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Exposing Digital Forgeries from JPEG Ghosts
Hany Farid, Member, IEEE

Abstract— When creating a digital forgery, it is often necessary
to combine several images, for example, when compositing one
person’s head onto another person’s body. If these images were
originally of different JPEG compression quality, then the digital
composite may contain a trace of the original compression
qualities. To this end, we describe a technique to detect if part
of an image was initially compressed at a lower quality than the
rest of the image. This approach is applicable to images of high
and low quality and resolution.

Index Terms— Digital Forensics, Digital Tampering

I. INTRODUCTION

Recent advances in digital forensics have given rise to
many techniques for detecting photographic tampering. These
include techniques for detecting cloning [1], [2]; splicing [3];
re-sampling artifacts [4], [5] ; color filter array aberrations [6];
disturbances of a camera’s sensor noise pattern [7]; chromatic
aberrations [8]; and lighting inconsistencies [9], [10], [11].
Although highly effective in some situations, many of these
techniques are only applicable to relatively high quality im-
ages. A forensic analyst, however, is often confronted with low
quality images, in terms of resolution and/or compression. As
such there is a need for forensic tools that are specifically
applicable to detecting tampering in low quality images. This
is particularly challenging since low quality images often
destroy any statistical artifacts that could be used to detect
tampering.

Along these lines, Ye, et. al developed a technique to
estimate the local JPEG compression blocking artifacts [12]
– inconsistencies in these artifacts were then used as evidence
of tampering. Luo, et. al developed a technique to detect
inconsistencies in JPEG blocking artifacts that arise from
mis-alignments of JPEG blocks relative to their original lat-
tice [13]. And, He et. al developed a technique to detect local
traces of double JPEG compression [14] (this work expands
on a global approach to detecting double compression [15]).

A complementary approach to detecting tampering in low
quality images is presented here. This approach detects tam-
pering which results when part of a JPEG image is inserted
into another higher quality JPEG image. For example, when
one person’s head is spliced onto another person’s body,
or when two separately photographed people are combined
into a single composite. This approach works by explicitly
determining if part of an image was originally compressed at
a lower quality relative to the rest of the image.

In comparison to [12], our approach does not require an
estimate of the DCT quantization from an assumed original
part of the image. Estimating the quantization from only
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the underlying DCT coefficients is both computationally non-
trivial, and prone to some estimation error, which leads to vul-
nerabilities in the forensic analysis. In comparison to [13], our
approach does not require that the image be cropped in order
to detect blocking inconsistencies. In addition, our approach
can detect local tampering unlike the global approach of [13]
which can only detect an overall crop and re-compression.
And in comparison to [14], our approach, although likely
not as powerful, is computationally much simpler and does
not require a large database of images to train a support
vector machine. As with all forensic analysis, each of these
techniques have their relative benefits and drawbacks. The
new technique described here contributes to the growing set
forensic analysis tools based on JPEG artifacts, and should
prove useful as a new tool in the arsenal of forensic analysts.

II. JPEG GHOSTS

In the standard JPEG compression scheme [16], [17], a color
image (RGB) is first converted into luminance/chrominance
space (YCbCr). The two chrominance channels (CbCr) are
typically subsampled by a factor of two relative to the lumi-
nance channel (Y). Each channel is then partitioned into 8×8
pixel blocks. These values are converted from unsigned to
signed integers (e.g., from [0, 255] to [−128, 127]). Each block
is converted to frequency space using a 2-D discrete cosine
transform (DCT). Each DCT coefficient, c, is then quantized
by an amount q:

ĉ = round(c/q), (1)

where the quantization q depends on the spatial frequency and
channel. Larger quantization values q yield better compression
at the cost of image degradation. Quantization values are
typically larger in the chrominance channels, and in the higher
spatial frequencies, roughly modeling the sensitivity of the
human visual system.

