-ninth that assigned to the parent by these au- 
thors. 

We performed studies of both hydrophobic cores 
and whole proteins. Therefore, we assessed how well 
BRCs based on our rotamer library fit the native 
side chains both of hydrophobic cores and of whole 
proteins. The cores of nine proteins whose structures 
have been accurately determined by x-ray crystal- 
lography and whose coordinates have been deposited 
in Brookhaven database53 were isolated using the 
Sculpt program (compliments of G. Rose). This pro- 
gram “peels away” consecutive layers of solvent-ex- 
posed atoms to ultimately reveal the innermost hy- 
drophobic core. The cores were visualized using the 
modeling program Insight11 (Biosym Technologies, 
San Diego, CA) and confirmed to be well-packed hy- 
drophobic cores. The BRC and its fit to the native 
structure were determined using Equation (1). 

For our study of whole proteins, 49 proteins (Table 
I) with resolution better than 2.0 A and crystallo- 
graphic R values less than 20% were selected from 
the Brookhaven Data Bank.53 The BRC and its fit to 
the native structure for each side chain were calcu- 
lated using Equation (1) and are listed in Table I. 

The B and -log P Measures 
The object is to explore the space of side chain 

rotamers and to select the BRC from among them. 
To this end, we evaluated the effectiveness of two 
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TABLE I. Proteins Studied and Summary of Results 

BRC 
PDB" N,t6 RMS' Nresd N d e  
lrdg 
4pti 
2ovo 
5rxn 
3ebx 
lctf 
lr69 
lhoe 
2ci2 
2utg 
lubq 
5PCY 
lccr 
4fdl 
2cdv 
2rhe 
1Paz 
lbp2 
2rsp 
2mhr 
l l z l  
21zt 
7rsa 
lmba 
2aza 
4hhb 
4fxn 
4tnc 
2alp 
2ilb 
31zm 

8dfr 
lhne 
ltld 
3est 
2cga 
3bcl 
lca2 
2cab 
2apr 
2aPP 
4PeP 
lgdl 
61dh 
2CPP 
2fb4 
acts 
3grs 

SUm: 
Avg: 
S D  
Min: 

1PPd 

126 
155 
129 
143 
153 
150 
170 
184 
190 
190 
221 
228 
274 
288 
267 
257 
294 
320 
309 
346 
377 
355 
317 
346 
336 
351 
390 
448 
418 
445 
493 
595 
562 
551 
510 
624 
578 
618 
732 
697 
796 
764 
797 
855 
901 

1142 
1054 
1245 
1194 

22885 
467.0 
296.1 
126 

0.589 
0.566 
0.699 
0.750 
0.668 
0.580 
0.760 
0.775 
0.810 
0.817 
0.865 
0.759 
0.641 
0.956 
0.716 
0.743 
0.764 
0.765 
0.961 
0.680 
0.743 
0.717 
0.563 
0.789 
0.727 
0.785 
0.976 
1.040 
0.728 
0.819 
0.755 
0.748 
0.783 
0.817 
0.653 
0.755 
0.779 
0.843 
0.720 
0.719 
0.617 
0.603 
0.729 
0.769 
0.974 
0.743 
0.756 
0.901 
0.742 

0.758 
0.106 
0.563 

34 
36 
39 
39 
45 
46 
52 
53 
55 
60 
65 
73 
76 
80 
81 
82 
88 
91 
92 
93 
95 
95 
97 
99 
99 

105 
115 
127 
132 
132 
135 
153 
155 
163 
164 
183 
191 
194 
201 
203 
239 
245 
254 
261 
276 
318 
331 
348 
361 

6751 
137.8 
88.8 
34 

27 
31 
26 
31 
30 
35 
37 
32 
41 
44 
51 
50 
58 
65 
57 
51 
67 
73 
69 
73 
75 
72 
63 
74 
70 
71 
89 

109 
75 
99 

107 
114 
121 
110 
103 
115 
107 
101 
154 
142 
161 
146 
162 
182 
196 
247 
189 
265 
248 

4715 
96.2 
60.5 
26 

Max: 1245 1.040 361 265 

(continued) 
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TABLE I. Proteins Studied and Summary of Results (Continwd) 

PDB" S~ Sl&Zg Sallh MI' Ml&d Malt 

lrdg 
4pti 
2ovo 
5rxn 
3ebx 
lctf 
lr69 
lhoe 
2ci2 
2utg 
lubq 
5PCY 
lccr 
4fdl 
2cdv 
2rhe 
lP= 
lbp2 
2rsp 
2mhr 
1121 
21zt 
7rsa 
lmba 
2aza 
4hhb 
4fxn 
4tnc 
2alp 
2ilb 
31zm 
1PPd 
8dfr 
lhne 
ltld 
Best 
2cga 
3bcl 
lca2 
2cab 
2apr 
2aPP 
4PeP 
lgdl 
61dh 
2CPP 
2 M  
acts 
3grs 

SUm: 
Avg: 
S D  
Min: 
Max: 

0.765 
0.806 
0.641 
0.769 
0.733 
0.739 
0.673 
0.660 
0.655 
0.733 
0.615 
0.740 
0.711 
0.825 
0.630 
0.756 
0.727 
0.692 
0.761 
0.699 
0.800 
0.811 
0.680 
0.747 
0.798 
0.724 
0.748 
0.646 
0.795 
0.689 
0.741 
0.784 
0.755 
0.712 
0.750 
0.689 
0.717 
0.691 
0.741 
0.754 
0.820 
0.784 
0.732 
0.785 
0.728 
0.764 
0.719 
0.710 
0.740 

0.732 
0.051 
0.615 
0.825 

0.704 
0.613 
0.500 
0.710 
0.667 
0.600 
0.568 
0.625 
0.585 
0.591 
0.529 
0.620 
0.569 
0.646 
0.439 
0.588 
0.597 
0.507 
0.667 
0.493 
0.667 
0.681 
0.651 
0.608 
0.643 
0.549 
0.584 
0.550 
0.720 
0.576 
0.607 
0.649 
0.620 
0.645 
0.612 
0.548 
0.607 
0.584 
0.623 
0.563 
0.770 
0.747 
0.654 
0.637 
0.561 
0.628 
0.646 
0.566 
0.593 

0.610 
0.065 
0.439 
0.770 

0.559 
0.472 
0.462 
0.744 
0.578 
0.609 
0.423 
0.604 
0.491 
0.550 
0.477 
0.603 
0.553 
0.613 
0.383 
0.646 
0.591 
0.473 
0.641 
0.516 
0.632 
0.589 
0.577 
0.545 
0.576 
0.562 
0.557 
0.496 
0.697 
0.553 
0.519 
0.582 
0.555 
0.601 
0.579 
0.563 
0.550 
0.521 
0.547 
0.537 
0.695 
0.698 
0.606 
0.598 
0.565 
0.591 
0.577 
0.514 
0.562 

0.566 
0.069 
0.383 
0.744 

0.824 
0.833 
0.641 
0.769 
0.756 
0.652 
0.731 
0.642 
0.691 
0.733 
0.677 
0.726 
0.684 
0.787 
0.642 
0.768 
0.705 
0.681 
0.772 
0.753 
0.789 
0.779 
0.711 
0.828 
0.798 
0.743 
0.739 
0.677 
0.780 
0.689 
0.748 
0.797 
0.781 
0.736 
0.774 
0.699 
0.696 
0.711 
0.741 
0.714 
0.808 
0.796 
0.732 
0.805 
0.714 
0.796 
0.734 
0.698 
0.740 

0.739 
0.051 
0.641 
0.833 

0.815 
0.645 
0.538 
0.677 
0.700 
0.571 
0.649 
0.594 
0.634 
0.659 
0.549 
0.660 
0.638 
0.631 
0.491 
0.667 
0.537 
0.466 
0.623 
0.603 
0.680 
0.708 
0.635 
0.730 
0.657 
0.662 
0.584 
0.578 
0.760 
0.576 
0.617 
0.693 
0.653 
0.618 
0.689 
0.530 
0.626 
0.614 
0.643 
0.570 
0.745 
0.740 
0.698 
0.670 
0.520 
0.664 
0.677 
0.577 
0.625 

0.634 
0.070 
0.466 
0.815 

0.647 
0.472 
0.538 
0.692 
0.622 
0.543 
0.500 
0.566 
0.582 
0.567 
0.554 
0.626 
0.539 
0.600 
0.395 
0.671 
0.545 
0.429 
0.620 
0.613 
0.621 
0.600 
0.588 
0.626 
0.636 
0.619 
0.557 
0.520 
0.689 
0.561 
0.526 
0.601 
0.606 
0.577 
0.634 
0.541 
0.539 
0.567 
0.562 
0.512 
0.695 
0.698 
0.634 
0.617 
0.554 
0.623 
0.613 
0.529 
0.590 

0.583 
0.063 
0.395 
0.698 

(continued) 
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TABLE I. Proteins Studied and Summary of Results (Continued) 

Frac Frac 
Avg res Avg res 
res <LO A res <l.OA Total Total 

PDB" RMS' RMS" RMS,," RMSsOo RMSP RMSSoq 

lrdg (1) 
4pti (2) 
2ovo (3) 
5mn (4) 
3ebx (5) 
lctf (6) 
lr69 (7) 
lhoe (8) 
2ci2 (9) 
2utg (10) 
lubq (11) 
5pcy (12) 
lccr (13) 
4fdl (14) 
2cdv (15) 
2rhe (16) 
lpaz (17) 
lbp2 (18) 
2rsp (19) 
2mhr (20) 
1121 (21) 
21zt (22) 
7rsa (23) 
lmba (24) 
2aza (25) 
4hhb (26) 
4fxn (27) 
4tnc (28) 
2alp (29) 
2ilb (30) 
3hm (31) 
lppd (32) 
8dfr (33) 
lhne (34) 
ltld (35) 
Best (36) 
2cga (37) 
3bcl (38) 
lca2 (39) 
2cab (40) 
2apr (41) 
Lapp (42) 
4pep (43) 
lgdl (44) 
61dh (45) 
2cpp (46) 
2fb4 (47) 
acts (48) 
3grs (49) 

SUm: 
Avg: 

1.061 
1.420 
1.540 
1.102 
1.313 
1.275 
1.275 
1.644 
1.449 
1.465 
1.349 
1.220 
1.403 
1.357 
1.699 
1.196 
1.424 
1.607 
1.419 
1.307 
1.297 
1.211 
1.220 
1.177 
1.229 
1.241 
1.470 
1.638 
1.032 
1.391 
1.479 
1.287 
1.369 
1.444 
1.210 
1.405 
1.444 
1.388 
1.415 
1.389 
0.998 
0.975 
1.173 
1.150 
1.437 
1.261 
1.224 
1.557 
1.305 

1.338 

0.618 
0.528 
0.487 
0.692 
0.489 
0.565 
0.565 
0.547 
0.491 
0.533 
0.492 
0.548 
0.513 
0.525 
0.358 
0.646 
0.523 
0.451 
0.554 
0.591 
0.589 
0.611 
0.588 
0.545 
0.576 
0.543 
0.461 
0.416 
0.674 
0.492 
0.504 
0.562 
0.535 
0.509 
0.598 
0.503 
0.524 
0.521 
0.517 
0.488 
0.661 
0.657 
0.579 
0.556 
0.475 
0.575 
0.562 
0.428 
0.573 

0.540 

0.376 
0.987 
0.722 
0.367 
0.864 
0.594 
0.594 
1.114 
1.040 
1.320 
0.782 
0.635 
0.552 
0.870 
1.288 
0.915 
0.718 
1.250 
0.733 
0.816 
0.532 
0.884 
0.681 
0.734 
0.749 
0.773 
1.022 
1.233 
0.591 
1.009 
0.961 
0.830 
0.689 
0.834 
0.911 
0.994 
1.144 
1.099 
0.844 
0.842 
0.692 
0.624 
0.882 
0.804 
1.106 
0.768 
0.843 
1.141 
0.755 

0.860 

0.941 
0.778 
0.718 
0.974 
0.667 
0.870 
0.870 
0.679 
0.655 
0.567 
0.738 
0.822 
0.868 
0.750 
0.568 
0.780 
0.818 
0.527 
0.826 
0.796 
0.884 
0.758 
0.825 
0.727 
0.788 
0.743 
0.609 
0.560 
0.864 
0.667 
0.726 
0.784 
0.813 
0.724 
0.780 
0.699 
0.712 
0.697 
0.746 
0.719 
0.812 
0.841 
0.748 
0.743 
0.616 
0.767 
0.743 
0.615 
0.792 

0.744 

1.392 
2.044 
2.434 
1.604 
2.002 
1.860 
1.860 
3.103 
2.147 
2.065 
1.897 
1.679 
1.988 
1.941 
2.296 
2.347 
2.115 
2.304 
2.390 
2.085 
2.036 
1.803 
2.011 
1.606 
1.689 
1.902 
2.134 
2.067 
1.841 
1.942 
2.269 
2.142 
2.128 
2.291 
2.284 
2.249 
2.306 
2.221 
2.035 
2.019 
1.589 
1.463 
1.594 
1.733 
1.967 
1.898 
1.830 
2.194 
2.049 

2.029 
SD. 0.167 0.066 0.226 0.098 0.301 

(continued) 

