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ABSTRA CT

Steganographicmessagescan be embeddedinto digital imagesin ways that are imperceptible to the human eye.
These messages,however, alter the underlying statistics of an image. We previously built statistical models
using �rst-and higher-order wavelet statistics, and employed a non-linear support vector machines (SVM) to
detect steganographicmessages.In this paper we extend theseresults to exploit color statistics, and show how
a one-classSVM greatly simpli�es the training stageof the classi�er.

Keyw ords: Steganalysis

1. INTR ODUCTION

Over the past few yearsincreasingly sophisticated techniques for information hiding (steganography) have been
developing rapidly (see1{4 for generalreviews). Thesedevelopments, along with high-resolution digital imagesas
carriers, posesigni�can t challengesto detecting the presenceof hidden messages.There is, nonetheless,a growing
literature on steganalysis.While many of thesetechniquestarget speci�c embedding programs or algorithms,5{7

techniques for universal steganalysishave also begun to emerge.8, 9 A review of these and other steganalysis
techniques may be found in.10

In previous work,8, 11, 12 we showed that a statistical model basedon �rst-and higher-order wavelet statistics
could discriminate between imageswith and without hidden messages.In this earlier work, we only considered
grayscaleimagesin order to simplify the computations. There is no doubt that strong statistical regularities exist
between the color channels, and in this paper we extend our earlier statistical model to capture someof these
regularities. In our previous work we used a (linear and non-linear) two-classsupport vector machine (SVM)
to discriminate between the statistical features extracted from imageswith and without hidden messages.This
classi�er required training from both cover and stego images. From the point of view of universal steganalysis,
this training had the drawback of requiring exposureto imagesfrom broad rangeof stegotools. In this paper we
employ a one-classSVM that obviates the needfor training from stegoimages,thus making the training easier,
and making it more likely that our classi�er will be able to contend with novel and yet to be developed stego
programs.

We will �rst present the basic statistical model, and then describe the construction of a one-classsupport
vector machine. We then show the e�ectiv enessof thesetools in detecting hidden messagesin tens of thousands
of images,and from �v e di�eren t stegoprograms. We believe that this work brings us closerto realizing a robust
tool for universal steganalysis.

2. STATISTICAL MODEL

The decomposition of imagesusing basis functions that are localized in spatial position, orientation and scale
(e.g., wavelet) have proven extremely useful in image compression, image coding, noise removal and texture
synthesis. One reason is that such decompositions exhibit statistical regularities that can be exploited. The
imagedecomposition employed here is basedon separablequadrature mirror �lters (QMFs). 13{15 As illustrated
in Figure 1, the decomposition splits the frequency spaceinto multiple orientations and scales.For a grayscale
image, the vertical, horizontal and diagonal subbandsat scalei are denoted as Vi (x; y), H i (x; y), and D i (x; y),
respectively. For a color (RGB) image, the decomposition is applied independently to each color channel. The
resulting subbandsare denoted as V c

i (x; y), H c
i (x; y), and D c

i (x; y), where c 2 f r ; g; bg.
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Figure 1. Shown on the left is an idealized multi-scale and orientation decomposition of frequency space. Shown, from
top to bottom, are levels 0, 1, and 2, and from left to right, are the lowpass, vertical, horizontal, and diagonal subbands.
Shown on the right is the magnitude of a multi-scale and orientation decomposition of a \disc" image.

Given this image decomposition, the statistical model is composed of the mean, variance, skewnessand
kurtosis of the subbandcoe�cien ts at each orientation, scaleand color channel. While thesestatistics characterize
the basic coe�cien t distributions, they are unlikely to capture the strong correlations that exist acrossspace,
orientation, scaleand color. For example,edgestend to extend spatially and acrossmultiple scales.As such, if a
large coe�cien t is found in a horizontal subband, then it is likely that its left and right spatial neighbors in the
samesubbandwill also have a large value. Similarly , a large coe�cien t at scalei might indicate a large value for
its \parent" at scalei + 1.

