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Exposing Digital Forgeries by
Detecting Traces of Re-sampling

Alin C. Popescu and Hany Farid†

Abstract

The unique stature of photographs as a definitive recording of events is being diminished due, in part, to the

ease with which digital images can be manipulated and altered. Although good forgeries may leave no visual clues

of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. For example,

we describe how re-sampling (e.g., scaling or rotating) introduces specific statistical correlations, and describe how

these correlations can be automatically detected in any portion of an image. This technique works in the absence

of any digital watermark or signature. We show the efficacy of this approach on uncompressed TIFF images, and

JPEG and GIF images with minimal compression. We expect this technique to be among the first of many tools

that will be needed to expose digital forgeries.

I. INTRODUCTION

With the advent of low-cost and high-resolution digital cameras, and sophisticated editing software, digital images

can be easily manipulated and altered. Digital forgeries, often leaving no visual clues of having been tampered

with, can be indistinguishable from authentic photographs. As a result, photographs no longer hold the unique

stature as a definitive recording of events. Of particular concern is how the judicial system and news media will

contend with this issue. For example, in March of 2003 the Los Angeles Times published, on its front page, a

dramatic photograph of a soldier directing an Iraqi citizen to take cover. The photograph, however, was a fake - it

was digitally created by splicing together two photographs 1. This and similar incidents naturally lead us to wonder

how many of the images that we see every day have been digitally doctored.

Digital watermarking has been proposed as a means by which an image can be authenticated (see, for example, [1],

[2] for general surveys). Within this broad area, several authentication schemes have been proposed: embedded

signatures [3], [4], [5], [6], [7], eraseable fragile watermarks [8], [9], semi-fragile watermarks [10], [11], [12], [13],

robust tell-tale watermarks [14], [15], [12], [16], [17], and self-embedding watermarks [18]. All of these approaches

work by either inserting at the time of recording an imperceptible digital code (a watermark) into the image, or

extracting at the time of recording a digital code (a signature) from the image and re-inserting it into the image or
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image header. With the assumption that digital tampering will alter a watermark (or signature), an image can be

authenticated by verifying that the extracted watermark is the same as that which was inserted. The major drawback

of this approach is that a watermark must be inserted at precisely the time of recording, which would limit this

approach to specially equipped digital cameras. This method also relies on the assumption that the digital watermark

cannot be easily removed and reinserted - it is not yet clear whether this is a reasonable assumption (e.g., [19]).

In contrast to these approaches, we describe a technique for detecting traces of digital tampering in the complete

absence of any form of digital watermark or signature. This approach works on the assumption that although digital

forgeries may leave no visual clues of having been tampered with, they may, nevertheless, alter the underlying

statistics of an image. For example, consider the creation of a digital forgery that shows a pair of famous movie

stars, rumored to have a romantic relationship, walking hand-in-hand. Such a photograph could be created by

splicing together individual images of each movie star and overlaying the digitally created composite onto a sunset

beach. In order to create a convincing match, it is often necessary to re-size, rotate, or stretch portions of the images.

This process requires re-sampling the original image onto a new sampling lattice. Although this re-sampling is often

imperceptible, it introduces specific correlations into the image, which when detected can be used as evidence of

digital tampering. We describe the form of these correlations, and how they can be automatically detected in any

portion of an image. We show the general effectiveness of this technique and analyze its sensitivity and robustness

to counter-attacks.

II. RE-SAMPLING

For purposes of exposition we will first describe how and where re-sampling introduces correlations in 1-D

signals, and how to detect these correlations. The relatively straight-forward generalization to 2-D images is then

presented.

A. Re-sampling Signals

Consider a 1-D discretely-sampled signal x[t] with m samples, Fig. 1(a). The number of samples in this signal

can be increased or decreased by a factor p/q to n samples in three steps [20]:

1) up-sample: create a new signal xu[t] with pm samples, where xu[pt] = x[t], t = 1, 2, ...,m, and xu[t] = 0

otherwise, Fig. 1(b).

2) interpolate: convolve xu[t] with a low-pass filter: xi[t] = xu[t] ? h[t], Fig. 1(c).

3) down-sample: create a new signal xd[t] with n samples, where xd[t] = xi[qt], t = 1, 2, ..., n. Denote the

re-sampled signal as y[t] ≡ xd[t], Fig. 1(d).