0.575 
1.601 
1.291 
0.515 
1.220 
1.135 
1.135 
2.558 
2.028 
1.991 
1.210 
0.993 
0.825 
1.295 
2.355 
2.259 
1.517 
1.515 
1.413 
1.784 
1.018 
1.421 
1.670 
1.067 
1.068 
1.447 
1.546 
1.668 
1.519 
1.481 
1.839 
1.986 
1.261 
1.543 
2.264 
2.066 
2.359 
2.114 
1.316 
1.444 
1.269 
1.145 
1.424 
1.505 
1.506 
1.183 
1.419 
1.940 
1.43 1 

1.538 
0.463 
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TABLE I. Proteins Studied and Summars of Results (Continued) 
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Frac Frac 
Avg res A w  res 
res <1.0 w res <1.0 a Total Total 

Min: 0.975 0.358 0.367 0.527 1.392 0.515 
Max: 1.699 0.692 1.320 0.974 3.103 2.558 

aProtein Data Bank53 entry code. Protein names as follows: 
(1) Rubredoxin (D. gigus) 
(2) Pancreatic trypsin inhibitor 
(3) Ovomucoid (third domain) 
(4) Rubredoxin (C. pasteurianurn) 
(5) Erabutoxin B 
(6) 50s ribosomal protein (C-terminal domain) 
(7) 434 Repressor (N-terminal domain) 
(8) a-Amylase inhibitor 
(9) Chymotrypsin inhibitor 2 
(10) Uteroglobin 
(11) Ubiquitin 
(12) Plastocyanin 
(13) Cytochrome c 
(14) Ferredoxin 
(15) Cytochrome c3 
(16) Immunoglobulin (BenceJones) 
(1 7) Pseudoazurin 
(18) Phospholipase A2 
(19) Protease (&us sarcoma virus) 
(20) Myohemerythrin 
(21) Human lysozyme 
(22) Lysozyme (egg white) 
(23) Ribonuclease A 
(24) Myoglobin 
(25) Azurin 
(26) Human hemoglobin 
(27) Flavodoxin 
(28) lkoponin C 
(29) a-Lytic protease 
(30) Interleukin l b  
(31) T4 lysozyme 
(32) Papain 
(33) Dihydrofolate reductase 
(34) Human neutrophil elastase 
(35) P-Trypsin 
(36) Elastase 
(37) Chymotrypsinogen A 
(38) Bacteriochlorophyll A protein 
(39) Carbonic anhydrase 
(40) Carbonic anhydrase form B 
(41) Rhizopuspepsin acid proteinase 
(42) Penicillopepsin acid proteinase 

PDB" RMS' RMS" RMS50n RMS,oo RMSP R M S ~ O ~  

(43) Pig pepsin 
(44) Glyceraldehyde-3-phosphate dehydrogenase 
(45) Lactate dehydrogena& 
(46) Cytochrome P450 
(47) Immunoglobulin Fab 
(48) Citrate synthase 
(49) Glutathione reductase 
"Number of moving atoms. 
<RMS fit to BRC, computed over all side-chain atoms. 
dNumber of moving residues. 
=Number of moving residues with two or more x angles. 
fSimulated annealing results, fraction x1 correct. 
gSimulated annealing results, fraction x1 and xz both correct. 
"Simulated annealing results, fraction all x (complete rotamer) correct. 
'Monte-Carlo consensus results, fraction x1 correct. 
.'Monte-Carlo consensus results, fraction x1 and xz both correct. 
*Monte-Carlo consensus results, fraction all x (complete rotamer) correct. 
'Monte-Carlo consensus results, average RMS value of residues. 
"Monte-Carlo consensus results, fraction of residues with RMS values less than 1 A. 
"Monte-Carlo consensus results, 50% lowest-entropy residues, average RMS value of residues. 
oMonte-Carlo consensus results, 50% lowest-entropy residues, fraction of residues with RMS 
values less than 1 A from BRC. 
PMonte-Carlo consensus results, total RMS displacement of all side-chain atoms. 
%lonte-Carlo consensus results, 50% lowest-entropy residues, total RMS displacement of all 
side-chain atoms. 
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Fraction of Configurations with B < B,,, * 1 .oo 

0.95 4 I 

0.80 t I I I I , 
0.7 0.8 0.9 1.0 1 . 1  1 .2  1.3  1.4 1.5 

Contact Scale Factor 

Fig. 1. Effect of varying contact factor on prediction accuracy 
of hydrophobic cores. The abscissa is the factor applied to the 
Ponder and Richards contact di~tances.4~ The ordinate is the frac- 
tion of total configurations in all cores exhibiting B values less than 
or equal to that of the BRC. The maximum at a contact-distance 
factor of 1.2 indicates that this value is most efficient in selecting 
for the BRC. 

quantities that may be readily calculated for any 
such configuration. The first quantity, B,  is the total 
number of bad interatomic contacts (bumps) exhib- 
ited by the configuration. A bad interatomic contact 
occurs whenever a moving atom in a side chain 
comes closer than some allowed interatomic dis- 
tance to another atom in either the fued part of the 
molecule or in another rotamer. The starting point 
for this list of distances was the table of allowable 
interatomic distances given by Ponder and Rich- 
a r d ~ ~ ~ ;  however, after some experimentation, it was 
determined (Fig. 1) that distances greater than 
these, by a factor of 1.2, give better results, and this 
factor was used throughout. 

To facilitate the computation of B,  two tables are 
built by the prediction program at  the start of each 
simulation. The first table, B ,  the fixed-bump array, 
is a one-dimensional array with a single entry for 
each rotamer of each side chain. Each B,  element is 
filled with the number of bad interatomic contacts 
between the rotamer in question and the fixed part 
of the molecule. The second table, B,, the moving- 
bump array, is a square array each of whose dimen- 
sions is equal to the total number of rotamers for all 
side chains. Each element of B ,  contains the num- 
ber of bad interatomic contacts that occur between 
the two rotamers corresponding to the column and 
row of the matrix. B ,  elements for pairs of rotamers 
for the same side chain are not populated, nor are 
elements populated for interactions of rotamers 
from side chain pairs too far apart for their atoms to 
make contact. Thus, given a list of rotamers for some 
or all of the residues in a protein, the number of bad 
contacts in the configuration may be calculated rap- 
idly, as follows: 

B = c Bf,i + cc B7n,,j. 
i i j> i  

(3) 

where indices i and j range over the rotamers in the 
configuration. 

A secondary scoring criterion for a rotamer con- 
figuration is provided by the overall a priori proba- 
bility of a configuration. This is derived from the 
frequencies of appearance of individual rotamers as 
given by Ponder and Richards45 and modified as de- 
scribed earlier for extensions to the library. The fre- 
quencies are normalized to unity for each residue 
type in a preprocessing step. The a priori probability 
of appearance of a configuration, P, is equal to the 
product of the rotamer frequencies for the rotamers 
making up the configuration. In practice, multiply- 
ing hundreds of small probabilities gives a very 
small number indeed, so -log P (base 10) is used 
instead of P itself. The negative sign ensures that, as 
for the B scores, higher values correspond to less 
favorable configurations. -log P is calculated using 
the formula: 

-1ogP = - c logP; (4) 
j = mtamers 

where j ranges over the rotamers in the configura- 
tion and Pj is the probability of appearance of rota- 
mer j .  Thus, for any configuration of rotamers, we 
can easily determine two scores, B and -log P,  by 
table look-up. 

Side Chain Prediction of Small Buried Cores 
Side chain configurations for protein core regions 

were sampled exhaustively; that is, we generated 
every rotamer configuration, treating non-core at- 
oms as fixed. For each configuration, B and -log P 
were calculated, and the results plotted on a two- 
dimensional histogram. We observed the fraction of 
residues exhibiting lower B and lower -log P than 
the BRC, and used this information to assess the 
relative efficacies of these criteria. 

Side Chain Prediction of Entire Proteins 
If a protein with 100 variable side chains is sim- 

ulated with a rotamer library having about three 
rotamers per residue, there are 3'" = lo4' possible 
configurations. This makes exhaustive search in- 
tractable. Thus, simulated annealin$6 was em- 
ployed to search configuration space for the rotamer 
combination with the smallest number of bumps 
and, within that group, the greatest overall proba- 
bility of occurrence (lowest -log P). Simulated 
annealing is a technique for identifying low-lying 
minima in a large discrete space; we used the im- 
plementation described in Press et al.?* which em- 
ploys an adaptive cooling schedule. 

The energy function (E)  of a configuration used in 
the annealing is the number of bumps (B) plus a 
small constant times -log P: 

(5) 
E is chosen small enough to ensure that probability 

E = B - E log P 
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is used only to break ties between configurations 
with equal numbers of bumps; that is, it is small 
enough so that E log P can never be as large as 
unity, at least for nativelike configurations. This en- 
sures that the -log P term will, a t  most, break ties 
between competing configurations exhibiting equal 
B values. In practice, E is chosen to be the reciprocal 
of N,,,,,, the number of moving residues in the pro- 
tein. This follows from the observation that -log P 
is always considerably smaller than N,,, for the 
BRC . 

A random “move” is then made, which consists of 
selecting a single residue at random and selecting a 
new rotamer for it, also at random. After some ex- 
perimentation, we found that predictions were 
slightly but consistently better if the rotamers were 
selected from a probability distribution taken from 
their a priori probabilities as given in the rotamer 
library rather than from a uniform distribution; 
therefore, this procedure was used. The energy of 
the new configuration (E’) is then calculated. If the 
Metropolis criterion47 is met, the new configuration 
is accepted; otherwise, the original configuration is 
kept. The Metropolis criterion can be stated: If A E  = 
E’ - E is negative, accept the new conformation; 
otherwise, accept it with probability exp(-hEIT), 
where T is the “temperature” at  the current point in 
the simulation. 
T is a control parameter that dictates how likely 

the algorithm is to accept a configuration with a 
higher energy, in the hope of escaping local minima 
and eventually reaching a global energy minimum. 
If T >> AE, then acceptance is nearly certain. Sim- 
ulated annealing should be initiated at a tempera- 
ture sufficiently high to allow all states to freely 
interconvert. In our exhaustive search of core con- 
formations, we found that the highest B value ob- 
served was approximately six times the number of 
moving atoms in the core. Based on the assumption 

Fig. 2. Energy vs. log Tfor a simulated-an- 
nealing simulation. The data shown were ob- 
tained from simulations on Brookhaven PDB 
entry53 2fb4 (an immunoglobin Fab fragment). 
Squares and circles represent two simulations, 
which were initiated with different random con- 
figurations. The similarity between the shapes 
of the curves and the final energies obtained for 

1000 1 o4 duplicate runs is typical of the iroteins studied. 

that this relationship would also hold for whole pro- 
teins, we used this value as the intitial value of T .  
Since the minimum value of E is theoretically zero, 
the starting value chosen will certainly well exceed 
the value of (AEl for nearly all configuration pairs. 
Thus, the initial value of T is appropriate. This is 
also borne out by Figure 2, ofE vs. log T during the 
annealing process for one protein, which exhibits 
the characteristic sigmoidal shape of “good” anneal- 
ing curves. 

The configuration we report a t  the end of a simu- 
lated annealing run is not necessarily the last con- 
figuration found during the run. Rather, it is the 
lowest-energy configuration encountered at  any 
time during the annealing process. This is some- 
times colloquially termed a “pocket algorithm”. 

In practice, we repeat the annealing process four 
times for each protein, starting with a different ran- 
dom configuration each time. Nearly always, the 
four runs give different configurations with the 
same value of B, although the small -E log P term 
may vary among them. This gives us confidence that 
in these situations we are finding configurations de- 
generate in globally minimal values of B. In some 
cases, there were small variations in -log P among 
these minimal B configurations; thus, convergence 
is not necessarily complete for the secondary scoring 
criterion. 

Because finding the BRC for the entire protein 
would be the best possible result, the success of the 
algorithm was assessed by comparing predicted side 
chain conformations to those found in the BRC. The 
results reported are taken from the lowest-scoring 
simulated annealing run for each protein. We assess 
our success in predicting the correct rotamer for x1 
only, x1 and x2 together, and all x angles. For the x1 
and all-x assessments, all 6751 residues in the sam- 
ple are included. The results we present for x1 and 
x2, however, include only those residues which have 
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two or more x angles. These constitute 4715 resi- 
dues, about 70% of the total. 

Low-Temperature Monte-Carlo Sampling 
and Entropy Analysis of Side 
Chain Conformations 

Since the four annealing runs give different con- 
figurations, it would seem appropriate to look for 
consensus positions among these runs: residues that 
exhibit the same rotamer in all four reported config- 
urations. Another observation, however, caused us 
to attempt additional simulations. The BRC itself 
always has a B score significantly greater than the 
minimal score found in simulated annealing. In fact, 
the BRC score is always greater than this minimal 
score by a value very close to the number of moving 
atoms in the side chains allowed to  vary. We felt 
that if we could sample many configurations close to 
this energy value, we could perform a more thor- 
ough search for consensus than would be possible 
merely by examining the four low-energy configu- 
rations obtained from simulated annealing. This 
sampling can be accomplished by means of Monte 
C a r 1 0 ~ ~  simulations at a constant low temperature. 
Starting with a configuration obtained from simu- 
lated annealing, and fixing the temperature at the 
empirically determined value of T = 3, the average 
energy of the structures sampled during the Monte- 
Carlo simulation was close to the BRC score for nine 
proteins randomly selected from among those stud- 
ied. Thus, this temperature was utilized during the 
Monte-Carlo simulations. 