In order to capture someof these higher-order statistical correlations, we collect a secondset of statistics
that are based on the errors in a linear predictor of coe�cien t magnitude.16 For the purpose of illustration,
consider �rst a vertical band of the greenchannel at scalei , V g

i (x; y). A linear predictor for the magnitude of
thesecoe�cien ts in a subset� of all possiblespatial, orientation, scale,and color neighbors is given by:

jV g
i (x; y)j = w1 jV g

i (x � 1; y)j + w2jV g
i (x + 1; y)j + w3jV g

i (x; y � 1)j + w4 jV g
i (x; y + 1)j

+ w5 jV g
i (x=2; y=2)j + w6jD g

i (x; y)j + w7jD g
i +1 (x=2; y=2)j + w8 jV r

i (x; y)j + w9jV b
i (x; y)j; (1)

wherej � j denotesabsolutevalueand wk are the weights. This linear relationship can beexpressedmorecompactly
in matrix form as:

~v = Q~w; (2)

where ~v contains the coe�cien t magnitudes of V g
i (x; y) strung out into a column vector (to reduce sensitivity

to noise,only magnitudes greater than 1 are considered),the columns of the matrix Q contain the neighboring
coe�cien t magnitudes as speci�ed in Equation (1), and ~w = (w1 ::: w9)T . The weights ~w are determined by
minimizing the following quadratic error function:

E( ~w) = [~v � Q~w]2: (3)

� The particular choice of neighbors was motiv ated by the observations of 16 and modi�ed to include non-casual
neighbors.



This error function is minimized by di�eren tiating with respect to ~w:

dE( ~w)
d~w

= 2QT (~v � Q~w); (4)

setting the result equal to zero, and solving for ~w to yield:

~w = (QT Q) � 1QT ~v: (5)

Given the large number of constraints (one per pixel) in only nine unknowns, it is generally safeto assumethat
the 9 � 9 matrix QT Q will be invertible.

Giventhe linear predictor, the log error betweenthe actual coe�cien t and the predicted coe�cien t magnitudes
is:

~p = log(~v) � log(jQ~wj); (6)

where the log(�) is computed point-wise on each vector component. It is from this error that additional statistics
arecollected,namely the mean,variance,skewnessand kurtosis. This processis repeatedfor scalesi = 1; :::; n� 1,
and for the subbandsV r

i and V b
i , where the linear predictors for thesesubbandsare of the form:

jV r
i (x; y)j = w1 jV r

i (x � 1; y)j + w2jV r
i (x + 1; y)j + w3jV r

i (x; y � 1)j + w4jV r
i (x; y + 1)j

+ w5 jV r
i (x=2; y=2)j + w6jD r

i (x; y)j + w7jD r
i +1 (x=2; y=2)j + w8jV g

i (x; y)j + w9jV b
i (x; y)j; (7)

and

jV b
i (x; y)j = w1 jV b

i (x � 1; y)j + w2 jV b
i (x + 1; y)j + w3 jV b

i (x; y � 1)j + w4 jV b
i (x; y + 1)j

+ w5 jV b
i (x=2; y=2)j + w6jD b

i (x; y)j + w7jD b
i +1 (x=2; y=2)j + w8 jV r

i (x; y)j + w9 jV g
i (x; y)j: (8)

A similar processis repeated for the horizontal and diagonal subbands. As an example, the predictor for the
greenchannel takes the form:

jH g
i (x; y)j = w1 jH g

i (x � 1; y)j + w2jH g
i (x + 1; y)j + w3jH g

i (x; y � 1)j + w4jH g
i (x; y + 1)j

+ w5 jH g
i (x=2; y=2)j + w6jD g

i (x; y)j + w7 jD g
i +1 (x=2; y=2)j + w8jH r

i (x; y)j + w9jH b
i (x; y)j; (9)

jD g
i (x; y)j = w1 jD g

i (x � 1; y)j + w2 jD g
i (x + 1; y)j + w3jD g

i (x; y � 1)j + w4jD g
i (x; y + 1)j

+ w5 jD g
i (x=2; y=2)j + w6jH g

i (x; y)j + w7 jV g
i (x; y)j + w8jD r

i (x; y)j + w9jD b
i (x; y)j: (10)

For the horizontal and diagonal subbands,the predictor for the red and blue channelsare determined in a similar
way as was done for the vertical subbands, Equations (7)-(8). For each oriented, scaleand color subband, a
similar error metric, Equation(6), and error statistics are computed.