Different types of re-sampling algorithms (e.g., linear, cubic) differ in the form of the interpolation filter h[t] in

step 2. Since all three steps in the re-sampling of a signal are linear, this process can be described with a single

linear equation. Denoting the original and re-sampled signals in vector form, ~x and ~y, respectively, re-sampling
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Fig. 1. Re-sampling a signal by a factor of 4/3: shown are (a) the original signal; (b) the up-sampled signal; (c) the interpolated signal;

and (d) the final re-sampled signal.

takes the form:

~y = Ap/q~x, (1)

where the n × m matrix Ap/q embodies the entire re-sampling process. For example, the matrix for up-sampling

by a factor of 4/3 using linear interpolation (Fig. 1) has the form:

A4/3 =


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























1 0 0 0

0.25 0.75 0 0

0 0.50 0.50 0

0 0 0.75 0.25

0 0 0 1

. . .





























. (2)

Depending on the re-sampling rate, the re-sampling process will introduce correlations of varying degrees between

neighboring samples. For example, consider the up-sampling of a signal by a factor of two using linear interpolation.

In this case, the re-sampling matrix takes the form:
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A2/1 =
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. (3)

Here, the odd samples of the re-sampled signal ~y take on the values of the original signal ~x, i.e., y2i−1 = xi, i =

1, . . . ,m. The even samples, on the other hand, are the average of adjacent neighbors of the original signal:

y2i = 0.5xi + 0.5xi+1, (4)

where i = 1, . . . ,m − 1. Note that since each sample of the original signal can be found in the re-sampled signal,

i.e., xi = y2i−1 and xi+1 = y2i+1, the above relationship can be expressed in terms of the re-sampled samples

only:

y2i = 0.5y2i−1 + 0.5y2i+1. (5)

That is, across the entire re-sampled signal, each even sample is precisely the same linear combination of its adjacent

two neighbors. In this simple case, at least, a re-sampled signal could be detected (in the absence of noise) by

noticing that every other sample is perfectly correlated to its neighbors. To be useful in a general forensic setting

we need, at a minimum, for these types of correlations to be present regardless of the re-sampling rate.

Consider now re-sampling a signal by an arbitrary amount p/q. In this case we first ask, when is the ith sample

of a re-sampled signal equal to a linear combination of its 2N neighbors, that is:

yi
?
=

N
∑

k=−N

αkyi+k, (6)

where αk are scalar weights (and α0 = 0). Re-ordering terms, and re-writing the above constraint in terms of the

re-sampling matrix yields:

yi −
N
∑

k=−N

αkyi+k = 0 (7)

(~ai · ~x) −
N
∑

k=−N

αk(~ai+k · ~x) = 0 (8)

(

~ai −
N
∑

k=−N

αk~ai+k

)

· ~x = 0, (9)

where ~ai is the ith row of the re-sampling matrix Ap/q, and ~x is the original signal. We see now that the ith

sample of a re-sampled signal is equal to a linear combination of its neighbors when the ith row of the re-sampling

matrix, ~ai, is equal to a linear combination of the neighboring rows,
∑N

k=−N αk~ai+k. For example, in the case of
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up-sampling by a factor of two, Equation (3), the even rows are a linear combination of the two adjacent odd rows.

Note also that if the ith sample is a linear combination of its neighbors then the (i − kp)th sample (k an integer)

will be the same combination of its neighbors, that is, the correlations are periodic. It is, of course, possible for the

constraint of Equation (9) to be satisfied when the difference on the left-hand side of the equation is orthogonal to

the original signal ~x. While this may occur on occasion, these correlations are unlikely to be periodic.

B. Detecting Re-sampling

Given a signal that has been re-sampled by a known amount and interpolation method, it is possible to find a set

of periodic samples that are correlated in the same way to their neighbors. Consider again the re-sampling matrix

of Equation (2). Here, based on the periodicity of the re-sampling matrix, we see that, for example, the 3rd, 7th,

11th, etc. samples of the re-sampled signal will have the same correlations to their neighbors. The specific form

of the correlations can be determined by finding the neighborhood size, N , and the set of weights, ~α, that satisfy:

~ai =
∑N

k=−N αk~ai+k, Equation (9), where ~ai is the ith row of the re-sampling matrix and i = 3, 7, 11, etc. If, on

the other-hand, we know the specific form of the correlations, ~α, then it is straight-forward to determine which

samples satisfy yi =
∑N

k=−N αkyi+k, Equation (7).