During the constant-temperature sampling, a 
tally was kept of the number of times each rotamer 
was sampled for each residue. The statistical en- 
tropy was used to describe the results. For a given 
residue, m, suppose the rotamers 1,2, ..., k are sam- 
pled with frequencies f i ,  f i ,  ..., f,, where the f sum to 
unity. Then the entropy of this residue is given by 

(6) 

The effective number of rotamers sampled by resi- 
due m,k*,, is given by55*56 

k*, = exp(S,) (7) 
k* is monotonic in S and is equal to k, the total 
number of rotamers for the residue, when all the 
rotamers are sampled equally frequently (S = In k) 
and to unity when only a single rotamer is sampled 
(S = 0). Because of its straightforward interpreta- 
tion, k*, rather than S, is used in the discussion of 
the results. 

Duplicate runs of varying lengths on nine of the 
49 proteins studied demonstrated that k* values for 
all residues are convergent to within 1% when the 
number of Monte Carlo steps reaches 10,000 times 
the number of moving residues; thus, all the Monte 

Carlo runs reported here were run for this number of 
steps. To avoid getting stuck in the basin of a single 
low-energy starting configuration, we divide the ta- 
tal number of Monte-Carlo steps among four runs, 
each initiated from a configuration obtained from a 
different simulated-annealing simulation. A com- 
mon tally of rotamer composition was kept for all 
four Monte-Carlo runs. The Monte-Carlo consensus 
configuration is the list of the most ofien visited ro- 
tamer for each residue in the protein. 

The results of the low-temperature Monte Carlo 
runs were analyzed using the same criteria utilized 
for the simulated annealing runs: fraction of all res- 
idues in the 49-protein sample correctly predicted at  
xl, a t  x1 and x2, and at  all x values. In addition, the 
analysis was performed as a function of k*, in order 
to determine whether a high degree of consensus 
(low k*) implies predictability. In addition, we re- 
port RMS interatomic displacement of moving at- 
oms from their positions in the native proteins for 
the Monte-Carlo consensus results and for the half 
of the residues within each protein exhbiting the 
lowest K* values. 

A separate set of entropies was calculated on a x 
angle-by-x angle basis, rather than on a residue-by- 
residue basis, but this variability measure did not 
materially improve the predictability even of indi- 
vidual x angles; therefore we report prediction accu- 
racy only for the residue-by-residue analysis. On the 
other hand, x1 entropies have the advantage of be- 
ing directly comparable for all residue types: each 
amino-acid type has only three generic values of xl: 
gauche( + 1, gauche(-), and trans. The x1 entropy of 
a rotamer is defined by Equation (6), where k is now 
equal to 3 a n d j  ranges over the generic x1 values. 
The x1 entropies were used to investigate the extent 
to which conformational freedom is correlated with 
exposed surface area in a pooled sample of all resi- 
due types, taken together. 

Correlation of Rotamer Entropies With 
Solvent Accessibilities 

A modified version of SCULPT (compliments of 
George Rose) was used to determine fractional sol- 
vent accessibilities for the moving atoms of each pro- 
tein studied. This program divides the solvent-ex- 
posed surface areas, as determined by the program 
of Lee and Ri~hards:~ by a precalculated “standard- 
state” maximum exposure to give the fractional de- 
gree of exposure for each atom. For each residue, the 
fractional exposure of the moving atoms, as a group, 
was calculated and tabulated. 

From the overall appearance of scatter plots of k* 
vs. fractional exposure (see Results), it was clear 
that no strong linear correlation is present between 
these observables. In order to assess whether subtle 
correlations might be present, we computed signifi- 
cance and strength using contingency-table analy- 
sis, as described by h e s s  et al?4 Both scales were 
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TABLE 11. Protein Cores Studied 

Protein 

Hemerythrin 
Glycosidase inhibitor 
Repressor (chain 3) 
Immunoglobulin 

Lysoz yme 
Hemoglobin (chain A) 

a-Chymotrypsin (chain A) 
Cytochrome c 
Dihydrofolate reductase 

PDB“ 
lhmz 
lhoe 
llrd 
2fb4 

31zm 
4hhb 

5cha 
5cYt 
8dfr 

R e S b  

2.0 
2.0 
2.5 
1.9 

1.7 
1.74 

1.67 
1.5 
1.7 

RMS“ 
0.692 
0.376 
0.458 
0.506 

0.571 
0.799 

0.550 
0.273 
0.538 

“Brookhaven Protein Data Bank ent1y.6~ 
bResolution of the x-ray structure in Angstroms. 
“RMS deviation between the BRC and the native structure. 
dResidues in core. 

divided into two portions. Except where otherwise 
indicated, “very buried” residues were defined as 
those whose moving atoms had solvent-accessible 
areas of 10% or less, and “very fixed” residues were 
defined as those with k* values less than or equal to 
1.9. The x2 test was used to assess the significance of 
deviation from the null hypothesis that degree of 
solvent exposure is independent of rotamer entropy 
for this twofold binning of each variable. Where cor- 
relation was significant, statistical entropy analysis 
was carried out to determine its strength. 

These analyses were performed for the individual 
residue types valine and threonine, using rotamer 
entropies. These types were chosen because they 
both have a single x angle and are topologically sim- 
ilar, and because one is polar and one is nonpolar. 
On the other hand, both are p-branched. To remove 
this bias, a similar analysis was performed for the 
entire sample, using x1 entropies. For this analysis, 
the fractional solvent-exposed surface utilized for 
each residue was that of those atoms moved by x1 
and x1 only; these are the atoms in the side chain y 
positions. This avoids a spurious area calculation 
when the end of a lysine side chain, for example, is 
exposed while the CG atom, which, alone, is affected 
only by xl, is buried. 

Contingency-table analysis was also performed on 
the valine, threonine and x1 data sets in order to 
directly assess the extent to  which fractional solvent 
exposure is correlated with X-angle predictability. A 
“predicted” scale was defined, which was given a 
value of unity if the x angle in question was cor- 
rectly determined and a value of zero if it was not. 
The analysis was then used to determine the extent 
to which the property “correctly predicted” was cor- 
related with the property “very buried.” 

RESULTS 
Use of Rotamers to Model Side 
Chain Conformations 

To investigate how well native side chains can be 
modeled using rotamers, the side chain RMS inter- 

Residuesd 
~~ 

L28 T51 F55 L98 
S21 V33 K34 V35 V36 L70 
L318 V336 M340 V347 F351 L357 L365 
V117 I138 F141 Y142 V146 V148 Y174 V197 H199 
V204 
L7 D10 G11 L99 NlOl M102 V149 F153 Y161 
W14 Y24 L29 L66 M76 F98 LlOl S102 L105 T108 
L109 F128 V132 S133 L136 
Q30 S45 V52 V53 T54 T138 L199 I212 V213 Y228 
L32 L94 L98 
N5 S6 I7 V50 I51 W113 V115 Y121 

atomic deviations between the native structure and 
the BRC were calculated as described in Equation 2 
for each of nine small hydrophobic cores (Table 11) 
and for each of forty-nine whole proteins (Table I). 
Histograms of these values for whole proteins are 
shown in Figure 3a on a protein-by-protein basis 
and Figure 3b on a residue-by residue basis. Except 
for a few residues, the extended Ponder and Rich- 
ards rotamer library46 can be used to reasonably 
accurately model side chain conformations in both 
hydrophobic cores and whole globular proteins. The 
BRC fits about 85% of the side chains studied and 
about 98% of the whole proteins studied (all but one, 
in fact) to better than 1 A RMS interatomic displace- 
ment. 

Side Chain Prediction of Small Buried Cores 
Exhaustive search of every possible rotamer con- 

figuration is guaranteed to find the BRC if appro- 
priate criteria for distinguishing the BRC can be 
determined. We now discuss how well the B and 
-log P measures described earlier perform this task. 

The side chain configurations of small buried 
cores in nine proteins (Table 11) were exhaustively 
generated and, for each configuration, B and -log P 
were computed. We investigated how many config- 
urations exhibited better (lower) values ofB, -log P, 
and both for each core. The data in Table I11 dem- 
onstrate that B is a far more efficacious criterion 
than -log P, since, in every case, the BRC ranks 
higher on a list of configurations sorted by B than on 
such a list sorted by -log P. Furthermore, there is 
clearly an advantage to using both measures to- 
gether in some way, since fewer configurations are 
“better” than the BRC in both criteria than in either 
criterion alone. For three of the nine cores studied- 
lhmz, 4hhb, and 5cytincluding hemoglobin, the 
largest core studied, no other configuration has 
lower B and -log P values than the BRC. For five of 
the remaining six cores, only two or three configu- 
rations rank lower than the BRC in both criteria. In 
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Fig. 3. Distribution of RMS atomic deviations of side-chain atoms between the native and BRC 
configurations. a: For the 49 whole proteins in the sample (mean = 0.758 A, standard deviation = 
0.106 A). b: For the 6751 individual residues in the sample (mean = 0.529 A, standard deviation 
= 0.464 A). 

TABLE 111. Results of Exhaustive Search on Hydrophobic Cores 

Nconfip better in 
PBD” Nre2 Nat“ Nconfie -log P Bf Bothg 
lhmz 4 14 192 36 36 0 
lhoe 6 14 20,412 1,818 7 2 
llrd 7 22 16,128 669 7 2 
2M 10 38 466,560 1,710 11 1 
31zm 9 34 677,376 35,296 4 2 
4hhb 15 55 891,814,000 2,372,752 57 0 

5cYt 3 9 64 4 1 0 
8dfr 8 30 97,200 2,421 5 1 

d 

5cha 10 30 1,749,600 634,582 540 392 

“Brookhaven Protein Data Banks3 entry. See Table I for names of proteins. 
‘Number of moving side chains. 
‘Number of moving atoms. 
dNumber of configurations of core residues. 
‘Number of configurations with lower values of -log P than the BRC. 
’Number of configurations with lower values of B than the BRC. 
BNumber of configurations with both lower B and lower -log P than the BRC. 

the worst case, 5cha, the BRC only 392 out of 
1,749,600, or 0.03%, of all configurations rank better 
than the BRC in both B and -log P. 

A detailed analysis of the hydrophobic core of gly- 
cosidase inhibitor (lhoe) is presented in Table IV 
and Figure 4. This core has 20,412 rotamer config- 
urations. A two-dimensional histogram of B and 
-log P for these configurations is shown in Figure 4. 
The bin containing the BRC, labeled B = 12, -log P 
= 4.064, is marked with an asterisk. This figure 
illustrates the extent of the discrimination afforded 
by these criteria. As shown in Table IV, the two 
configurations that score better than the BRC differ 
from the BRC in only one of the six positions, lysine 
34. Even for this residue, x1 and xz are identical in 
all three configurations. For all cores studied, there 
is considerable rotamer consensus at some or most of 
the positions in those configurations that exhibit 
both low B and low -log P (Table V). 

Side Chain Prediction of Entire Proteins 

The key conclusion from these results on hydro- 
phobic cores is that B is a more effective indicator of 
the “nativelikeness” of a protein side chain configu- 
ration than -log P, but that -log P contributes ad- 
ditional information. This leads naturally to the 
choice of B as a primary and -log P as a secondary 
scoring criterion. This concept is embodied in the 
definition of the energy given in Equation (5). 

This definition was used in attempts to  predict the 
side chain conformations of all moving residues in 
the 49 proteins listed in Table I, using simulated 
annealing and low-temperature Monte-Carlo simu- 
lation to explore configuration space. The simu- 
lated-annealing results reported in this table per- 
tain, in each case, to the single run of the four 
performed on each protein that gave the lowest-en- 
ergy configuration, though, as mentioned earlier, 
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Fig. 4. Distribution of 6 and -log Pfor all configurations of the six residue core of glycosidase 
inhibitor (lhoe). The bin labeled 6 = 12, -log P = 4, which contains the BRC, is marked with an 
asterisk. The totals shown for 6 and -log Pare  the one-dimensional distributions for these vari- 
ables. 
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TABLE IV. lhoe Core: Comparison of the BRC 
Configuration With Configurations Better in 

Both B and -log P" 
Residue BRC Conf 1 Conf 2 
Ser 21 
Val 33 
Lys 34 + ttt + t + t  +tt- 
Val 35 t t t 
Val 36 t t t 
Leu 70 
T h e  symbols -, + , and t represent the gauche(-), gauche(+ ), 
and trans conformations, respectively. 

- - - 
- - - 

- - - 

TABLE V. Hydrophobic Cores: Comparison of 
Rotamer Configurations Better Than or Equal to 

the BRC in both B and -log P 
~~ ~ 

Number Fraction 
PBD" Nbette: N,,," constantd constant' 
lhoe 3 6 5 0.83 
llrd 3 7 6 0.85 
2b4 2 10 9 0.90 
31zm 3 9 6 0.67 
5cha 393 11 4 0.36 
MfT 2 8 6 0.75 
"Brookhaven Protein Data Bank entry.53 See Table I for names 
of proteins. 
*Number of configurations better than or equal to the BRC in 
both B and -log P.  
'Number of moving residues in the core. 
dNumber of residues havine the same rotamer in all - 
Nbtter mnfigura Om. 

Nbtkr mmiguretiom' 

'Fraction of residues having the same rotamer in all 

multiple runs did tend to  give nearly identical final 
energies. Predictions for whole proteins range from 
38% to 74% correct on a rotamer basis (all x angles 
predicted correctly), with a mean of 57%. x1 is pre- 
dicted correctly an average of 73% of the time, and 
x1 and x2 together are predicted correctly on average 
61% of the time, considering only residues that have 
two or more x angles. Table VI gives pooled results 
for all the residues in the sample. The results are 
substantially the same as for whole proteins. Pre- 
diction results vary significantly among proteins 
(Table I), as others have thus, testing a 
prediction method on only one or two proteins may 
not adequately indicate its overall performance. 