Consider now a set of coefficients c1 quantized by an
amount q1, which are subsequently quantized a second time
by an amount q2 to yield coefficients c2. With the exception
of q2 = 1 (i.e., no quantization), the difference between c1

and c2 will be minimal when q2 = q1. It is obvious that
the difference between c1 and c2 increases for quantization
value q2 > q1 since the coefficients become increasingly more
sparse as q2 increases. For values of q2 < q1, the difference
between c1 and c2 also increases because although the second
quantization does not affect the granularity of the coefficients,
it does cause a shift in their values. Shown in Fig. 1(a), for
example, is the sum of squared differences between c1 and c2

as a function of the second quantization q2, where q1 = 17, and
where the coefficients c1 are drawn from a normal zero-mean
distribution. Note that this difference increases as a function
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of increasing q2, with the exception of q2 = q1, where the
difference is minimal. If q1 is not prime, as in our example,
then multiple minima may appear at quality values q2 that
are integer multiples of q1. As will be seen below, this issue
can be circumvented by averaging over all of the JPEG DCT
coefficients.

Consider now a set of coefficients c0 quantized by an
amount q0, followed by quantization by an amount q1 < q0 to
yield c1. Further quantizing c1 by q2 yields the coefficients c2.
As before, the difference between c1 and c2 will be minimal
when q2 = q1. But, since the coefficients were initially
quantized by q0, where q0 > q1, we expect to find a second
minimum when q2 = q0. Shown in Fig. 1(b) is the sum
of squared differences between c1 and c2, as a function of
q2, where q0 = 23 and q1 = 17. As before, this difference
increases as a function of increasing q2, reaches a minimum
at q2 = q1 = 17, and most interestingly has a second local
minimum at q2 = q0 = 23. We refer to this second minimum
as a JPEG ghost, as it reveals that the coefficients were
previously quantized (compressed) with a larger quantization
(lower quality).

Recall that the JPEG compression scheme separately quan-
tizes each spatial frequency within a 8 × 8 pixel block. One
approach to detecting JPEG ghosts would be to separately
consider each spatial frequency in each of the three lumi-
nance/color channels. However, recall that multiple minima are
possible when comparing integer multiple quantization values.
If, on the other hand, we consider the cumulative effect of
quantization on the underlying pixel values, then this issue is
far less likely to arise (unless all 192 quantization values at
different JPEG qualities are integer multiples of one another
– an unlikely scenario1). Therefore, instead of computing the
difference between the quantized DCT coefficients, we con-
sider the difference computed directly from the pixel values,
as follows:

d(x, y, q) =
1
3

3∑
i=1

[f(x, y, i)− fq(x, y, i)]2, (2)

where f(x, y, i), i = 1, 2, 3, denotes each of three RGB
color channels2, and fq(·) is the result of compressing f(·)
at quality q.

Shown in the top left panel of Fig. 2 is an image whose
central 200 × 200 pixel region was extracted, compressed at
a JPEG quality of 65/100, and re-inserted into the image
whose original quality was 85. Shown in each subsequent
panel is the sum of squared differences, Equation (2), between
this manipulated image, and a re-saved version compressed
at different JPEG qualities. Note that the central region is
clearly visible when the image is re-saved at the quality of the
tampered region (65). Also note that the overall error reaches a
minimum at the saved quality of 85. There are some variations
in the difference images within and outside of the tampered
region which could possibly confound a forensic analysis.

1The MPEG video standard typically employs JPEG quantization tables that
are scaled multiples of one another. These tables may confound the detection
of JPEG ghosts in MPEG video.

2The detection of JPEG ghosts is easily adapted to grayscale images by
simply computing d(x, y, q), Equation (2), over a single image channel.