In practice, of course, neither the re-sampling amount nor the specific form of the correlations are typically

known. In order to determine if a signal has been re-sampled, we employ the expectation/maximization algorithm

(EM) [21] to simultaneously estimate a set of periodic samples that are correlated to their neighbors, and the specific

form of these correlations. We begin by assuming that each sample belongs to one of two models. The first model,

M1, corresponds to those samples that are correlated to their neighbors, and the second model, M2, corresponds

to those samples that are not (i.e., an outlier model). The EM algorithm is a two-step iterative algorithm: (1) in the

E-step the probability that each sample belongs to each model is estimated; and (2) in the M-step the specific form

of the correlations between samples is estimated. More specifically, in the E-step, the probability of each sample

yi belonging to model M1 can be obtained using Bayes’ rule:

Pr{yi ∈ M1 | yi} =

Pr{yi | yi ∈ M1}Pr{yi ∈ M1}
∑2

k=1 Pr{yi | yi ∈ Mk}Pr{yi ∈ Mk}
, (10)

where the priors Pr{yi ∈ M1} and Pr{yi ∈ M2} are assumed to be equal to 1/2. We also assume that

Pr{yi|yi ∈ M1} =

1

σ
√

2π
exp







−
(

yi −
∑N

k=−N αkyi+k

)2

2σ2






, (11)

and that Pr{yi|yi ∈ M2} is uniformly distributed over the range of possible values of the signal ~y. The variance,

σ, of the Gaussian distribution in Equation (11) is estimated in the M-step (see Appendix A). Note that the E-step
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Fig. 2. A signal with 32 samples (top) and this signal re-sampled by a factor of 4/3 (bottom). Each sample is annotated with its probability

of being correlated to its neighbors. Note that for the up-sampled signal these probabilities are periodic, while for the original signal they

are not.

requires an estimate of ~α, which on the first iteration is chosen randomly. In the M-step, a new estimate of ~α is

computed using weighted least-squares, that is, minimizing the following quadratic error function:

E(~α) =
∑

i

w(i)

(

yi −
N
∑

k=−N

αkyi+k

)2

, (12)

where the weights w(i) ≡ Pr{yi ∈ M1|yi}, Equation (10), and α0 = 0. This error function is minimized by

computing the gradient with respect to ~α, setting the result equal to zero, and solving for ~α, yielding:

~α = (Y T WY )−1Y T W~y, (13)

where the matrix Y is:

Y =




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





y1 . . . yN yN+2 . . . y2N+1

y2 . . . yN+1 yN+3 . . . y2N+2

...
...

...
...

yi . . . yN+i−1 yN+i+1 . . . y2N+i

...
...

...
...























, (14)

and W is a diagonal weighting matrix with w(i) along the diagonal. The E-step and the M-step are iteratively

executed until a stable estimate of ~α is achieved (see Appendix A for more details).

Shown in Fig. 2 are the results of running EM on the original and re-sampled signals of Fig. 1. Shown on the top

is the original signal where each sample is annotated with its probability of being correlated to its neighbors (the

first and last two samples are not annotated due to border effects - a neighborhood size of five (N = 2) was used

in this example). Similarly, shown on the bottom is the re-sampled signal and the corresponding probabilities. In

the later case, the periodic pattern is obvious, where only every 4th sample has probability 1, as would be expected

from an up-sampling by a factor of 4/3, Equation (2). As expected, no periodic pattern is present in the original

signal.

The periodic pattern introduced by re-sampling depends, of course, on the re-sampling rate. It is not possible,

however, to uniquely determine the specific amount of re-sampling. The reason is that although periodic patterns
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may be unique for a set of re-sampling parameters, there are parameters that will produce similar patterns. For

example, re-sampling by a factor of 3/4 and by a factor of 5/4 will produce indistinguishable periodic patterns. As

a result, we can only estimate the amount of re-sampling within this ambiguity. Since we are primarily concerned

with detecting traces of re-sampling, and not necessarily the amount of re-sampling, this limitation is not critical.