Table VI also gives results for the pooled sample 
for the strategy of simply selecting the most likely 
rotamer for each residue. This strategy succeeds 
only 42.1% of the time. 

Table VII summarizes the prediction accuracy by 
residue type. Looking at the results for all x angles 
(i.e., prediction of the complete rotamer), we do most 
poorly for the charged residues ARG and LYS. The 
terminal residues for these amino acids tend to be 
exposed to solvent and to be poorly resolved in the 
x-ray structures; recall that the rotamer library had 

to be filled out for the last two x angles of these 
types. On the other hand, x1 is predicted nearly as 
well for these as for the other residue types, and the 
prediction of x1 and x2, together, is also reasonably 
good. We also predict the overall rotamer poorly for 
ASN, GLN, and HIS, for reasons that can be easily 
understood. The terminal groups of these residues 
look symmetrical to our B criterion; thus, except for 
the contribution of the nonspecific -log P term, we 
can never get the terminal x angle correct more than 
half the time. Again, we do reasonably well for x1 
here, and, in the case of GLN, for x1 and x2. 

Hydrophobic and aromatic residues are well pre- 
dicted at all levels. This is not surprising, since B,  
the predominant term in our potential, measures 
only steric effects. The polar P-branched THR is also 
predicted well, indicating that, despite its polarity, 
its conformation is mitigated largely by steric fac- 
tors. Among the x1 predictions, SER is most poorly 
predicted. This is in accord with the fact that, alone 
among the naturally occurring amino acids, all of 
the movable side chain atoms of serine (only the 
hydroxyl oxygen, in our simulation) are highly po- 
lar. This, together with its lack of p branching, is 
also consistent with the notion that, among the nat- 
urally occurring amino acid types, steric factors 
count the least in the conformational preference of 
serine. 

Low-Temperature Monte-Carlo Sampling 
and Entropy Analysis of Side 
Chain Conformations 

The configurations resulting from multiple simu- 
lated annealing processes usually give the same or 
nearly the same minimum energies, despite the fact 
that the configurations differ significantly from 
each other. To aid in the interpretation of the sim- 
ulation results, we sought a method of determining 
a consensus configuration and of measuring the de- 
gree of consensus. The degree of consensus at a 
given residue position would then constitute a mea- 
sure of confidence in the prediction of each side 
chain. 

We observed that the BRC, which represents the 
native structure, generally exhibits a B value 
greater than the minimal value that simulated an- 
nealing provides. The B value exhibited by the BRC 
generally exceeds that of a configuration resulting 
from simulated-annealing by about the number of 
moving atoms in the side chains permitted to vary. 
Using the conditions described in the Methods sec- 
tion, the constant-temperature Monte-Carlo proce- 
dure samples configurations whose B values are less 
than or approximately equal to that of the BRC. 
This is demonstrated in Figure 5. Simulations were 
performed using these conditions, and, for each res- 
idue in each protein, the populations of the rotamers 
sampled were printed out, as were the values of k* 
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TABLE VI. Comparison of Prediction Strategies for Whole Proteins 

x1 x1 andx2 All x 
Strategy correct" correctb correct" 

- 0.421 Most probable rotame@ - 
Simulated annealing 0.737 0.614 0.573 
Monte-Carlo, all residue+ 0.743 0.634 0.588 
Monte-Carlo, maximal R - Wh (fraction of sample) (0.981) (0.621) (0.629) 
Monte-Carlo, 50% lowest k*' 0.841 0.778 0.792 
"Fraction of moving residues for which the generic x1 angle is correctly predicted. 
'Fraction of moving residues possessing two or more x angles for which x1 and x2 are correctly predicted. 
"Fraction of moving residues for which the correct rotamer is predicted. 
dThe most probable rotamer is selected for each residue. 
'Not determined. 
Qesults from the simulated annealing run that gave the lowest energy. 
BMonte-Carlo consensus configuration, all residues. 
"Monte-Carlo results for those residues whose k* values are less than that at which R - W is maximal. 
The following entries gives the fraction of residues this encompasses. 
"Monte-Carlo results for the half of the residues exhibiting the lowest k* values. 

e e 

[Eq. (7)] for each residue derived from these popula- 
tion distributions. 

The consensus configuration for a given protein 
then consists of the most frequently visited rotamer 
for each residue. The analysis presented here is 
based on this consensus configuration and on the k* 
value for each residue. For example, the figures 
given for the fraction of times x1 was predicted cor- 
rectly are based on the x1 values in the consensus 
configuration, not the pooled x1 frequencies for all 
rotamers visited by a given side chain. Experimen- 
tation with the latter method did not give substan- 
tial improvement over what is reported here. 

Figure 6 shows how the success of prediction var- 
ies with k*. Results are shown in Figure 6a for x1 
predictions, Figure 6b for x1 and x2 predictions, and 
Figure 6c for the prediction of all x angles. In each 
figure, the curve labeled R + W gives the fraction of 
residues that have k* values less than or equal to 
the x axis value. Curve R gives the fraction of resi- 
dues which both are correctly predicted and also 
whose k* values are less than or equal to the x axis 
value. Thus, the curve labeled RI(R + W) represents 
the fraction of residues with k* less than the 3c axis 
value which are correctly predicted. This curve 
starts near unity at k* = 1 and decreases as k* in- 
creases. This shows that, indeed, the fewer the ef- 
fective number of rotamers encountered by a given 
residue during the constant-temperature Monte 
Carlo simulation (i.e., the lower the k* value), the 
greater the reliability of the prediction; consensus is 
correlated with predictability. The R and RI(R + W) 
curves converge at  the maximum k* value because 
here R + W is equal to unity. 

The value of R or, equivalently, RI(R+W), at  
maximum k* gives the fractional prediction success 
for all residues, taken together. These values are 
tabulated for each protein studied in Table I and for 
the pooled sample in Table VI. x1 is predicted cor- 
rectly 74% of the time, x1 and x2 are predicted cor- 

0 200 400  600  800 1000 1200 

BRC Energy 

Fig. 5. Simulation energies vs. BRC energy. Duplicate simu- 
lated annealing runs (SIM-score1 and SIM-score6) and duplicate 
Monte-Carlo runs (MC-score1 and MC-score6) were performed 
on nine proteins randomly chosen from among the 49 studied. 
The coincidence of data points from duplicate runs demonstrates 
convergence from different starting configurations. The MC ener- 
gies shown are average energies sampled during these runs, and 
the (small) error bars associated with these energies represent 
standard deviations of the energies sampled. The fact that the MC 
data points lie close to a straight line with a slope of unity and an 
intercept of zero indicates that the Monte-Carlo conditions utilized 
(T = 3) indeed samples configurations exhibiting energies close 
to that of the BRC. 

rectly for 63% of residues that have two or more x 
angles, and the correct rotamer is predicted cor- 
rectly 59% of the time. These figures encompass all 
movable residues in the proteins studied. 

The Monte-Carlo method provides the user with a 
choice: whether to  pay attention only to side chains 
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predicted with a high degree of confidence (those 
with low k* values), or, alternatively, to utilize pre- 
dictions for all residues, regardless of k*. Prediction 
accuracies are given in Table VI for several possible 
strategies involving entropy discrimination. One 
such strategy involves use of the curves labeled R - 
W in Figure 6a,b,c. R - W constitutes one possible 
figure of merit that can be used when deciding 
which k* cutoff to use for prediction; it penalizes an 
incorrect prediction to the same extent that it re- 
wards a correct one. If this figure of merit is appro- 
priate, then predictions should be ignored for k* val- 
ues greater than the x axis position where this curve 
is maximal. The R + W curve at  this cutoff gives the 
fraction of all the residues for which a prediction 
will be made, and the RI(R + W) curve gives the 
fraction of residues correctly predicted at  this k* 
value. 

Table VI shows that, using this procedure, 
predictions are very close to 75% correct, regardless 
of whether “correct” refers to prediction of xl, x1 and 
x2, or all x angles; however, for these three 
situations, predictions are ventured for 98%, 62% 
and 63% of the residues, respectively. The “all-X” 
prediction is more accurate at this level than the 
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Fig. 6. Fraction of side-chains predicted correctly as a function 
of k*. a: x, only. b: x, and x2. c: All x angles (complete rotarner). 
See text for details. 

prediction of x1 and x2, only, because the all-X 
dataset includes residues that have only a single x 
angle, and these are predicted especially well, 
whereas the xl-and-x2 dataset excludes these 
residues. 

Another possible strategy involves using a k* cut- 
off value that encompasses some predetermined 
fraction of the side chains studied. For example, Ta- 
ble VI shows that if predictions are ventured only for 
the 50% of the residues exhibiting the lowest k* val- 
ues, then x1 is predicted correctly 84% of the time, x1 
and xz are predicted correctly 79% of the time, and 
the entire rotamer is predicted correctly 79% of the 
time. 

Table VII shows how these results vary by residue 
type. They follow the same trends as the simulated 
annealing results. 

Figure 6 and Table VII can be used to assess con- 
fidence in the prediction of a particular residue 
without any a priori knowledge of the protein struc- 
ture-for example, without first examining whether 
the residue is buried or on the surface. Furthermore, 
the results shown below seem to indicate that ex- 
cluding surface residues would remove from consid- 
eration many residues that are in fact predicted well 
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without significantly improving the predictability of 
the remaining residues. 

Correlation of Rotamer Entropies With 
Solvent Accessibilities 

Figure 7a is a scatter plot of k* vs. fractional sol- 
vent accessibility for all valine residues in the sam- 
ple. There is certainly no linear correlation between 
these variables. x2 analysis54 of the two-way contin- 
gency table shown in Table VIII does, however, dem- 
onstrate a correlation at  a significance level of P(x2) 
= 99.3%; that is, thelikelihood is only Q(x2)  = 1 - 
P(x2) = 0.7% that a x2 value as large as that ob- 
served would be exhibited if correlation between the 
two categories were completely absent. Statistical 
entropy however, indicates that V(x,y), 
the strength of the correlation, is less than 1%; that 
is, less than 1% of the variation in either variable 
can be attributed to correlation with the other. x2 
analysis for all threonine residues, performed the 
same way as described for valine, exhibits a signif- 
icance of only P(x2) = 52%; exposed surface area and 
conformational flexibility thus appear independent 
here. 

The use of 1.9 as the bifurcation value (see the 
Methods section) for k* is based on the appearance of 
plots similar to those shown in Figure 6c for valine 
and threonine alone: both residues are close to 100% 
correctly predictable for k* values less than 1.9. It 
might be argued, however, that a lower value of k* 
should be used to define residues that are strongly 
fixed, in addition to being strongly predictable. Ta- 
ble IX lists the results of a similar analysis per- 
formed using a bifurcation value of 1.5 for k*; the 
results are similar. The appearance of Figure 7a is 
consistent with a weak tendency for highly exposed 
residues to exhibit high k* values. The results of a 
contingency-table analysis using bifurcation values 
of 0.75 and 2.0 for these two scales (Table IX) dem- 
onstrates that the effect is indeed weak, the two 
variables being correlated only to the extent of 
about 2%. 

Similar calculations were performed for the com- 
bined x1 values of all residues in the sample (Figure 
7b; Table IX). This procedure increases the number 
of data points, allowing for increased significance if 
an effect is indeed present. Figure 7b, like 7a, ex- 
hibits no apparent correlation. Here, the strength of 
the correlation (Table IX) is about 7% at  most, still 
weak. 

In Figure 7b, several data points appear which 
exhibit fractional solvent accessibilities consider- 
ably in excess of unity. Examination of these sys- 
tems in detail revealed that the atoms in question 
have unrealistically long bond lengths. When these 
bond lengths are reduced to their generic values, the 
fractional solvent accessibilities of the atoms in 
question drop to near unity. The strong sensitivity of 
apparent solvent accessibility on bond length for ex- 

posed atoms is left as a subject of contemplation for 
others employing this measure. 

The contingency-table analyses described above 
demonstrate that rotamer entropy is, a t  best, 
weakly correlated with solvent exposure. If this ob- 
servation were an artifact of the simulation meth- 
odology employed, side chain predictions would not 
be expected to work as well for exposed as for buried 
residues, regardless of their entropy values. Figure 
7c depicts histograms of fractional solvent exposure 
for correctly and incorrectly predicted valine resi- 
dues in the data set. There appears to be only a weak 
tendency for the incorrectly predicted residues to ex- 
hibit the higher solvent exposures: both histograms 
are dominated by a high population of completely 
buried residues. Contingency-table analysis of these 
data and of the analogous data for threonine and for 
the pooled x1 sample shows that deeply buried resi- 
dues are, at best, only slightly better predicted than 
exposed residues. The mutual effect of solvent expo- 
sure and predictability is less than 2% (Table 1x1. 

Timings 
Figure 8 is a plot of CPU times versus number of 

moving residues for the 49 whole proteins studied. 
The times were obtained on a MIPS R4400/150 pro- 
cessor (Silicon Graphics Iris Indigo). Two times are 
given for each protein: the simulated-annealing 
time, which is the time from the start of the run to 
the end of the first simulated-annealing procedure, 
and the Monte-Carlo time, which is the total time 
for the run, including four simulated-annealing pro- 
cesses and the constant-temperature Monte-Carlo 
steps associated with them. The figure shows that 
obtaining convergent entropies is about six times 
more expensive than a single simulated-annealing 
minimization. 