For a multi-scale decomposition with scalesi = 1; :::; n, the total number of basic coe�cien t statistics is
36(n � 1) (12(n � 1) per color channel), and the total number of error statistics is also36(n � 1), yielding a grand
total of 72(n � 1) statistics. Thesestatistics form the feature vector to be used to discriminate between images
with and without hidden messages.

3. CLASSIFICA TION

In earlier work we showed the e�ectiv enessof using multi-class classi�cation schemes to detect hidden mes-
sages.8, 11, 12 Speci�cally , we employed both linear discrimination analysis17 and non-linear support vector
machines (SVM). 18 While these techniques a�orded good classi�cation accuracy, they required training with
both cover and stego images. Since there are numerous stego programs for which these techniques might need
to be trained, it would be advantageousto build a classi�er from only the more easily obtained cover images.
Shown in Figure 2(a) is a toy 2-D examplewhere a non-linear SVM was trained on black dots (cover) and white
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Figure 2. Shown are toy examples of (a) two-class SVM, (b) one-classSVM with one-hypersphere, and (c) one-class
SVM with two hyperspheres. In each case,the dotted line or circle represents the classi�er. The two-classSVM is trained
on the black dots (cover) and white squares(stego) - notice that the gray squares(also stego) will be incorrectly classi�ed
as they were not including in the training. The one-classSVMs are trained on only the black dots - notice that in these
casesthe classi�er is better able to generalizeas both the white and gray squaresgenerally fall outside the support of the
bounding circle(s).

squares(stego), and where the dashedline corresponds to the separating surfacey . In this same�gure, the gray
squarescorrespond to previously unseenimages from a di�eren t stego program. Notice that without explicit
training on the gray squares,the classi�er is unable to correctly classify them. To contend with this problem,
we employ one-classsupport vector machines (OC-SVM). 19

An OC-SVM is trained on data from only one classby computing a bounding hypersphere(in the projected
high-dimensionalspace)that encompassesasmuch of the training data aspossible,while minimizing its volume.
For example, shown in Figure 2(b) is an OC-SVM trained on the black dots. Note that, unlike the two-class
SVM shown in panel (a), this classi�er is able to classify, reasonablywell, both typesof stegoimages(white and
gray squares). We describe below the details behind the construction of such OC-SVMs.

3.1. One-class Supp ort Vector Mac hines

Consider n training data points in a d-dimensional spacedenoted as f ~x1; :::; ~xng. An OC-SVM �rst projects
thesedata into a higher, potentially in�nite, dimensional spacewith the mapping: � : R d ! F . In this space,a
bounding hypersphereis computed that encompassesas much of the training data as possible,while minimizing
its volume. This hypersphereis parameterized by a center, ~c, and a radius, r . Described below is how these
parametersare computed from the training data, and then how classi�cation is performed given this bounding
hypersphere.

The hyperspherecenter ~c and radius r are computed by minimizing:

min
~c;r ;� 1 ;:::;� n

r 2 +
1

n�

nX

i =1

� i ; (11)

where � 2 (0; 1) is a parameterizedconstant that controls the fraction of training data that fall outside of the
hypersphere,and � i s are the \slack variables" whose values indicate how far these outliers deviate from the
surfaceof the hypersphere.This minimization is subject to:

k� (~x i ) � ~ck2 � r 2 + � i ; � i � 0; i = 1; :::; n; (12)

where k � k is the Euclidean norm. The objective function of Equation (11) embodies the requirement that the
volume of the hypersphereis minimized, while simultaneously encompassingas much of the training data as

y The 2-D spaceshown in Figure 2 corresponds to the result of projecting the original data into a higher-dimensional
space. As such, the non-linear separating surface is linear.



possible. Equation (12) forces the training data to lie within the hypersphere(the slack variables � i allow the
looseningof this constraint for speci�c data points).