There is a range of re-sampling rates that will not introduce periodic correlations. For example, consider down-

sampling by a factor of two (for simplicity, consider the case where there is no interpolation). The re-sampling

matrix, in this case, is given by:

A1/2 =

















1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

. . .

















. (15)

Notice that no row can be written as a linear combination of the neighboring rows - in this case, re-sampling is not

detectable. More generally, the detectability of any re-sampling can be determined by generating the re-sampling

matrix and determing whether any rows can be expressed as a linear combination of their neighboring rows - a

simple empirical algorithm is described in Section III-A.

C. Re-sampling Images

In the previous sections we showed that for 1-D signals re-sampling introduces periodic correlations and that

these correlations can be detected using the EM algorithm. The extension to 2-D images is relatively straight-

forward. As with 1-D signals, the up-sampling or down-sampling of an image is still linear and involves the same

three steps: up-sampling, interpolation, and down-sampling - these steps are simply carried out on a 2-D lattice.

Again, as with 1-D signals, the re-sampling of an image introduces periodic correlations. Though we will only

show this for up- and down-sampling, the same is true for an arbitrary affine transform (and more generally for

any non-linear geometric transformation).

Consider, for example, the simple case of up-sampling by a factor of two. Shown in Fig. 3 is, from left to right,

a portion of an original 2-D sampling lattice, the same lattice up-sampled by a factor of two, and a subset of the

pixels of the re-sampled image. Assuming linear interpolation, these pixels are given by:

y2 = 0.5y1 + 0.5y3

y4 = 0.5y1 + 0.5y7

y5 = 0.25y1 + 0.25y3 + 0.25y7 + 0.25y9,

(16)

where y1 = x1, y3 = x2, y7 = x3, y9 = x4. Note that all the pixels of the re-sampled image in the odd rows and

even columns (e.g., y2) will all be the same linear combination of their two horizontal neighbors. Similarly, the

pixels of the re-sampled image in the even rows and odd columns (e.g., y4) will all be the same linear combination
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Fig. 3. Shown from left to right are: a portion of the 2D lattice of an image, the same lattice up-sampled by a factor of two, and a portion

of the lattice of the re-sampled image.

of their two vertical neighbors. That is, the correlations are, as with the 1-D signals, periodic. And in the same way

that EM was used to uncover these periodic correlations with 1-D signals, the same approach can be used with

2-D images.

III. RESULTS

For the results presented here, we built a database of 200 grayscale images in TIFF format. These images were

512 × 512 pixels in size. Each of these images were cropped from a smaller set of twenty-five 1200 × 1600

images taken with a Nikon Coolpix 950 camera (the camera was set to capture and store in uncompressed TIFF

format). Using bi-cubic interpolation these images were up-sampled, down-sampled, rotated, or affine transformed

by varying amounts. Although we will present results for grayscale images, the generalization to color images

is straight-forward - each color channel would be independently subjected to the same analysis as that described

below.

For the original and re-sampled images, the EM algorithm described in Section II-B was used to estimate

probability maps that embody the correlation between each pixel and its neighbors. The EM parameters were fixed

throughout at N = 2, σ0 = 0.0075, and Nh = 3 2 (see Appendix A). Shown in Figs. 4-6 are several examples

of the periodic patterns that emerged due to re-sampling. In the top row of each figure are (from left to right) the

original image, the estimated probability map and the magnitude of the central portion of the Fourier transform

of this map (for display purposes, each Fourier transform was independently auto-scaled to fill the full intensity

range and high-pass filtered to remove the lowest frequencies). Shown below this row is the same image uniformly

re-sampled at different rates. For the re-sampled images, note the periodic nature of their probability maps and the

localized peaks in their corresponding Fourier transforms. Shown in Fig. 7 are examples of the periodic patterns

that emerge from four different affine transforms. Shown in Fig. 8 are the results from applying consecutive re-

samplings. Specifically, the image in the top row was first upsampled by 15% and then this up-sampled image was

rotated by 5◦. The same operations were performed in reverse order on the image in the bottom row. Note that

while the images are perceptually indistinguishable, the periodic patterns that emerge are quite distinct, with the

last re-sampling operation dominating the pattern. Note, however, that the corresponding Fourier transforms contain

several sets of peaks corresponding to both re-sampling operations. As with a single re-sampling, consecutive

re-samplings are easily detected.