If entropies are not desired, it is probably best to 
carry out two simulated-annealing minimizations, 
to check for the possibility that one might have con- 
verged to a high-energy minimum. This entire pro- 
cess would then take somewhat less than one third 
as much CPU time as the full Monte-Carlo proce- 
dure, since the setup time is small, but not insignif- 
icant: it constitutes about one quarter of the time 
through the end of the first simulated-annealing 
run. Each simulated-annealing minimization takes 
somewhat less time than its associated contant-tem- 
perature Monte-Carlo steps; put another way, the 
entire constant-temperature Monte-Carlo procedure 
takes more than four times as long as a single sim- 
ulated-annealing minimization. 

For a typical small protein containing about 100 
moving residues (perhaps 130 residues in total), 
time through the first simulated-annealing run is 
about two CPU minutes; the full Monte-Carlo treat- 
ment takes about 12 minutes. For the largest sytems 
studied, which contain about 350 moving residues 
(about 450 residues in total), the corresponding 
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TABLE VII. Summary of Results by Residue Type 
a. Overall Results 

ReS" Nresb SIC S1&2d Salle Mlf M1&2fiB Mall" 

Charged: 
ASP 478 0.653 0.653 0.653 0.657 0.657 0.657 
GLU 430 0.644 0.426 0.426 0.656 0.451 0.451 
ARG 307 0.648 0.466 0.114 0.671 0.537 0.143 
LYS 532 0.701 0.509 0.124 0.677 0.536 0.147 
Polar: 
SER 751 0.546 NIA 0.546 0.551 NIA 0.551 
CYS 75 0.720 N/A 0.720 0.733 NIA 0.733 
THR 53 1 0.708 NIA 0.708 0.702 NIA 0.702 
ASN 423 0.676 0.336 0.336 0.662 0.383 0.383 
GLN 325 0.708 0.517 0.271 0.723 0.529 0.289 
Aromatic: 
HIS 165 0.752 0.406 0.406 0.764 0.382 0.382 
PHE 316 0.873 0.826 0.826 0.883 0.823 0.823 
TRP 140 0.864 0.636 0.636 0.857 0.650 0.650 
TYR 292 0.887 0.815 0.815 0.901 0.849 0.849 
Hydrophobic: 
VAL 679 0.814 NIA 0.814 0.831 NIA 0.831 
LEU 681 0.860 0.838 0.838 0.881 0.859 0.859 
MET 170 0.812 0.618 0.459 0.788 0.547 0.441 
ILE 456 0.886 0.754 0.754 0.901 0.785 0.785 

SUM 6751 
AVG 397.1 0.750 0.600 0.556 0.755 0.614 0.569 
SD: 199.9 0.103 0.171 0.244 0.106 0.170 0.242 
MIN 75.0 0.546 0.336 0.114 0.551 0.382 0.143 
MAX 751.0 0.887 0.838 0.838 0.901 0.859 0.859 

b. Entropy Dependence' 

Type Mlf k*( Flk k*1&Z1 F1&2m Mdlh k*dl" Fall0 

ARG 0.600 20.55 1.000 0.600 11.85 0.720 0.600 2.43 0.036 
0.800 8.99 0.489 0.800 3.37 0.098 0.800 2.30 0.020 

ASN 0.600 5.92 1.000 0.600 2.48 0.118 0.600 2.48 0.118 
0.800 3.59 0.496 0.800 1.71 0.002 0.800 1.71 0.002 

ASP 0.600 2.97 1.000 0.600 2.97 1.000 0.600 2.97 1.000 
0.800 2.04 0.559 0.800 2.04 0.559 0.800 2.04 0.559 

CYS 0.600 2.99 1.000 NIA NIA NIA 0.600 2.99 1.000 
0.800 2.43 0.547 NIA NIA NIA 0.800 2.43 0.547 

GLN 0.600 8.17 1.000 0.600 6.43 0.738 0.600 3.65 0.188 
0.800 5.94 0.631 0.800 4.55 0.354 0.800 2.06 0.015 

GLU 0.600 6.14 1.000 0.600 3.65 0.484 0.600 3.65 0.484 
0.800 3.59 0.442 0.800 2.57 0.165 0.800 2.57 0.165 

HIS 0.600 4.75 1.000 0.600 1.68 0.061 0.600 1.68 0.061 
0.800 3.72 0.885 0.800 1.31 0.012 0.800 1.31 0.012 

ILE 0.600 4.69 1.000 0.600 4.69 1.000 0.600 4.69 1.000 
0.800 4.69 1.000 0.800 4.38 0.967 0.800 4.38 0.967 

LEU 0.600 3.09 1.000 0.600 3.09 1.000 0.600 3.09 1.000 
0.800 3.09 1.000 0.800 3.09 1.000 0.800 3.09 1.000 

LYS 0.600 35.27 1.000 0.600 28.03 0.761 P P P 
0.800 23.91 0.517 0.800 15.58 0.188 P P P 

MET 0.600 6.97 1.000 0.600 5.11 0.635 0.600 4.21 0.447 
0.800 6.56 0.947 0.800 2.03 0.065 0.800 2.03 0.065 

PHE 0.600 3.71 1.000 0.600 3.71 1.000 0.600 3.71 1.000 
0.800 3.71 1.000 0,800 3.71 1.000 0.800 3.71 1.000 

SER 0.600 2.95 0.806 NIA NIA NIA 0.600 2.95 0.806 
0.800 2.38 0.029 NIA NIA N/A 0.800 2.38 0.029 

THR 0.600 2.99 1.000 NIA NIA NIA 0.600 2.99 1.000 
0.800 2.37 0.640 NIA NIA NIA 0.800 2.37 0.640 

TRP 0.600 4.02 1.000 0.600 4.02 1.000 0.600 4.02 1.000 
0.800 4.02 1.000 0.800 1.57 0.629 0.800 1.57 0.629 

(continued) 
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TABLE VII. Summary of Results by Residue Type (Conthlced) 

b. Entropy Dependence' 

Type Mlf k*j  Flk k*,&,' F1&Zrn Ma1,h k*alln Fallo 
TYR 0.600 3.14 1.000 0.600 3.14 1.000 0.600 3.14 1.000 

0.800 3.14 1.000 0.800 3.14 1.000 0.800 3.14 1.000 
VAL 0.600 3.00 1.000 NIA NIA NIA 0.600 3.00 1.000 

0.800 3.00 1.000 N/A NIA NIA 0.800 3.00 1.000 

N/A, not applicable. 
"Residue type. 
'Number of occurrences. 
"Fraction of moving residues for which x1 is predicted correctly, lowest-energy simulated-annealing run. 
dFraction of moving residues which have more than one x angle for which xi and xz are predicted correctly, lowest-energy simulated- 
annealing run. 
'Fraction of moving residues for which the complete rotamer is predicted correctly, lowest-energy simulated-annealing run. 
'Fraction of moving residues for which x1 is predicted correctly, Monte-Carlo consensus. 
Traction of moving residues which have more than one x angle for which x1 and xz are predicted correctly, Monte-Carlo consensus. 
%action of moving residues for which the complete rotamer is predicted correctly, Monte-Carlo consensus. 
iFor each residue type, we show the k* cutoff values and the fraction of times we venture a prediction in the situations in which we 
predict 60% and 80% of the occurrences correctly. 
jk* cutoff value for prediction of xl, only. 
*Fraction of occurrences with k* below the x1 cutoff value. 
'k* cutoff value for prediction of x1 and xz. 
"Fraction of occurrences with k* below the x1 and x z  cutoff value. 
"k* cutoff value for prediction of all x (complete rotamer). 
"Fraction of occurrences with k* below the all-x cutoff value. 
Trediction accuracies as high as 60% were not achieved at any k* cutoff value. 

times are 20 CPU minutes and 2.5 CPU hours. Con- 
sideration of the algorithm indicates that CPU time 
should be O(nZ) in the number of moving residues; 
the general appearance of Figure 8 is consistent 
with this notion. 

DISCUSSION 
Overview 

We showed first that the side chains of hydropho- 
bic cores and whole proteins in our sample can, for 
the most part, be well modeled using rotamers. For 
small buried cores, the RMS interatomic difference 
between the crystal structure and the BRC ranges 
from 0.2 to 0.8 A (Table 11). For complete proteins, 
RMS differences are only slightly greater (Table I, 
Figure 3a), although some individual residues are 
poorly fit (Figure 3b). Schrauber et al.58 argue that 
rotamer libraries do not adequately cover side chain 
conformational space, since some nonrotameric con- 
formations are found even in highly resolved struc- 
tures. Although not an exact representation, the ro- 
tamer approximation is close enough to account for 
at least 80% of the residue conformations:' and 
would seem reasonable enough for the first step in 
homology model-building. Energy minimization4' 
or more detailed modeling can subsequently be used 
to further refine the resulting structure. 

Based upon studies of hydrophobic cores, we de- 
termined that two simple criteria-number of unfa- 
vorable van der Waals contacts (B)  and configura- 
tion probability (-log P)-are efficient indicators of 
the nativelike nature of a side chain configuration. 
These studies revealed that the B criterion is far 

more powerful than the -log P criterion if used 
alone; however, the latter adds power to the method 
if they are used together. For cores, few configura- 
tions score better than the BRC in both measures. 

Discrimination in favor of the BRC could be im- 
proved by calculating B using minimum allowable 
interatomic contact radii 20% greater than those 
employed by Ponder and Richards45 (Fig. 1). These 

TABLE VIII. Contingency-Table Analysis of 
Correlation Between Fractional Solvent 

Exposure and Effective Number of 
Rotamers Sampled" 

fracarea I 0.1 fracarea > 0.1 
N(tota1) = 655 N = 426 N = 229 
k* I 1.9 Found 99 Found: 33 
N = 132 Expected: 85.9 Expected: 46.1 
k* > 1.9 Found 327 Found: 196 
N = 523 ExDected 340 ExDected: 183 
Two-way contingency-table analysis: xCut = 0.1000, yCut = 
1.9000, n = 655. x = fracarea, y = k*. 
x2 analysis: df = 1; x2 = 7.2149. Q(x2) = 7.23e-03; P(x2) = 
9.93e-01; Cramer's V = 1.050e-01. 
Entropy analysis: H, =0.64721; H,, = 0.50251, H(x,y) = 
1.14398. H(x[v) = 0.64147, HCyx) = 0.49677. U(x(y) = 8.871e- 
03, U(y1x) = 1.143e-02, U(xy)  = 9.988e-03. 
P and Q are measures of correlation significance. Low Q (high 
P) means that it is unlikely that the underlying model-inde- 
pendence of x and y-would give a x2 as large as the observed 
value by chance. Thus, low Q (high P )  implies significant cor- 
relation between x and y. Q and P range from 0 to 1. 
U(x(y), U(ylx), and U(x,y) are measures of correlation strength. 
Low U(y(x) means that the value of y depends only weakly on 
x;  similarly for U(x(y). Low U(x,y) indicates only a weak mutual 
influence of x and y on each other. The Us range from 0 to 1. 
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Fig. 7. Relation of fractional solvent exposure to K and to 
predictability. K is as defined in Equation 7. a,b: K vs. frac- 
tional exposed surface area: Figure a, all valine residues; 
Figure b, all X, values. c: Histograms of fractional exposed 
surface area for correctly and incorrectly predicted valine res- 
idues. 
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authors employed an all-atom representation in 
their work, whereas we include heavy atoms only; 
thus, it is not surprising that the contact radii that 
work best for us are somewhat larger than those 
that work best for Ponder and Richards. 

An energy function was then defined by the ex- 

pression E = B - E log P, with E defined to be so 
small that no nativelike -log P value can exceed 
unity in absolute value. This ensures that for low- 
energy configurations, the -log P term will, a t  best, 
break ties between pairs of configurations exhibit- 
ing the same B value. This definition follows from 

TABLE IX. Summary of Contingency-Table Analyses 

Data" X b  YC %cut d Ycut' Q(x2)f U(x,y)f 
VAL A k* 0.1 1.9 7.23e-03 0.010 
VAL A k* 0.1 1.5 7.54e-0 1 2 
VAL A k* 0.75 2.0 1.57e-02 0.021 
THR A k* 0.1 1.9 4.80e-01 2 
THR A k* 0.1 1.5 4.02e-0 1 -_s 

x1 A k* 0.1 1.9 6.09e-98 0.050 
x1 A k* 0.1 1.5 2.06e- 126 0.073 
VAL A R 0.1 0.5 9.06e-04 0.015 
THR A R 0.1 0.5 6.53e-01 2 
x1 A R 0.1 0.5 2.40e-25 0.013 

"Data set  all valines, all threonines, or pooled x1 data. 
b A  fractional solvent-exposed surface. 
'k*: effective number of rotamers sampled (Eq. 7); R: 1 if x is correctly predicted, 0 if incorrectly predicted. 
dBifurcation point for binning the z variable. 
'Bifurcation point for binning the y variable. 
Bee footnote to Table VIII. 
g Q ( x 2 )  is less than 10% (correlation is insignificant at the 90% level), so an assessment of correlation strength is not meaningful. 