To determine~c and r , the quadratic programming problem of Equations (11)-(12) are transformed into their
dual form20:

min
� 1 ;:::;� n

nX

i =1

nX

j =1

� i � j � (~x i )T � (~x j ) �
nX

i =1

� i � (~x i )T � (~x i ); (13)

subject to:

nX

i =1

� i = 1; 0 � � i �
1

n�
; i = 1; :::; n; (14)

where � i 's are Lagrange multipliers. Note that in this dual formulation the constraints (Equation (14)) are
now linear, and both the objective function and constraints are convex. Standard techniques from quadratic
programming can be used to solve for the unknown Lagrange multipliers. 20 The center of the hypersphere,is
then given by:

~c =
nX

i =1

� i � (~x i ): (15)

In order to computed the hypersphere'sradius, r , we �rst use the Karush-Khun-Tucker (KKT) condition20 to
�nd the data points that lie exactly on the surface of the optimal hypersphere. Such points, ~x i , satisfy the
condition 0 < � i < 1=(n� ). Any such data point ~y that lies on the surfaceof the optimal hyperspheresatis�es
the following:

r 2 = k� (~y) � ~ck2: (16)

Substituting the solution of Equation (15) into the above yields a solution for the hypersphereradius:

r 2 =
nX

i =1

nX

j =1

� i � j � (~x i )T � (~x j ) � 2
nX

i =1

� i � (~x i )T � (~y) + � (~y)T � (~y): (17)

With the hypersphereparameters, the decision function, f (~x), which determines whether a data point lies
within the support of the hypersphere,is de�ned as:

f (~x) = r 2 � k� (~x) � ~ck2; (18)

such that, if f (~x) is greater than or equal to zero, then � (~x) lies within the hypersphere,otherwise it lies outside.
Note that this decision function requires an explicit evaluation of � (~x). This is computationally costly if � (�)
maps the data into a very high dimensional space,and is problematic when that spaceis in�nite dimensional.
Fortunately, the evaluation of � (�) can be avoided entirely . Substituting the solution of Equation (15) into the
above decisionfunction yields:

f (~x) = r 2 �

0

@
nX

i =1

nX

j =1

� i � j � (~x i )T � (~x j ) � 2
nX

i =1

� i � (~x i )T � (~x) + � (~x)T � (~x)

1

A : (19)

The inner products betweentwo projected data points in the above equation, in the computation of r of Equa-
tion (17), and the objective function of Equation (13) are replacedwith an appropriate kernel function 21:

k(~x; ~y) = � (~x)T � (~y); (20)



to yield:

f (~x) =

 

� 2
nX

i =1

� i k(~x i ; ~y) + k(~y; ~y)

!

�

 

� 2
nX

i =1

� i k(~x i ; ~x) + k(~x; ~x)

!

; (21)

where the re-formulated objective function takesthe form:

min
� 1 ;:::;� n

nX

i =1

nX

j =1

� i � j k(~x i ; ~x j ) �
nX

i =1

� i k(~x i ; ~x i ): (22)

Commonly used kernel functions are polynomials and radial basis functions (see21 for more examples). Note
that this objective function is de�ned in the original d-dimensional space. In the following section we show how
this basic framework can be extended to allow for coverageof the data with multiple hyperspheres.

3.2. One-class Supp ort Vector Mac hines with Multiple Hyp erspheres

An OC-SVM with a single hypersphere,as described in the previous section, obviates the need for training a
classi�er on a fully labeled training set. In our case,an OC-SVM needonly be trained on cover images. In the
testing stage,imagesthat are not in the support of the bounding hypersphereare consideredto contain a hidden
message.One potential drawback of using only a single hypersphereis that it may not provide a particularly
compact support for the training data, Figure 2(b).

To alleviate this problem, we propose to cover the training data with several hyperspheres,where each
hypersphereencompassesa non-intersecting subset of the training data. Shown in Figure 2(c), for example, is
the result of using two hyperspheresto cover the same data as shown in panel (b). Note that, in this case,
the support is signi�can tly more compact, thus leading to improved classi�cation. In choosing the number of
hyperspheres,however, we need to balancebetween the compactnessof the support and the generalizability of
the classi�er. Speci�cally , if too many hyperspheresare used, then it is likely that the classi�er will be tuned
only to the training data, and will perform poorly when presented with novel data.

With a speci�ed number of hyperspheres,M , the training data are �rst automatically segmented into M
non-intersecting subsets. Speci�cally , a standard K-means clustering algorithm 17 is employed to cluster the
original data into M groups. An OC-SVM, using a single hypersphere,is then independently trained on each
of the M groups. We next compute the distance between each data point and the center of each OC-SVM's
hypersphere. For each data point, the hypersphereto whosecenter it is closestis determined. Each data point
is then re-assignedto this group, regardlessof its previous assignment. And �nally , a new set of M OC-SVMs
are trained using the new group assignments. This processis repeated until no single data point is re-assigned.
The convergenceof this algorithm can be proven in a fairly straight-forward way similar to that usedin proving
the convergenceof K-means clustering.