2The blurring of the residual error with a binomial filter of width Nh is not critical, but merely accelerates the convergence of EM.
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p |F(p)|

5%

10%

20%

Fig. 4. Shown in the top row is the original image, and shown below is the same image up-sampled by varying amounts. Shown in the

middle column are the estimated probability maps (p) that embody the spatial correlations in the image. The Fourier transform of each map

is shown in the right-most column. Note that only the re-sampled images yield periodic maps.

Shown in Figs. 9-10 are examples of our detection algorithm applied to images where only a portion of the

image was re-sampled. Regions in each image were subjected to a range of stretching, rotation, shearing, etc.

(these manipulations were done in Adobe Photoshop using bi-cubic interpolation). Shown in each figure is the

original photograph, the forgery, and the estimated probability map. Note that in each case, the re-sampled region

is clearly detected - while the periodic patterns are not particularly visible in the spatial domain at the reduced scale,

the well localized peaks in the Fourier domain clearly reveal their presence (for display purposes, each Fourier

transform was independently auto-scaled to fill the full intensity range and high-pass filtered to suppress the lowest

frequencies). Note also that in Fig. 9 the white sheet of paper on top of the trunk has strong activation in the

probability map - when seen in the Fourier domain, however, it is clear that this region is not periodic, but rather

is uniform, and thus not representative of a re-sampled region.

A. Sensitivity and Robustness

From a digital forensic perspective it is important to quantify the robustness and sensitivity of our detection

algorithm. To this end, it is first necessary to devise a quantitative measure of the extent of periodicity found in

the estimated probability maps. To do so, we compare the estimated probability map with a set of synthetically

generated probability maps that contain periodic patterns similar to those that emerge from re-sampled images.
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Fig. 5. Shown in the top row is the original image, and shown below is the same image down-sampled by varying amounts. Shown in the

middle column are the estimated probability maps (p) that embody the spatial correlations in the image. The Fourier transform of each map

is shown in the right-most column. Note that only the re-sampled images yield periodic maps.

Given a set of re-sampling parameters and interpolation method, a synthetic map is generated based on the

periodicity of the re-sampling matrix. Note, however, that there are several possible periodic patterns that may

emerge in a re-sampled image. For example, in the case of up-sampling by a factor of two using linear interpolation,

Equation (16), the coefficients ~α estimated by the EM algorithm (with a 3 × 3 neighborhood) are expected to be

one of the following:

~α1 =











0 0.5 0

0 0 0

0 0.5 0











~α2 =











0 0 0

0.5 0 0.5

0 0 0











~α3 =











0.25 0 0.25

0 0 0

0.25 0 0.25











. (17)

We have observed that EM will return one of these estimates only when the initial value of ~α is close to one

of the above three values, the neighborhood size is 3, and the initial variance of the conditional probability (σ in

Equation (11)) is relatively small. In general, however, this fine tuning of the starting conditions is not practical. To

be broadly applicable, we randomly choose an initial value for ~α, and set the neighborhood size and initial value

of σ to values that afford convergence for a broad range of re-sampling parameters. Under these conditions, we

have found that for specific re-sampling parameters and interpolation method, the EM algorithm typically converges

to a unique set of linear coefficients. In the above example of up-sampling by a factor of two the EM algorithm
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p |F(p)|
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Fig. 6. Shown in the top row is the original image, and shown below is the same image rotated by varying amounts. Shown in the middle

column are the estimated probability maps (p) that embody the spatial correlations in the image. The Fourier transform of each map is shown

in the right-most column. Note that only the re-sampled images yield periodic maps.

typically converges to:

~α =











−0.25 0.5 −0.25

0.5 0 0.5

−0.25 0.5 −0.25











. (18)

Note that this solution is different than each of the solutions in Equation (17). Yet, the relationships in Equation (16)

are still satisfied by this choice of coefficients. Since the EM algorithm typically converges to a unique set of linear

coefficients, there is also a unique periodic pattern that emerges. It is possible to predict this pattern by analyzing

the periodic patterns that emerge from a large set of images. In practice, however, this approach is computationally

demanding, and therefore we employ a simpler method that was experimentally determined to generate similar

periodic patterns. This method first warps a rectilinear integer lattice according to a specified set of re-sampling

parameters. From this warped lattice, the synthetic map is generated by computing the minimum distance between

a warped point and an integer sampling lattice. More specifically, let M denote a general affine transform which

embodies a specific re-sampling. Let (x, y) denote the points on an integer lattice, and (x̃, ỹ) denote the points of
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p |F(p)|