I 
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Fig. 8. CPU time vs. number of moving residues. The hollow symbols and the left-hand y axis 
represent the timings through the conclusion of a single simulated-annealing run. The filled sym- 
bols and the right-hand y axis represent the timings through the conclusion of the Monte-Carlo 
procedure. 

the observation that B, taken alone, is far more ef- 
ficient than -log P in selecting the BRC. This en- 
ergy function was used in a simulated-annealing 
procedure to predict the rotamer configurations of 
49 well-resolved whole proteins of diverse tertiary 
structure selected from the Brookhaven F’rotein 
Data Bank.53 The results were assessed by compar- 
ison with the rotamers of BRC (the configuration 
which best fits the crystal structure). For all the 
residues in the sample (Table VI), 57% of the rota- 
mers are predicted correctly. Results vary quite a bit 
from protein to protein (Table I), as observed by 
other workers (see below), but no obvious explana- 
tion could be found for this. This observation does, 
however, point out the need to test an algorithm of 
this nature on a variety of proteins of varying struc- 
ture. 

Using simulated annealing, predictions are more 
accurate for x1 and for x1 and xz,  together, than for 
whole rotamers. In the entire sample, x1 is correctly 
predicted 74% of the time and x1 and xz are correct 
61% of the time (Table VI), considering, for the lat- 
ter statistic, only those residues which have more 
than a single x angle. 

Whole rotamers are well predicted for hydropho- 
bic and aromatic residues, and for threonine, which 
is P-branched (Table VII). Presumably, this is be- 
cause the potential considers mainly steric factors, 
which dominate for these residues. This interpreta- 
tion is consistent with the observation that x1 and xz 
are reasonably well predicted for all residue types, 
with the exceptions noted in the next paragraph. 

ARG and LYS, with positive charges at  the termini, 
are well predicted in x1 and xz,  but the whole rota- 
mer is poorly predicted. This is presumably both be- 
cause the potential does not “see” polar effects and 
also because these termini tend to be immersed in 
solvent and somewhat disordered. MET is also 
poorly predicted at the whole-rotamer level. This 
may not be fully ascribable to the modest polarity of 
its sulfur atom; simply the fact that it consists of a 
long, unbranched chain may render it less confor- 
mationally restricted than a branched residue would 
be. 

ASN, GLN, and HIS are poorly predicted at  the 
whole rotamer level, since their ends appear twofold 
symmetric to the dominant B criterion. This is per- 
haps the strongest limitation of the potential used 
here. We also observe that SER exhibits the least 
well predicted x1 value. This is consistent with the 
fact that, unique among the naturally occurring 
amino acids, both moving atoms on the serine side 
chain (the hydroxyl oxygen and hydrogen, though 
our simulation omits the hydrogen) are highly polar. 
We infer that the steric contribution to serine’s x1 
conformational preference is less than that for the 
other amino acid types. 

Given that factors other than steric effects enter 
our potential only by means of the nonspecific -log 
P term, it is surprising that the method presented 
here yields results comparable to or better than 
those found using more sophisticated energetic mea- 
sures (see below). This does, however, confirm the 
common doctrine that packing plays a large role in 
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protein structure and stability. Our B measure, in 
fact, indexes only half of the packing problem: the 
avoidance of bad contacts. The other half-the 
avoidance of voids-is not taken into account; how- 
ever, when studying whole proteins, we did observe 
that the BRC configurations always exhibited B val- 
ues significantly greater than the minima obtained 
from simulated annealing. This may be an indica- 
tion that the BRC is achieving "good" contacts not 
present in the lowest-energy configurations we ob- 
tain. 

We were able to use this observation to advantage 
by finding an empirical, constant temperature 
which, when utilized in a constant-temperature 
Monte-Carlo simulation, caused the average energy 
of the configurations sampled to be quite close to 
that of the BRC (Fig. 5). Performing the Monte- 
Carlo steps affords two advantages over the simu- 
lated-annealing procedure described above. First, it 
gives rise to a consensus conguration whose predic- 
tion accuracy mildly exceeds that of the simulated- 
annealing method: x1 is predicted correctly 74% of 
the time, x1 and xz 63% of the time, and the whole 
rotamer 59% of the time (Table VI). The average 
residue in the average protein is predicted to about 
1.3 A RMS and 54% of the residues in the Monte- 
Carlo consensus configuration are predicted to bet- 
ter than 1.0 A RMS with respect to the native struc- 
ture (Table I). These values include both the 
deviation of the BRC from the native structure and 
the deviation of the predicted structure from the 
BRC. 

Second, and more importantly, the Monte-Carlo 
procedure provides, for each residue, an entropy of 
rotamer appearance that is indicative of its predic- 
tion reliability, provided the simulation is carried 
out long enough for these entropies to converge. We 
indexed conformational consensus by k*, an en- 
tropy-derived measure of the effective number of 
rotamers visited by a given residue. Figure 6 shows 
that the residues exhibiting low values of k* (high 
consensus) are those most accurately predicted. For 
example, if prediction is restricted to  the 50% of the 
sample exhibiting the lowest values of k*, our pre- 
diction accuracies rise to 84% for xl, 78% for x1 and 
xz taken together, and 79% for whole rotamers. For 
the 50% of each protein exhibiting the lowest k* val- 
ues (Table I), the average residue in the average 
protein is predicted to  an atomic RMS displacement 
of 0.860 with respect to the native, and 74% of 
these residues are predicted to better than 1.0 A 
RMS. We emphasize that the k* values, which indi- 
cate which residues are most reliably predicted, 
arise naturally from the application of the algorithm 
itself. This, together with the computational effi- 
ciency of the method, allows the method to be used 
on whole proteins without first using separate pro- 
cedures, such as definition of a core region, to re- 
strict the search. 

Rotamer entropies have previously been reported, 
but they have not been assessed as intrinsic mea- 
sures of side chain predictability. Holm and 
Sander5' interpreted nonzero side chain entropies 
ke., k* values greater than unity) as evidence that 
their algorithm had not converged at  residues ex- 
hibiting these values. Koehl and Delarue:' using a 
more physical potential function than ours, but per- 
haps a less physical notion of ensemble, framed their 
discussion in terms of the contribution of side chain 
configurational entropy to the free-energy of protein 
denaturation. By performing simulations of varying 
length, we demonstrated that entropy values are 
converged when the algorithm is carried out for suf- 
ficiently many steps; running longer will not lower 
the entropies further. The Monte-Carlo portion of 
the algorithm is the most time-consuming part of 
the method. If the user intends to ignore the entropic 
analysis, results nearly as good as the Monte-Carlo 
consensus results for the entire protein can be ob- 
tained merely from the simulated annealing runs at 
as little as one sixth the cost in computer time; how- 
ever, even when reliable entropies are obtained, the 
computational cost of the procedure is modest. 

Correlation of Rotamer Entropies With 
Solvent Accessibilities 

We were surprised not to observe a strong corre- 
lation between rotamer entropy and solvent acces- 
sibility; on the whole, surface residues are nearly as 
immobile and are predicted nearly as accurately as 
buried residues. A given valine or threonine or x1 
value is nearly as likely to  be highly constrained- 
and hence to be predicted correctly-when it is on 
the surface as when it is in the interior. Koehl and 
Delarue4' also observed that side chain entropy ap- 
pears not to be correlated with solvent accessibility. 
We considered several possible explanations, some 
artifactual, for this observation. For example, we 
considered the possibility that some residues might 
be especially poorly fit by any rotamer from the li- 
brary. For these residues, several rotamers , all 
making bad contacts, might occur in configurations 
having the same score. If this were the case, then we 
would expect to find high entropies at residues for 
which the BRC conformation fits the native confor- 
mation poorly. If buried residues were especially 
susceptible to this effect, then their conformational 
freedom would be exaggerated in our results. To test 
this hypothesis, we produced scatter plots (not 
shown) of k* vs. the difference in B value between 
the BRC conformation and the native (nonrotamer) 
side chain, reasoning that where the BRC conforma- 
tion is an especially poor approximation to the na- 
tive side chain conformation, it ought to exhibit cor- 
respondingly more bumps. Such a plot, for either all 
residues of a given type or for only the deeply buried 
residues of a given type, exhibited no discernible 
correlation, thus ruling out this explanation. 
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It is also possible that a more realistic definition of 
the energy would improve the prediction of buried 
residues, only. This would mean that buried resi- 
dues are, in fact, more constrained than surface res- 
idues, but by mechanisms not considered by our po- 
tential function. Against this possibility, we would 
point out that the prediction accuracies we report 
are respectable when compared with those achieved 
using more realistic potential functions (see below). 
Furthermore, if buried residues tend to be hydropho- 
bic, then the protein interior ought to be better mod- 
eled than the surface by our method, which fails to 
consider polar effects in any detailed manner. Thus, 
the use of a more realistic potential function should, 
if anything, improve our predictions for surface res- 
idues more than for buried residues. This would 
strengthen, rather than weaken, the anomaly we 
observe. 

Another possible explanation arises from the fact 
that the solvent-accessible area of a buried side 
chain is not necessarily a good measure of how much 
space there is around it. It may be that a similar 
measure, using a smaller solvent probe, or an en- 
tirely different method, such as one based on 
Voronoi polyhedra,6’ would show that some buried 
residues are surrounded by more free space than 
others. If so, the possibility remains that these res- 
idues would be the more mobile (higher-entropy) 
buried residues. If this were found to be the case, 
however, it would tend to rationalize, rather than 
refute, our observation that internal residues, on 
the whole, possess about as much conformational 
freedom as do surface residues. 

Another consideration arises from the fact that we 
determine entropies only at the single-residue level. 
In the “independent residue” approximation, the 
overall configurational entropy is given by the sum 
of the entropies of the individual residues. There 
must, however, be correlations between the confor- 
mations of side chains close enough to interact. An 
example of such a correlation would be a situation in 
which residue 1 spends half its time in conformation 
A and the other half in conformation B, and likewise 
for residue 2, but in which rotamers 1A and 2A al- 
ways occur together in low-energy configurations. 
Such correlations lower the entropy of the entire en- 
semble, but since our existing software does not keep 
track of pairwise or higher-order rotamer occur- 
rences during the Monte-Carlo simulation, we can- 
not estimate this contribution. If such correlations 
were stronger in the interior of a protein than on the 
surface, this would constitute an additional restric- 
tion of the conformational freedom of the internal 
residues relative to those on the surface. Koehl and 
Delarue4’ tried to estimate this effect, and tenta- 
tively concluded that it was small. In principle, fre- 
quencies of rotamer pairs (in addition to those of 
individual rotamers) could be tallied during the 
Monte-Carlo phase of the simulation. This would al- 

low the magnitude of this effect to  be directly mea- 
sured. 

In a real protein in solution or in the crystal, the 
backbone is free to  move to some extent. Backbone 
segments on the surface of a protein are believed to 
be more mobile than segments in the interior, both 
because of the relative absence of neighboring seg- 
ments and also because loops and other regions of 
irregular secondary structure tend to occur on the 
surface. The extra mobility of backbone elements 
near the surface will contribute extra increments of 
fluctuation to the positions of surface side chain at- 
oms, even if the side chains should be restricted to 
single rotamers. Beyond this, however, greater 
backbone flexibility near the surface could confer 
upon surface side chains an added tendency to pop- 
ulate multiple rotamer states. Our simulations 
would, however, be blind to this effect, since the pro- 
cedure we have described holds all backbone atoms 
rigidly fixed. 

Despite these many caveats, it appears likely that 
we are observing an effect that has a counterpart in 
real proteins. This hypothesis seems feasible, given 
the fact that our predictions are about as good for a 
surface valine or threonine, on average, as for a bur- 
ied residue of the same type, and likewise for the 
pooled x1 data. If the surface residues that appear to 
our algorithm to be fixed were indeed mobile, we 
would not expect surface residues, on the whole, to 
be as predictable as buried residues; however, con- 
tingency-table analysis shows that they are indeed 
nearly as predictable. Note, however, that this does 
not imply that buried residues are, as a group, as 
bump-free as surface residues. When fractional sol- 
vent exposure is plotted against the B (bump) value 
of either the BRC conformation or the native confor- 
mation (not shown), the residues with the greatest B 
values do indeed exhibit the greatest tendency to be 
buried. However, when one moves away from the 
BRC, the increase in B for such residues is not sig- 
nificantly greater than that for surface residues; 
thus, selecting a non-BRC rotamer does not, on av- 
erage, punish a buried residue more severely than it 
does a surface residue. 

Solid-state dynamic NMR studies, though they 
have not been performed on large numbers of resi- 
dues in large numbers of globular proteins, lend 
some support to the notion that conformational side 
chain mobility need not be correlated with exposed 
surface area. Keniry and colleagues61 found, using 
13C NMR, that the terminal carbon in MET 55 of 
sperm-whale metmyoglobin (P.D.B.53 entry 5mbn) 
exhibits dynamics that are “more solidlike” than 
those of the corresponding atom in MET 131. The 
Lee-Ri~hards~~ ACCESS program indicates that for 
these two residues only the terminal carbon exhibits 
any solvent exposure at all. This atom is 10% ex- 
posed in MET 55 and 0.1% exposed in MET 131, 
based on a value of 74.8 A’ for standard-state acces- 
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sibility. Thus, the more exposed methionine exhibits 
the more constrained motion. The average of the 
crystallographic temperature factors for the mov- 
able side chain atoms of these two residues follows 
the same trend. 