These fluctuations are due to the underlying image content.
Specifically, because the image difference is computed across
all spatial frequencies, a region with small amounts of high
spatial frequency content (e.g., a mostly uniform sky) will have
a lower difference as compared to a highly textured region
(e.g., grass). In order to compensate for these differences,
we consider a spatially averaged and normalized difference
measure. The difference image is first averaged across a b× b
pixel region:

δ(x, y, q) =
1
3

3∑
i=1

1
b2

b−1∑
bx=0

b−1∑
by=0

[f(x + bx, y + by, i)

−fq(x + bx, y + by, i)]2, (3)

and then normalized so that the averaged difference at each
location (x, y) is scaled into the range [0, 1]:

d(x, y, q) =
δ(x, y, q)−minq[δ(x, y, q)]

maxq[δ(x, y, q)]−minq[δ(x, y, q)]
. (4)

Although the JPEG ghosts are often visually highly salient,
it is still useful to quantify if a specified region is statistically
distinct from the rest of the image. To this end, the two-sample
Kolmogorov-Smirnov statistic [18] is employed to determine
if the distribution of differences, Equation(4), in two regions
are similar or distinct. The K-S statistic is defined as:

k = max
u

|C1(u)− C2(u)|, (5)

where C1(u) and C2(u) are the cumulative probability distri-
butions of two specified regions in the computed difference
d(x, y, q), where each value of q is considered separately.

There are two potential complicating factors that arise
when detecting JPEG ghosts in a general forensic setting.
First, it is likely that different cameras and photo-editing
software packages will employ different JPEG quality scales
and hence quantization tables [19]. When iterating through
different qualities it would be ideal to match these qualities
and tables, but this may not always be possible. Working to our
advantage, however, is that the difference images are computed
by averaging across all spatial frequencies. As a result small
differences in the original and subsequent quantization tables
will likely not have a significant impact. The second practical
issue is that in the above examples we have assumed that the
tampered region remains on its original 8 × 8 JPEG lattice
after being inserted and saved. If this is not the case, then the
mis-alignment may destroy the JPEG ghost since new spatial
frequencies will be introduced by saving on a new JPEG block
lattice. This problem can be alleviated by sampling all 64
possible alignments (a 0 to 7 pixel shift in the horizontal and
vertical directions). Specifically, an image is shifted to each
of these 64 locations prior to saving at each JPEG quality.
Although this increases the complexity of the analysis, each
comparison is efficient, leading to a minimal impact in overall
run-time complexity.

III. RESULTS

To test the efficacy of detecting JPEG ghosts, 1, 000 uncom-
pressed TIFF images were obtained from the Uncompressed
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Fig. 1. Shown in panel (a) is the sum of squared differences between coefficients quantized by an amount q1 = 17, followed by a second quantization
in the range q2 ∈ [1, 30] (horizontal axis) – this difference reaches a minimum at q2 = q1 = 17. Shown in panel (b) is the sum of squared differences
between coefficients quantized initially by an amount q0 = 23 followed by q1 = 17, followed by quantization in the range q2 ∈ [1, 30] (horizontal axis) –
this difference reaches a minimum at q2 = q1 = 17 and a local minimum at q2 = q0 = 23, revealing the original quantization.

original 35 40 45

50 55 60 65

70 75 80 85

Fig. 2. Shown in the top left panel is the original image from which a central 200× 200 region was extracted, saved at JPEG quality 65, and re-inserted
into the image whose original quality was 85. Shown in each subsequent panel is the difference between this image and a re-saved version compressed at
different JPEG qualities in the range [35, 85]. At the originally saved quality of 65, the central region has a lower difference than the remaining image.