Fig. 7. Shown are four images affine transformed by random amounts. Shown in the middle column are the estimated probability maps (p)

that embody the spatial correlations in the image. The Fourier transform of each map is shown in the right-most column. Note that these

images yield periodic maps.

a lattice obtained by warping the integer lattice (x, y) according to M :




x̃

ỹ



 = M





x

y



 . (19)

The synthetic map, s(x, y), corresponding to M is generated by computing the minimum distance between each

point in the warped lattice (x̃, ỹ) to a point in the integer lattice:

s(x, y) = min
x0,y0

√

(x̃ − x0)2 + (ỹ − y0)2, (20)

where x0 and y0 are integers, and (x̃, ỹ) are functions of (x, y) as given in Equation (19). Synthetic maps generated

using this method are similar to the experimentally determined probability maps, Fig. 11.

The similarity between an estimated probability map, p(x, y), and a synthetic map, s(x, y), is computed as

follows:

1) The probability map p is Fourier transformed: P (ωx, ωy) = F(p(x, y) ·W (x, y)), where the radial portion of

the rotationally invariant window, W (x, y), takes the form:

f(r) =











1 0 ≤ r < 3/4

1
2 + 1

2 cos
(

π(r−3/4)√
2−3/4

)

3/4 ≤ r ≤
√

2,

(21)
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Fig. 8. Shown are two images that were consecutively re-sampled (top left: upsampled by 15% and then rotated by 5◦; top right : rotated

by 5◦ and then upsampled by 15%). Shown in the second row are the estimated probability maps that embody the spatial correlations in the

image. The magnitude of the Fourier transform of each map is shown in the bottom column - note the multiple set of peaks that correspond

to both the rotation and up-sampling.

where the radial axis is normalized between 0 and
√

2. Note that for notational convenience the spatial

arguments on p(·) and P (·) will be dropped.

2) The Fourier transformed map P is then high-pass filtered to remove undesired low frequency noise: PH =

P · H , where the radial portion of the rotationally invariant highpass filter, H , takes the form:

h(r) =
1

2
− 1

2
cos

(

πr√
2

)

, 0 ≤ r ≤
√

2. (22)

3) The high-passed spectrum PH is then normalized, gamma corrected in order to enhance frequency peaks,

and then rescaled back to its original range:

PG =

(

PH

max(|PH |)

)4

× max(|PH |). (23)

4) The synthetic map s is simply Fourier transformed: S = F(s).

5) The measure of similarity between p and s is then given by:

M(p, s) =
∑

ωx,ωy

|PG(ωx, ωy)| · |S(ωx, ωy)|, (24)

where | · | denotes absolute value (note that this similarity measure is phase insensitive).

A set of synthetic probability maps are first generated from a number of different re-sampling parameters. For a

given probability map p, the most similar synthetic map, s?, is found through a brute-force search over the entire
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original

forgery

probability map (p)

Fig. 9. Shown are the original image and a forgery. The forgery consists of splicing in a new license plate number. Shown below is the

estimated probability map (p) of the forgery, and the magnitude of the Fourier transform (F(p)) of a region in the license plate (left) and

on the car trunk (right). The periodic pattern (spikes in F(p)) in the license plate suggests that this region was re-sampled.
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original

forgery

probability map (p)

Fig. 10. Shown are the original image and a forgery. The forgery consists of removing a stool and splicing in a new floor taken from another

image of the same room. Shown below is the estimated probability map (p) of the forgery, and the magnitude of the Fourier transform

(F(p)) of a region in the new floor (left) and on the original floor (right). The periodic pattern (spikes in F(p)) in the new floor suggests

that this region was re-sampled.
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p

|F(p)|

s

|F(s)|

Fig. 11. Shown in the first two rows are estimated probability maps, p, from images that were re-sampled (affine transformed), and the

magnitude of the Fourier transform of these maps. Note the strong periodic patterns. Shown in the third and fourth rows are the synthetically

generated probability maps computed using the same re-sampling parameters - note the similarity to the estimated maps.

set: s? = arg maxs M(p, s). If the similarity measure, M(p, s?), is above a specified threshold, then a periodic

pattern is assumed to be present in the estimated probability map, and the image is classified as re-sampled. This

threshold is empirically determined using only the original images in the database to yield a false positive rate less

than 1%.