This crystal structure was not a member of our 
test set; however, we later simulated it in order to 
compare our k* results with the NMR results for 
these two residues. In order to do so, we first arbi- 
trarily resolved the ambiguous atom-type designa- 
tors in the P.D.B. file by converting all GLN AE1 
and AE2 types to OEl and NE2, respectively; simi- 
larly, all ASP AD1 and AD2 types were converted to 
OD1 and ND2, respectively. Our simulation of 5mbn 
gives 4.29 ? 0.04 and 5.83 2 0.07 for K* of MET 55 
and MET 131, respectively. The error limits are 
standard deviations obtained from duplicate runs 
with different random seeds. The rotamer predicted 
from the Monte-Carlo consensus configuration was 
the BRC (native) rotamer in all simulations. These 
k* values are in accord with both the NMR observa- 
tions and the crystallographic temperature factors, 
and contrary to the expectation that the more buried 
residue should exhibit the lower mobility. 

A single example such as this one can neither val- 
idate nor refute what amounts to a statistical state- 
ment; however, it does render feasible the notion 
that mobility need not correlate with solvent acces- 
sibility. In this regard, a recent NMR study6’ 
showed no correlation between residue surface ac- 
cessibility and backbone amide-nitrogen mobility; 
on the other hand, another recent did show 
significant correlation between tryptophane side 
chain mobility and surface accessibility. We may 
perhaps look to future NMR studies for the further 
deveIopment of this story. 

Comparison of Prediction Accuracy to That 
Reported for Other Methods 

Several side chain prediction algorithms have 
been described in the literature. It is not always 
easy to compare published results, because different 
criteria are used to assess accuracy and different 
workers study different proteins. Some groups re- 
port results on only one or two structures; the data 
presented in Table I show, however, that results on 
single proteins can differ significantly. Often, only 
some of the side chains are modeled-for example, 
the core residues-whereas we present results on all 
movable residues. Different groups also use differ- 
ent criteria to judge success. One criterion some- 
times used is to consider a x angle to be correctly 
predicted if it falls within 30” or 40” of the dihedral 
angle found in the crystal structure; this criterion 
should map reasonably well onto our practice of con- 
sidering a x angle correctly predicted if it falls into 
the same generic class (gauche(-), gauche(+) or 
trans, for example) as the BRC value. The fraction of 
all dihedral (x) angles correctly predicted has also 

been used. This can be an overly optimistic measure, 
because xz may be counted as correctly predicted 
even if the x1 value of the same residue is not cor- 
rectly predicted. The “correct” x2 value masks the 
fact that all side chain atoms of the residue are 
poorly placed. In the results we present, x2 is 
counted as correct only if the corresponding x1 is 
correct. Our own results are taken from the Monte- 
Carlo consensus results for whole proteins. For frac- 
tion of rotamers or x angles predicted successfully, 
these are the values in the “M” columns of Table I 
when individual proteins are discussed and from the 
row labeled “Monte-Carlo Consensus” in Table VI 
when overall results are discussed. 

In comparing RMS interatomic deviations from 
the native protein, bear in mind that not all authors 
follow our convention of excluding Cp from the com- 
parison. In addition, it is important to observe the 
distinction between average results for residues for 
a given protein and total results encompassing the 
same atoms. When the residue RMS deviations are 
averaged for a given protein, each residue has the 
same weight. In total figures, each atom (not each 
residue) has equal weight, so that larger residues 
have greater weight. Total values are generally 
greater than residue averages, since poorly pre- 
dicted residues, such as arginine, lysine, and me- 
thionine, tend to have many atoms. Given these ca- 
veats, a summary of side chain prediction results 
and a comparison to ours is attempted here. The 
RMS interatomic displacement values we cite for 
our own work are taken from the third page of Table 
I and, as discussed earlier, are computed over side 
chain atoms, excluding Cp. 

The method presented here is most similar to the 
algorithms of Holm and Sander4’ and of Lee and 
S~bbiah.~’  Holm and Sander developed a side chain 
construction algorithm in conjunction with their 
backbone-building algorithm4’ and applied it to ho- 
mology model-built proteins with relatively good suc- 
ces~ .~ ’  Like us, they use a simulated-annealing 
search strategy to search conformations available in 
a rotamer library. They used the rotamer library of 
Tuffery et al.,64 while we used the older Ponder and 
Richards 1ibra1-y.~~ Calculations with a newer li- 
brary similar to that of Tuffery (Fetrow and Libby, 
unpublished) gave little improvement over the re- 
sults reported here. Holm and Sander applied a trun- 
cated 6-9 van der Waals potential to energy calcu- 
lations. For each conformation, pairwise atomic 
interaction energies between atoms 6.0 A or less 
apart were summed over the protein. In a set of 17 
proteins, they computed an RMS difference between 
native and predicted structures of 1.56 A for residues 
found in protein cores and 2.21 A for all residues in 
entire proteins, with an average of 70.2% x1 values 
for all core residues. In our entire sample, the aver- 
age overall RMS-deviation value was 2.03 A and x1 
was predicted correctly 74% of the time. This seems 
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to indicate that our simple potential achieves results 
equal to or better than those obtained using a more 
physically realistic van der Waals potential. In ap- 
plication to homology modeling, Holm and Sander 
calculate entropies similar to the ones described in 
this paper. They interpret them, however, as mea- 
sures of convergence of their algorithm. We showed 
that when simulations are run long enough that the 
entropies themselves converge to constant values, 
and when care is taken to sample only low-energy 
configurations during the determination of rotamer 
entropies, such values can be used to assess the re- 
liability of prediction for each residue. 

Lee and Subbiah3’ also used a simulated-anneal- 
ing search to explore side chain conformations glo- 
bally; however, they did not limit their search to 
conformations found in a rotamer library. In their 
method, x angles are explored in lo” increments and 
the energy is calculated using a Lennard-Jones 
6-12 potential. Because of the time required for the 
search, the method was applied only to a subset of 
residues in each of their test proteins. Prediction 
accuracies for whole proteins averaged 1.97 A RMS 
interatomic deviation, including Cp. This compares 
to our average overall value of 2.03 A excluding Cp. 
Since the difference between such values must be at 
least 5% (see the Methods section), our results ap- 
pear comparable or a bit better. These researchers 
found arginine and lysine especially hard to predict, 
while hydrophobic residues were predicted with 
higher accuracy. These observations parallel our 
own. Because they explore a larger search space, 
this algorithm takes significantly more computer 
time than the one presented here. A medium-sized 
proteins (about 300 residues-about 230 moving 
residues) could not be searched in a reasonable time. 

Another search strategy, termed self-consistent 
ensemble optimization, has recently been intro- 
duced by Lee.43 This algorithm is not limited to rot- 
amers, but searches side chain configurational space 
in 10” increments. Although the method was not ap- 
plied to all side chains in one protein, it was success- 
fully applied to the hydrophobic side chains in fla- 
vodoxin and to  the hydrophobic core mutants of X 
repressor. For 49 hydrophobic residues in flavo- 
doxin, this algorithm yields a structure that exhibits 
a 0.99 A RMS interatomic difference to the native 
structure, including Cp. For the 57 residues com- 
prising the lowest-entropy half of the side chains in 
this molecule, we found an overall RMS interatomic 
displacement of 1.02 A. Again, given the minimum 
correction of 5% due to the inclusion of p atoms, our 
results appear comparable or perhaps a bit better. It 
should be mentioned that the 49 residues they quote 
results for, like our 57, are selected based on criteria 
internal to the algorithm. 

The dead-end elimination algorithm was devel- 
oped by Desmet et al.41 to prune configuration space 
before beginning the search. These researchers re- 

ported a 71-72% prediction accuracy for x1 and x2 of 
all side chains in insulin and hemocyanin. Our over- 
all xl and x2 prediction accuracy was 63%; however, 
this figure ranges from 47% to 82% in individual 
proteins. Since insulin and hemocyanin are not in 
our database, specific results results cannot be di- 
rectly compared. An improvement of this algorithm 
has recently been i n t r ~ d u c e d ~ ~ ;  however, it was not 
applied to any proteins, so its performance could not 
be evaluated. 

Koehl and D e l a r ~ e ~ ~  used a self-consistent mean- 
field method to search conformation space using a 
standard rotamer library. They used a Lennard- 
Jones 6-12 potential to eliminate those combina- 
tions of rotamers that made bad van der Waals con- 
tact. This was followed by a general energy 
minimization of side chain conformations. For a set 
of 30 well-resolved proteins, this method yields an 
average of 72% correct predictions for x1 and 62% 
correct prediction for x1 and x2, roughly comparable 
to the 74% and 63%, which we present. For the seven 
proteins we studied in common with these workers, 
the average-residue RMS value was 1.2 A, while 
ours was 1.3 A, both groups excluding Cp from the 
calculation. Thus, we appear to do a bit better than 
they using the x value criterion and they appear to 
do a bit better than we do using the RMS criterion. 
Although these authors do not give timing data, en- 
ergy minimization is likely to be more time-consum- 
ing than the procedure we describe. 

Several groups have attempted to perform energy 
minimization on small clusters or cores of interact- 
ing  residue^.^"^' Snow and A m ~ e l ~ ~  defined depen- 
dency sets for each residue and minimized each clus- 
ter in an attempt to predict changes caused by 
mutagenesis in an immunoglobulin structure. Schif- 
fer and coworkers35 start by placing side chains us- 
ing a knowledge-based approach, but they then de- 
fine clusters, which they call “molten zones,” and 
minimize these zones independently. They also in- 
troduced a solvation term into their energy function, 
but they applied their method only to rat trypsin 
side chains on the structure of bovine trypsin. These 
papers involve building side chains onto a nonnative 
backbone, and are thus not directly comparable to 
our results. 

Another energy-based rotamer search which in- 
cludes a solvent term, and also allows the backbone 
to relax, was developed by Wilson and  coworker^.^^ 
This improvement to the energy equation appears to 
improve prediction of accessible side chains, but re- 
sults for only a few proteins were presented and re- 
sults for individual amino acids were not presented. 
Using this algorithm, 88% of the buried residues, 
67% of the exposed residues and 76% of all residues 
were predicted correctly at the rotamer level in 
a-lytic protease (2alp). For this protein, we achieve 
69% correct prediction, overall. In r.m.8. interacto- 
mic displacement, these workers also do better than 
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we do: for 2alp they achieve a 0.73 A r.ms. displace- 
ment, on average, per residue and 1.31 A RMS over 
all moving atoms; we achieve 1.03 and 1.83 RMS, 
respectively. Similarly, for lctf, they achieve 1.49 A 
overall and we obtain a value of 1.86 A. It is not 
clear from their paper whether they include Cp in 
the calculation, but their results are certainly more 
accurate than ours. It is uncertain whether the sol- 
vation term or the ability to relax the backbone is 
responsible for more of the difference. Wilson and 
colleagues36 find situations in which backbone re- 
laxation is necessary if the correct rotamer is to be 
selected; however, such situations seem to be few. 

Eisenmenger and associates3' minimize each side 
chain individually in the context of backbone atoms, 
then combine individually minimized side chains in 
a global minimization protocol. Using a database of 
seven proteins, these researchers acheived an aver- 
age of 74% (80%), 53% (65%), and 49% (57%) correct 
predictions for xl, x1 and x2, and all x angles, respec- 
tively, where the numbers in parentheses were ob- 
tained using all atoms, backbone and side chain, in 
the minimization, while the other numbers were ob- 
tained using their so-called GAP method, which var- 
ies only backbone and Cp atoms in the minimiza- 
tion. Our figures of 74%, 63%, and 59% are quite 
comparable with their better set of results. They re- 
port a 2.1 A overall interatomic displacement for 
4pti, compared with our 2.0 A, and find a 1.5 A dis- 
placement for buried residues of this protein, with- 
out saying what fraction of the total these comprise. 
For our lowest-entropy 50% of the residues, we ob- 
serve a 1.6 A RMS displacement. These results ap- 
pear comparable; however, they do better than we 
for lubq, the other protein we both modeled in com- 
mon: 1.4 A and 0.5 A RMS, overall and buried, com- 
pared to our 1.9 A and 1.2 A, overall and low-en- 
tropy half, respectively. It is interesting that 
relative results differ so greatly going from protein 
to protein. It is not known whether these authors 
included Cp in the calculation. 

Knowledge-based methods also produce compara- 
ble results. Reid and Thornton applied a knowledge- 
based method to homology modeling of f l a v o d ~ x i n ~ ~ ~  
achieving an r.m.s side chain displacement of 2.41 
A. Our automatic method achieves a 2.1 A value; 
however, this illustrates that hand-modeling is ca- 
pable of reasonable results. In modeling rhizopus- 
pepsin, Summers and Karplus3' first place homolo- 
gous atoms based on the protein of known structure, 
use a rigid rotor van der Waals approximation to 
place remaining atoms, then apply an energy mini- 
mization routine to relax atomic overlaps. Dunbrack 
and Karplus31 developed a backbone-dependent side 
chain rotamer library and used this library to ini- 
tially place side chains on the protein backbone. 
Side chains were then iteratively minimized and re- 
oriented to eliminate van der Waals repulsions. For 
several proteins, we and they studied either differ- 

ent mutants or different chains; results can be di- 
rectly compared only for rhizopuspepsin (aapr), pan- 
creatic trypsin inhibitor (we studied 4pti; they 
studied 5pti), and ribonuclease (7rsa). We predict x1 
correctly 81%, 83%, and 71% of the time, respec- 
tively, for these systems. Dunbrack and Karplus 
predict these values correctly 54%, 65%, and 56% of 
the time using a backbone-independent rotamer li- 
brary and 82%, 85%, and 79% of the time using a 
backbone-dependent rotamer library. Our predic- 
tions, which use a backbone-independent rotamer 
library, are more successful, than theirs, when they 
use a similar library, and not quite as good as theirs 
when they use a backbone-dependent library. Their 
criterion for correctness was obtaining a x angle 
within 40" of the native value, which, as mentioned 
earlier, should map reasonably well to our criterion. 
This comparison seems to bear out the assertion 
that, despite its simplicity, the simple energetic cri- 
terion and search strategy proposed here achieve re- 
sults a t  least as good as more complicated and time- 
consuming methods. From the table they present of 
frequency and average RMS interatomic displace- 
ment of the various residue types, an average resi- 
due RMS interatomic displacement can be computed 
for the 635 nonproline residues in their sample. This 
value, 1.43 A, is not quite as good as our comparable 
value of 1.34 A. It is not clear whether they included 
Cp in the computation. In any event, the data of 
Dunbrack and Karplus also suggest that a back- 
bone-dependent rotamer library would improve the 
accuracy of any rotamer-based side chain modeling 
method, including ours. 