In the testing stage, a novel image is tested against each of the M OC-SVMs. It is classi�ed as a cover
image if it falls within the support of any OC-SVM's hypersphere,otherwise it is classi�ed as a stegoimage. In
the following section we show the e�cacy of using an OC-SVM with multiple hyperspheresfor distinguishing
betweencover and stegoimages.

4. RESUL TS

Shown in Figure 3 are thirt y two cover imagestaken from a databaseof 40; 000 natural imagesz. These color
imagesspan a range of indoor and outdoor scenes,are JPEG compressedwith an averagequalit y of 90%, and
typically are 600� 400pixels in size(on average,85:7 kilobytes). To contend with slight variations in imagesize,
only the central 256� 256regionof each imagewasconsideredin the analysis. Statistics, asdescribed in Section2,
were collected by constructing, for each color channel, a four-level, three-orientation QMF pyramid. For each
image a 216-D feature vector (72 per color channel) of coe�cien t and error statistics was then computed. Of

z All natural images were downloaded from www.freefoto.com - all images were photographed with a range of di�eren t
�lms, cameras,and lenses,and digitally scanned.



Figure 3. Examples from a database of 40,000color images.
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Figure 4. Shown in the bottom panel is the classi�cation accuracy, for �v e di�eren t stego programs, as a function of
the number of hyperspheresused in the training of the OC-SVM. Shown in the top panel is the false-positive rate (a
cover image incorrectly classi�ed as stego) as a function of the number of hyperspheres. Note that although classi�cation
accuracy improves with more hyperspheres,the false-positive rate also begins to increase.

the 40; 000collected feature vectors, 32; 000were usedto train a one-classsupport vector machine (OC-SVM) x.
For comparison sake, multiple OC-SVMs were trained with N hyperspheres,N = 1; 2; :::; 6. In each case,the
false-positive rate was �xed at lessthan 1% (i.e., a cover image being incorrectly classi�ed as a stegoimage).

Next, 40; 000stegoimagesweregeneratedby embeddingmessagesof various sizesinto the full-resoltuion cover
images. The messageswere n � n central regions of randomly chosen images from the same image database,
n = 80; 40; 20, or, 10. These messageswere embedded using Jsteg,23 Outguess,24 F5,25 Jphide,26 and
Steghide.27 Each stego image was generated with the same qualit y factor as the original cover image so as
to minimize double JPEG compressionartifacts. The same statistical feature vector as described above was
computed from the central 256� 256 region of each stego image.

The trained OC-SVMs were then usedto test the previously unseen8; 000cover images,and all 40; 000stego
images (8; 000 per each of �v e stego embedding programs). Shown in the bottom panel of Figure 4 are the
classi�cation results of the testing stagefor a messagesizeof 80� 80, and for OC-SVMs trained with a varying
number of hyperspheres.Shown in the top panel of this same�gure are the number of false-positives (a cover
imageincorrectly classi�ed asa stegoimage) from the testing stage. Note that even though the overall detection

x LIBSVM ,22 with a radial basis kernel, was used as the underlying SVM algorithm.



Embedding Message Message SVMa SVMb SVMc OC-SVM OC-SVM
(pixels) (K) (2 class) (2 class) (2 class) (1 HS) (4 HS)

(gray) (color) (color) (color) (color)