With the ability to quantitatively measure whether an image has been re-sampled, we tested the efficacy of our

technique to detecting a range of re-sampling parameters, and the sensitivity to simple counter-measures that may

be used to hide traces of re-sampling. In these analyses we employed the same set of images as described in the

beginning of this section, and used the same set of algorithmic parameters. The images were re-sampled using

bi-cubic interpolation. The probability map for a re-sampled image was estimated and compared against a large set

of synthetic maps. For up-sampling, 160 synthetic maps were generated with re-sampling rates between 1% and

100%, in steps of 0.6%. For down-sampling, 160 synthetic maps were generated with re-sampling rates between

1% and 50%, in steps of 0.3%. For rotations, 45 synthetic maps were generated with rotation angles between 1◦

and 45◦, in steps of 1◦.
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Fig. 12. Detection accuracy as a function of different re-sampling parameters. Each data point corresponds to the average detection accuracy

from 50 images.
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Fig. 13. Detection accuracy as a function of the amount of (non-linear) gamma correction. Shown in the top graph is the accuracy for

up-sampling by a factor of 30% (black dots) and down-sampling by a factor of 20% (white dots). Shown below is the accuracy for rotating

by 10◦ (black dots) and 2◦ (white dots). Each data point corresponds to the average detection accuracy from 50 images.

Shown in Fig. 12 are three graphs showing the detection accuracy for a range of up-sampling, down-sampling,

and rotation rates. Each data point corresponds to the average detection accuracy from 50 images. In these results,

the false-positive rate (an image incorrectly classified as re-sampled) is less than 1%. Note that detection is nearly

perfect for up-sampling rates greater than 1%, and for rotations greater than 1◦. As expected, the detection accuracy

decreases as the down-sampling rate approaches 50%, Equation (15). We have also measured the detection accuracy

in the presence of multiple re-samplings (e.g., up-sampling followed by rotation). In these cases, the detection

accuracy is typically governed by the smallest detection accuracy of the multiple re-samplings.

Shown in Figs. 13-15 are graphs showing the robustness of our algorithm to simple counter-measures that may

destroy the periodic correlations that result from re-sampling. Specifically, after re-sampling the image we (1)

gamma corrected; (2) added noise to; or (3) JPEG compressed the image. Shown in each of these figures is the
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Fig. 14. Detection accuracy as a function of signal-to-noise ratio. Shown in the top graph is the accuracy for up-sampling by a factor of

30% (black dots) and down-sampling by a factor of 20% (white dots). Shown below is the accuracy for rotating by 10◦ (black dots) and 2◦

(white dots). Each data point corresponds to the average detection accuracy from 50 images.
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Fig. 15. Detection accuracy as a function of different re-sampling parameters and JPEG compression. The black dots correspond to a JPEG

quality of 100 (out of 100), and the white dots to a quality of 97. Each data point corresponds to the average detection accuracy from 50

images.

detection accuracy for up-sampling by 30%, down-sampling by 20%, and rotating by 2◦ and 10◦. Note that the

detection is nearly perfect for a large range of gamma values, Fig. 13, and that detection accuracy remains reasonable

for even fairly low signal-to-noise ratios, Fig. 14. Fig. 15, however, reveals a weakness in our approach. Shown

here is the detection accuracy after the original TIFF image was JPEG compressed with a compression quality of

100 and 97 (out of 100). While the detection accuracy is good at a quality of 100, there is a precipitous fall in

detection at a quality of 97 (at a quality of 90, detection is nearly at chance for all re-sampling rates). Note also

that at an up-sampling rate of 60% and a down-sampling rate of 20% the detection accuracy drops suddenly. This

is because the periodic JPEG blocking artifacts happen to coincide with the periodic patterns introduced by these

re-sampling parameters - these artifacts do not interfere with the detection of rotations. The reason for the general
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poor performance of detecting re-sampling in JPEG compressed images is two-fold. First, lossy JPEG compression

introduces noise into the image (e.g., a compression quality of 90 introduces, on average, 28 db of noise), and as

can be seen in Fig. 14, this amount of noise significantly affects the detection accuracy. Second, the block artifacts

introduced by JPEG introduce very strong periodic patterns that interfere with and mask the periodic patterns

introduced by re-sampling. In preliminary results, we found that under JPEG 2000 compression, detection remains

robust down to 2 bits/pixel, with significant deterioration below 1.5 bits/pixel. This improved performance is most

likely due to the lack of the blocking artifacts introduced by standard JPEG.