Laughton3' uses a database of side chain contacts 
to build side chains from comparable side chains 
found in the database. The complete structure is 
then energy-minimized. The proteins they, as well 
as we, modeled are lctf, 7rsa, 1121, and 4fxn. The 
average over these four proteins of the overall r.m.8. 
interatomic displacement of the side chain atoms is 
1.95 A; for the same proteins, our average value is 
2.01 A; however, they included Cp in the computa- 
tion, so, given the 5% minimum correction for this 
factor, our results would appear to be comparable or 
perhaps a bit better. For core residues, they obtain 
an average value over these proteins of 1.20 A, 
whereas for our 50% low-entropy residues we obtain 
an average of 1.34 A; however, aside from the Cp 
correction, it is not clear what fraction of the total 
their core residues comprise. We appear to achieve 
accuracies similar to those of this group, without 
going through an energy-minimization step. 

Tanimura and coworkers65 compare several meth- 
ods of side chain prediction using rotamer libraries of 
several sizes (101,263, and 624 rotamers, total). We 
compare our results, using a rotamer library of 189 
rotamers, total, with their results using the medium- 
size library. The dead-end elimination method41 
gives the best overall results with this library (and 
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could not be carried out on large proteins with the 
large library). Their overall RMS interatomic dis- 
placement, over all side chain atoms in the 11 pro- 
teins they studied, is 1.76 A using this method, and 
is 1.10 A for core residues, excluding Cp. Both x1 and 
x2 are predicted correctly 68% and 80% of the time for 
these two groups. We find overall interatomic dis- 
placements of 2.03 A and 1.54 A RMS, respectively, 
for all residues and for the 50% lowest-entropy res- 
idues, averaged over single proteins. We obtain both 
x1 and x2 correctly 63% of the time and 78% of the 
time, respectively, for these two groups. Since there 
is no clearly observable trend in accuracy as proteins 
increase in size (Table I), the overall RMS displace- 
ment results presented by these workers is probably 
comparable to our average over proteins. The results 
of Tanimura and coworkers are thus more accurate 
than ours, especially in terms of rms displacement. 
This cannot be due to a better fit of the rotamer 
library to the native side chains, since both their 
library and ours exhibit a BRC rms interatomic dis- 
placement of 0.76 A. Their smaller library of 101 
residues, which exhibits a BRC rms interatomic dis- 
placement of 0.88 A, gives, using the dead-end 
method, results close to ours. It is uncertain whether 
the higher accuracy obtained by these workers is a 
due to the use of a full molecular mechanics force- 
field or to the method used to place the rotamers. It 
should also be mentioned that Tanimura and col- 
leagues used an all-hydrogen model of the protein, 
rather than a heavy-atom-only model, as we did. This 
probably contributes to the accuracy as well. 

Vasquez66 experimented with a variety of meth- 
ods, all starting with a reference rotamer library 
about twice as large as ours, giving an RMS inter- 
atomic displacement in the BRC of 0.58 A. He uses 
two basic algorithms (termed the heat-bath method 
and the mean-field method) to select rotamers, and 
follows this with a stage of energetic refinement in 
side chain torsion space. Throughout, he uses Len- 
narddones-like energy functions. The two basic al- 
gorithms perform essentially equally well, and are 
not improved materially by means of an intermedi- 
ate “customization” step, in which the rotamer li- 
brary for each residue is refined based on its local 
environment; thus, this procedure was discarded. 
His overall results over a test set of 30 proteins is an 
RMS interatomic displacement of 1.78 A, excluding 
Cp (1.53 A including Cp), compared to our value of 
2.03 A. For cores comprising 45% of the residues, his 
results improve to 1.14 A RMS, compared to our 
value of 1.54 A for the 50% low-entropy residues. 
His results are also more accurate than ours for x 
angle predictions: x1 alone is predicted correctly 
about 81% of the time, compared to our 74%, and 
both x1 and x2 are predicted correctly 71% of the 
time, compared to our 63%. It is difficult to unravel 
the several factors which might be responsible for 
the greater accuracy of Vasquez’s results, compared 

to ours. The larger rotamer library presumably con- 
tributes, and Vasquez states that postrefinement is 
also important. The heat-bath or mean-field meth- 
ods are probably not an improvement over the 
simulated annealing method used here. Our obser- 
vation that simulated annealing nearly always suc- 
ceeds in finding the same minimal-B score indicates 
that, as both Vasquez and Eisenmember and col- 
leagues3‘ concluded, the combinatorial problem is 
not performance-limiting for side chain prediction. 
Interestingly, Vasquez observed, as we did, that the 
lowest-energy structures found by his algorithm al- 
ways had lower energies than the BRC. 

With the exception of the work of T a n i m ~ r a ~ ~  and 
Vasquez66, whose results are comparable and more 
accurate than ours, the results presented here appear 
to be similar in accuracy to those presented by other 
workers. The factors responsible for the accuracy ob- 
tained by Tanimura and Vasquez appear to be dis- 
tinct. Tanimura’s improved accuracy is probably due 
to the use of a full molecular-mechanics energy func- 
tion andlor the inclusion of explicit hydrogens; it 
cannot be due to his use of an intrinsically better 
rotamer library, since the BRC does not fit the native 
structure any better for his library than for ours. 
Vasquez uses neither explicit hydrogens nor a full 
molecular-mechanics energy function, but he does 
employ a larger and intrinsically better-fitting rot- 
amer library than other workers (except for the 
large-library experiments of Tanimura, which we 
have not discussed). He also performs a postplace- 
ment refinement of the side chain x angles. Though 
the work of Vasquez, like ours and that of most other 
workers, achieves success without considering polar 
interactions, underscoring the importance ofpacking 
in the determination of side chain conformation, 
careful examination of results with polar groups (es- 
pecially ASN, GLN, and HIS) make it clear that 
using a more realistic energy function must improve 
such predictions. Be this as it may, the entropy-based 
selectivity criteria discussed here would probably 
continue be useful in conjunction with bettter rota- 
mer libraries, force-fields and placement algorithms. 

Limitations of and Possible Improvements to 
the Algorithm 

The very use of a rotamer library is a simplifica- 
tion which allows a large region of configuration 
space to be explored in a finite amount of time, a t  
some sacrifice of accuracy in atomic position. In 
1987, Ponder and Richards45 presented evidence 
that side chains largely fall into a limited number of 
rotamer categories. This library was examined and 
extended by Tuffery and colleagues64 and Thornton 
and coworkers presented evidence that side chain 
conformations become more tightly clustered with 
higher structure r e s ~ l u t i o n . ~ ~  However, Schrauber 
and colleagues58 present convincing evidence that 
5% to 30% (depending on amino acid type) of all 
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amino acid conformations do not fall into clear rot- 
amer categories, even in very high-quality crystal 
structures, calling into question the rotamer-library 
approximation for conformational searching. So, can 
side chain conformations be adequately searched us- 
ing a rotamer library? Data presented here and else- 
where suggest that, for the vast majority of side 
chains, a rotamer library is sufficient for an initial 
side chain conformational search, as long as the 
model protein is subjected to energy minimization or 
dynamics following the conformational search to re- 
lieve further atomic overlaps and strain imposed by 
the limited rotamer l i b r a r i e ~ . ~ ~ , ~ ~ , ~ ~ , ~ '  Rotamer li- 
brary searching is not adequate for drug or ligand 
design, where atomic resolution is critical. Further 
techniques for thoroughly searching conformational 
space in critical parts of a protein remain to be fur- 
ther developed; however, techniques such as those 
presented here can be used for initial side chain 
placement before further refinement4', as is also ap- 
parent from the work of Vasquez.66 

A second limitation of the present work is the 
extremely simple energy function used to distin- 
guish among alternate conformations. Koehl and 
Delarue*' mention briefly that they experimented 
with a simple odoff atomic overlap, but that this 
gave results somewhat worse than those obtained 
using a Lennard-Jones potential. They also mention 
that by increasing the atomic radii, they achieved 
worse results, whereas by decreasing the radii they 
obtained slightly better results using this simplified 
potential. On the surface, these results seem in di- 
rect contrast to ours, in which a simplified ordoff 
potential was applied and results comparable to 
those obtained with other methods were achieved 
using atomic radii somewhat greater than normal. 
However, our results, like theirs, suggest that a 
large fraction of side chain packing interactions can 
be ruled out based on steric (nonpolar) factors. We 
obtain results comparable to most results found us- 
ing more complicated potentials, demonstrating 
that the simple model described here captures much 
of the physical reality mitigating side chain confor- 
mation. On the other hand, the excellent results of 
Tanimura6' may, a t  least in part, be due to his use of 
additional force-field terms. 

A major benefit of our method is computational 
efficiency coupled with reasonably accurate predic- 
tion results of all side chains in the protein of inter- 
est. We would like to improve the prediction results 
without significantly slowing the computation time. 
Several such improvements can be imagined. First, 
a rotamer library based on the most recent struc- 
tures from the Brookhaven database53 could be 
used. Preliminary results suggest, however, that 
this change makes little difference in prediction ac- 
curacies (Farid and Shenkin, unpublished). How- 
ever, it has been that side chain dihedral 
preferences correlate with main chain conforma- 

tions. Comparison of our data with those of Dun- 
brack and Karplus31 strongly suggests that incorpo- 
rating secondary structure-specific rotamers into 
the library would yield significant improvement (see 
above). It is worth recalling that our algorithm 
keeps the backbone fixed; thus, the program could 
itself determine the nature of the secondary struc- 
ture in the vicinity of each residue and select the 
appropriate rotamer set accordingly. 

Currently, atomic overlaps or bumps are treated 
in a simple manner, and changes here might result 
in better prediction accuracies. For instance, moder- 
ate and severe atomic overlaps are now counted 
equally; furthermore, distances between hydrogen- 
bonded atoms can be smaller than those that are not 
hydrogen bonded. Thus, it might be more realistic to 
weight large atomic overlaps more heavily than 
small ones or to allow oxygen and nitrogen atoms to 
approach each other more closely than other atoms. 
It might be worth weighting backbone-side chain 
bumps differently from side chain-side chain over- 
laps. However, comparison of our data to that of 
other researchers suggests that most of these 
changes are only likely to result in small, if any, 
visible difference in the prediction accuracies. Cer- 
tainly, however, addition of terms to account for po- 
lar effects can only improve prediction accuracy for 
glutamine, asparagine and histidine residues. Even 
in the context of a pure packing model, incorpora- 
tion of explicit hydrogens might improve results. 

The work of Wilson and colleagues,36, Schiffer 
and colleagues,35, and Snow and A m ~ e l ~ ~  suggests 
that solvent effects can improve the prediction of 
surface residues. Side chain conformations could 
first be positioned using the algorithm described 
here, then the conformations of those residues that 
are solvent accessible could be further searched with 
a solvation term included in the energy calculation. 
However, the utility of predicting charged or polar 
surface residues, which may not be well determined 
in crystal structures and may adopt multiple confor- 
mations in solution, is questionable. 

Applications of the Method 
The question of side chain entropy and its relation 

to local environment deserves further investigation. 
As mentioned earlier, tallying the pairwise as well 
as individual rotamer occurrences during the low- 
temperature Monte-Carlo process would allow the 
effect of correlation to be directly assessed. Detailed 
comparison with multiply occupied crystallographic 
positions and with dynamic NMR studies are in 
principle possible; also, if correlated side chain con- 
formation is a feature of real proteins, taking corre- 
lation into account in the prediction algorithm 
ought to improve the overall prediction accuracy. 

The best test of a side chain conformational search 
algorithm is its application to real homology model- 
ing and inverse folding problems, because small 
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shifts in backbone conformation may cause drastic 
changes in the distribution of side chain conforma- 
tions. On the other hand, because of its speed, the 
method described here can be easily be applied to a 
variety of problems. This algorithm is currently be- 
ing applied to real modeling problems: to a homol- 
ogy model of galactose repressor sugar-binding do- 
main,& to a model of fasciclin I11 neural adhesion 
protein whose sequence-to-structure alignment was 
determined by the inverse folding algorithm of Bry- 
ant and Lawrence,50 to a homology model of two 
human papillomavirus E2 transcriptional regula- 
tory proteins (Altman, Brenowitz, and Fetrow, un- 
published), to modeling of side chains in protein 
loops, and to side chain dressing of de novo-gener- 
ated backbone structures in fundamental studies of 
protein f~lding.~’ Comparison of predicted models to 
experimental results, such as actual crystal struc- 
tures, will provide better tests of the accuracy of this 
approach. 
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