Colour Image Database (UCID) [20]. These color images are
each of size 512 × 384 and span a wide range of indoor and
outdoor scenes, Fig. 3. A central portion from each image

was removed, saved at a specified JPEG quality of Q0, re-
inserted into the image, and then the entire image was saved
at the same or different JPEG quality of Q1. The MatLab
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TABLE I
JPEG GHOST DETECTION ACCURACY (%)

Q1 −Q0

size 0 5 10 15 20 25
200× 200 99.2 14.8 52.6 88.1 93.8 99.9
150× 150 99.2 14.1 48.5 83.9 91.9 99.8
100× 100 99.1 12.6 44.1 79.5 91.1 99.8

50× 50 99.3 5.4 27.9 58.8 77.8 97.7

function imwrite was used to save images in the JPEG
format. This function allows for JPEG qualities to be specified
in the range of 1 to 100. The size of the central region ranged
from 50× 50 to 200× 200 pixels. The JPEG quality Q1 was
selected randomly in the range 40 to 90, and the difference
between JPEG qualities Q0 and Q1 ranged from 0 to 25, where
Q0 ≤ Q1 (i.e., the quality of the central region is less than the
rest of the image, yielding quantization levels for the central
region that are larger than for the rest of the image). Note that
this manipulation is visually seamless, and does not disturb
any JPEG blocking statistics.

Note that is assumed here that the same JPEG quali-
ties/tables were used in the creation and testing of an image,
and that there is no shift in the tampered region from its
original JPEG block lattice. The impact of these assumptions
will be explored below, where it is shown that they are not
critical to the efficacy of the detection of JPEG ghosts.

After saving an image at quality Q1, it was re-saved at
qualities Q2 ranging from 30 to 90 in increments of 1. The
difference between the image saved at quality Q1 and each
image saved at quality Q2 was computed as specified by
Equation (4), with b = 16. The K-S statistic, Equation (5), was
used to compute the statistical difference between the image’s
central region, and the rest of the image. If the K-S statistic
for any quality Q2 exceeded a specified threshold, the image
was classified as manipulated. This threshold was selected to
yield a less than 1% false positive rate (an authentic image
incorrectly classified as manipulated).

Many of the images in the UCID database have significant
regions of either saturated pixels, or largely uniform intensity
patches. These regions are largely unaffected by varying JPEG
compression qualities, and therefore exhibit little variation in
the computed difference images, Equation (4). As such, these
regions provide unreliable statistics and were ignored when
computing the K-S statistic, Equation (5). Specifically, regions
of size b × b with an average intensity variance less than 2.5
gray values were simply not included in the computation of
the K-S statistic.

Shown in Table I are the estimation results as a function of
the size of the manipulated region (ranging from 200 × 200
to 50 × 50) and the difference in JPEG qualities between
the originally saved central region, Q0, and the final saved
quality, Q1 (ranging from 0 to 25 – a value of Q1 −Q0 = 0
denotes no tampering). Note that accuracy for images with no
tampering (first column) is greater than 99% (i.e., a less than
1% false positive rate). Also note that the detection accuracy
is above 90% for quality differences larger than 20 and for
tampered regions larger than 100× 100 pixels. The detection

accuracy degrades with smaller quality differences and smaller
tampered regions. Shown in Fig. 4(a) are ROC curves for a
tampered region of size 150 × 150 and a quality difference
of 15. Shown in Fig. 4(b) are ROC curves for a tampered
region of size 100×100 and a quality difference of 10. In each
panel, the solid curve corresponds to the accuracy of detecting
the tampered region, and the dashed curve corresponds to
the accuracy of correctly classifying an authentic image. The
vertical dotted lines denote false positive rates of 10%, 5%,
and 1%. As expected, there is a natural tradeoff between
the detection accuracy and the false positives which can be
controlled with the threshold on the K-S statistic.

In order to create a seamless match with the rest of the
image, it is likely that the manipulated region will be altered
after it has been inserted. Any such post-processing may
disrupt the detection of JPEG ghosts. To test the sensitivity to
such post-processing, the tampered region was either blurred,
sharpened, or histogram equalized after being inserted into the
image. For tampered regions of size 100× 100, the detection
improved slightly (with the same false positive rate of 1%).