We have also tested our algorithm against GIF format images. Specifically, a 24-bit color (RGB) image was

subjected to a range of re-samplings and then converted to 8-bit indexed color format (GIF). This conversion

introduces approximately 21 db of noise. For rotations greater than 10◦, up-sampling greater than 20%, and down-

sampling greater than 15%, detection accuracy is, on average, 80%, 60%, and 30%, respectively, with a less than

1% false-positive rate. While not as good as the uncompressed TIFF images, these detection rates are roughly what

would be expected with the level of noise introduced by GIF compression, Fig. 14. And finally, we have tested our

algorithm against RGB images reconstructed from a color filter array (CFA) interpolation algorithm. In this case,

the non-linear CFA interpolation does not interfere with our ability to detect re-sampling.

In summary, we have shown that for uncompressed TIFF images, and JPEG and GIF images with minimal

compression we can detect whether an image region has been re-sampled (scaled, rotated, etc.), as might occur

when an image has been tampered with.

IV. DISCUSSION

When creating digital forgeries, it is often necessary to scale, rotate, or distort a portion of an image. This

process involves re-sampling the original image onto a new lattice. Although this re-sampling process typically

leaves behind no perceptual artifacts, it does introduce specific periodic correlations between the image pixels. We

have shown how and when these patterns are introduced, and described a technique to automatically find such

patterns in any region of an image. This technique is able to detect a broad range of re-sampling rates, and is

reasonably robust to simple counter-attacks. This technique is not able to uniquely identify the specific re-sampling

amount, as different re-samplings will manifest themselves with similar periodic patterns. Although we have only

described how linear or cubic interpolation can be detected, there is no inherent reason why more sophisticated

non-linear interpolation techniques (e.g., edge preserving interpolation) cannot be detected using the same basic

framework of estimating local spatial correlations.

Our technique works in the complete absence of any digital watermark or signature, offering a complementary

approach to authenticating digital images. While statistical techniques such as that presented here pose many

challenges, we believe that their development will be important to contend with the cases when watermarking

technologies are not applicable.

The major weakness of our approach is that it is currently only applicable to uncompressed TIFF images, and
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JPEG and GIF images with minimal compression. We believe, however, that this technique will still prove useful

in a number of different digital forensic settings - for example a court of law might insist that digital images be

submitted into evidence in an uncompressed high-resolution format.

We are currently exploring several other techniques for detecting other forms of digital tampering. We believe

that many complementary techniques such as that presented here, and those that we (e.g., [22]) and others develop,

will be needed to reliably expose digital forgeries. There is little doubt that even with the development of a

suite of detection techniques, more sophisticated tampering techniques will emerge, which in turn will lead to the

development of more detection tools, and so on, thus making the creation of forgeries increasingly more difficult.
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Appendix A: EM Algorithm

/* Initialize */

choose a random ~α0

choose N and σ0

set p0 to the reciprocal of the range of the signal ~y

set Y as in Equation (14)

set h to be a binomial low-pass filter of size (Nh × Nh)

n = 0

repeat

/* expectation step */

for each sample i

R(i) =
∣

∣

∣
y(i) −∑N

k=−N αn(k)y(i + k)
∣

∣

∣
/* residual */

end

R = R ? h /* spatially average the residual error */

for each sample i

P (i) = 1
σn

√
2π

e−R(i)2/2σ2

n /* conditional probability */

w(i) = P (i)
P (i)+p0

/* posterior probability */

end

/* maximization step */

W = 0

for each sample i

W (i, i) = w(i) /* weighting matrix */

end

σn+1 =
(

P

i
w(i)R2(i)

P

i
w(i)

)1/2
/* new variance estimate */

~αn+1 = (Y T WY )−1Y T W~y /* new estimate */

n = n + 1
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until ( ‖~αn − ~αn−1‖ < ε ) /* stopping condition */
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