No-steg - - 99.1 99.3 99.1 99.9 99.0
Jsteg 80� 80 18.8 76.7 95.2 92.4 17.9 65.7
Jsteg 40� 40 4.7 68.2 87.4 79.6 18.2 37.2
Jsteg 20� 20 1.2 33.1 57.6 42.3 15.5 21.3
Jsteg 10� 10 0.3 4.1 16.1 7.3 9.3 12.3
Outguess 80� 80 18.8 71.5 76.3 78.6 14.3 62.5
Outguess 40� 40 4.7 49.6 63.4 61.9 16.2 49.3
Outguess 20� 20 1.2 20.9 29.7 34.8 12.3 26.6
Outguess 10� 10 0.3 1.4 3.9 4.3 7.3 13.8
F5 80� 80 18.8 5.1 48.1 69.7 11.2 51.4
F5 40� 40 4.7 2.3 22.7 49.2 9.7 33.2
F5 20� 20 1.2 0.0 7.1 15.8 9.1 28.3
F5 10� 10 0.3 0.0 0.3 2.7 6.4 11.7
Jphide 80� 80 18.8 37.8 38.9 64.4 15.3 58.3
Jphide 40� 40 4.7 21.6 31.1 60.8 14.5 32.4
Jphide 20� 20 1.2 13.3 16.4 25.5 19.0 29.0
Jphide 10� 10 0.3 0.8 1.1 3.7 10.6 15.1
Steghide 80� 80 18.8 45.4 52.6 79.6 14.6 42.4
Steghide 40� 40 4.7 28.9 39.4 55.9 12.9 33.9
Steghide 20� 20 1.2 11.2 18.3 33.1 14.1 31.0
Steghide 10� 10 0.3 2.1 4.8 8.9 15.3 12.6

Table 1. Classi�cation results from two-classand one-classSVMs. The two-classSVMs are trained only on Jsteg (column
b) or on Jsteg and F5 (column a and c). The two-classSVM results shown in column c are basedon color images, while
those in column a are basedon the same images converted to grayscale. Note that color statistics a�ords a considerable
improvement in overall accuracy. Shown in the last two columns are the results from a one-classSVM. The OC-SVMs
were trained with either one or four hyperspheres(HS). Note that the OC-SVMs are better able to generalizeas compared
to the two-classSVM trained only on Jsteg (column b). In all cases,the reported accuracy is from the classi�cation testing
stage.

improveswith an increasingnumber of hyperspheres,the false-positive rate beginsto increaseconsiderablyafter
four hyperspheres.The reasonfor this is that while multiple hyperspheresa�ord a more compact support in the
training stage, they lead to poor generalization in the testing stage.

Shown in Table1 are the completegrayscaleand color classi�cation results from our previous two-classSVM8

trained only on Jsteg stego images(column SVMb) and trained on Jsteg and F5 images(columns SVMa and
SVMc). Also shown in this table are the results from an OC-SVM with one and four hyperspheres.In all cases,
the reported accuracy is from the testing stage(i.e., imagesunseenduring the training of the SVMs). Note �rst
that color statistics a�ords a considerableimprovement in overall accuracy. The two-classSVM trained on Jsteg
and F5 generally performs better on novel stegoprograms than does the SVM trained only on Jsteg. Note also
that an OC-SVM with four hyperspheresa�ords considerablyhigher classi�cation accuracythan onehypersphere.
And as expected, the OC-SVM (with four hyperspheres)is generally more consistent at generalizing to novel
stegoprograms than the SVM trained only on Jsteg. A two-classSVM fully trained on all stegoprograms will
almost certainly outperform an OC-SVM. The training of such an SVM, however, requires a larger training set,
and may not generalizewell to stegoprograms previously unseenby the classi�er.



5. DISCUSSION

We have described a universal steganalysisalgorithm that exploits the inherent statistical regularities of natural
images. The statistical model consists of �rst- and higher-order color wavelet statistics. A one-classsupport
vector machine (OC-SVM) was employed for detecting hidden messagesin digital images. The work presented
here builds on our earlier work where we used�rst- and higher-order grayscalewavelet statistics and a two-class
support vector machine. The addition of color statistics provides a considerableimprovement in overall detection
accuracy. And, while a fully trained two-classSVM is likely to outperform an OC-SVM, the OC-SVM has the
advantage that it is more likely to generalizeto stegoprogramsnot previously seenby the classi�er. In addition,
the training of the OC-SVM is simpli�ed asit only requirestraining on the more easilyobtained cover (non-stego)
images.

Techniques for universal steganalysis,such as that presented here, hold out promise that high-throughput
steganography can be detected. There is no doubt, however, that small messages(relativ e to the cover medium)
will be nearly impossibleto detect. Finally , it might be possibleto alter a cover image such that, after inserting
a hidden message,the statistical feature vector which we collect falls within the realm of non-stegoimages. It
is not immediately obvious (to us) how this image manipulation could be performed. We expect, however, that
counter-measureswill eventually be developed which can foil our detection scheme. The development of such
techniques will in turn lead to better statistical models and detection schemes,and so on.
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