The next few examples illustrate the efficacy of detecting
JPEG ghosts in visually plausible forgeries. In each example,
the forgery was created and saved using Adobe Photoshop CS3
which employs a 12-point JPEG quality scale. The MatLab
function imwrite was then used to re-compress each image
on a 100-point scale. In order to align the original JPEG block
lattice with the re-saved lattice, the image was translated to
each of 64 possible spatial locations (between 0 and 7 pixels
in the horizontal and vertical directions). The shift that yielded
the largest K-S statistic was then selected.

Shown in Fig. 5 are an original and doctored image. The
inserted flying car was originally of JPEG quality 4/12 and
the final image was saved at quality 10/12. Shown in the
bottom portion of Fig. 5 are the difference images between the
tampered image saved at JPEG qualities 60 through 98 in steps
of 2. The maximal K-S statistic for the jet was 0.92. Regions
of low variance are coded with mid-level gray in each panel.
A second example is shown in Fig. 6. The inserted dolphin
was originally of JPEG quality 5/12 and the final image was
saved at quality 8/12. Shown in the bottom portion of Fig. 6
are the difference images between the tampered image saved
at JPEG qualities 60 through 100 in steps of 2. The maximal
K-S statistic for the dolphin was 0.84. In both examples, the
JPEG ghosts of the inserted car and dolphin are visually salient
and statistically distinct from the rest of the image.

Shown in Fig. 7 are an original and doctored image. The jet
was originally of JPEG quality 6/12 and the final image was
saved at quality 10/12. Shown in the middle portion of Fig. 7
are the difference images between the tampered image saved at
JPEG qualities 65 through 100 in steps of 5. The maximal K-S
statistic for the jet was 0.94. These panels correspond to the
correct spatial offset that aligns the original JPEG lattice with
the re-saved lattices. Shown in the right-most portion of this
figure are the same difference images with incorrect spatial
alignment. Notice that while the jet’s JPEG ghost is visible
when the alignment is correct, it largely vanishes when the
alignment is incorrect.



5

Fig. 3. Shown are representative examples from the 1, 000 UCID images.
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Fig. 4. Shown are ROC curves for (a): a tampered region of size 150×150 and a quality difference of 15; and (b) a tampered region of size 100×100 and
a quality difference of 10. The solid curve corresponds to the accuracy of detecting the tampered region, and the dashed curve corresponds to the accuracy
of correctly classifying an authentic image. The vertical dotted lines denote (from left to right) false positive rates of 10%, 5%, and 1%. See also Table I.

IV. DISCUSSION

We have described a simple and yet potentially powerful
technique for detecting tampering in low quality JPEG images.
This approach explicitly detects if part of an image was
compressed at a lower quality than the saved JPEG quality
of the entire image. Such a region is detected by simply
re-saving the image at a multitude of JPEG qualities and
detecting spatially localized local minima in the difference
between the image and its JPEG compressed counterpart.
Under many situations, these minima, termed JPEG ghosts,
are highly salient and easily detected.

The disadvantage of this approach is that it is only effective
when the tampered region is of lower quality than the image

into which it was inserted. The advantage of this approach
is that it is effective on low quality images and can detect
relatively small regions that have been altered. Because the
JPEG ghosts are visually highly salient, an automatic detection
algorithm was not implemented. It is likely that any of a
variety of segmentation algorithms could be employed to
automatically detect JPEG ghosts and therefore automatically
and efficiently analyze a large number of images.
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Fig. 5. Shown are the original (left) and doctored (right) image. Shown below are the difference images at qualities 60 through 98 in steps of 2.
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Fig. 6. Shown are the original (left) and doctored (right) image. Shown below are the difference images at qualities 60 through 100 in steps of 2.
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Fig. 7. Shown are the original (top left) and doctored (bottom left) image. Shown in the middle panels are the difference images at qualities 65 through
100 in steps of 5, and shown in the right-most panels are the difference images when the JPEG block lattice is mis-aligned.


