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We have applied techniques from differential motion estimation to the problem of automatic
elastic registration of medical images. This method models the mapping between images as
a locally affine but globally smooth warp. The mapping also explicitly accounts for varia-
tions in image intensities. This approach is simple and highly effective across a broad range
of medical images. We show the efficacy of this approach on several synthetic and clinical
images.



1. Introduction

There are a variety of methods for medical image
registration (see [9, 10, 26, 19, 17] for general sur-
veys). Differential registration techniques, how-
ever, are often cited as being ineffective, and as
such have received little attention (exceptions in-
clude [4, 16, 20, 21]). This is unfortunate as dif-
ferential motion techniques have been quite effec-
tive in the Computer Vision community (e.g., [15,
18,25,1,14,2,13,5,12, 6,7, 24)).

Here we present an effective technique for elas-

tic image registration built upon a differential frame-

work. This technique models the mapping be-

tween images as a locally affine but globally smooth

warp, and explicitly accounts for variations in im-
age intensities. The resulting registration is sim-
ple and automatic. Results from several synthetic
and clinical images are shown.

2. Methods

We formulate the problem of image registration
between a source and target image within a dif-
ferential (non-feature based) framework. This for-
mulation borrows from various areas of motion
estimation. We first outline the basic computa-
tional framework, and then discuss several im-
plementation details that are critical for a success-
ful implementation.

2.1. Local affine model

Denote f(x,y,t) and f(Z,9,t — 1) as the source
and target images, respectively. 1 We begin by
assuming that the image intensities between im-
ages are conserved, and that the motion between
images can be modeled locally by an affine trans-
form:

flz,y,t) =
f(maiz + may + ms, msx + may + me, t — 1(1)

where mq,mo, m3, my form the 2 x 2 affine ma-
trix, and ms, me the translation vector. These pa-

wWe adopt the slightly unconventional notation of denot-
ing the source and target image with a temporal parame-
ter t. This is done for consistency within our differential
formulation.

rameters are estimated locally for each small spa-
tial neighborhood, but for notational convenience
their spatial parameters are dropped. In order to
estimate these parameters, we define the follow-
ing quadratic error function to be minimized:

z,yef
f(miz 4+ moy + ms,
msz + may + me, t — 1)]*, (2)
where m” = (my mg ), and Q denotes a

small spatial neighborhood. Since this error func-
tion is non-linear in its unknowns, it cannot be
minimized analytically. To simplify the minimiza-
tion, we approximate this error function using a
tirst-order truncated Taylor series expansion:
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where f.(-), fy(-), fi(-) are the spatial/temporal
derivatives of f(-). This error function further re-
duces to:

E(’I’?L) = Z [ft(mvyvt)_
z,yef)
(mix + may + ms — x) fo(z,y,t) —

(max 4+ may + mg — y) f,(z,y,t)]%@)

Note that this quadratic error function is now lin-
ear in its unknowns, m. This error function may
be expressed more compactly in vector form as:

> [k -], (5)
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where the scalar k and vector ¢ are given as:

k = fi+afs+uyfy (6)
& = ($fm Yfo 1'fy yfy fz fy), 7)

where again, for notational convenience, the spa-
tial/temporal parameters of f,(-), fy(:), and f;(-)



are dropped. This error function can now be min-
imized analytically by differentiating with respect
to the unknowns:

dE(m) S -2k -dm], @)

dm z,y€efd

setting this result equal to zero, and solving for m
to yield:
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This solution assumes that the first term, a 6 x 6
matrix, is invertible. This can usually be guar-
anteed by integrating over a large enough spa-
tial neighborhood € with sufficient image con-
tent. With this approach a dense locally affine
mapping can be found between a source and tar-
get image.

2.2. Intensity variations

Inherent to the model outlined in the previous
section is the assumption that the image intensi-
ties between the source and target are unchanged.
This assumption is likely to fail under a number
of circumstances. To account for intensity vari-
ations, we incorporate into our model an explicit
change of local contrast and brightness [22]. Specif-
ically, our initial model, Equation (1), now takes
the form:

m7f($7 Y, t) +mg =
f(miz + maoy + ms, msx + may + me, t — (10)

where m7 and mg are two new (spatially varying)
parameters that embody a change in contrast and
brightness, respectively. Note that these parame-
ters have been introduced in a linear fashion. As
before, this error function is approximated with
a first-order truncated Taylor series expansion to
yield:

E(m) = (11)
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where the scalar k and vector ¢ are now given as:

k= fi—f+afatyly (12)
&l = (xfz yfe l'fy yfy fz fy —f —1{13)

Minimizing this error function is accomplished
as before by differentiating E(17), setting the re-
sult equal to zero and solving for 7. The solution
takes the same form as in Equation (9), with £ and
c as defined above.

Intensity variations are typically a significant
source of error in differential motion estimation.
The addition of the contrast and brightness terms
allows us to accurately register images in the pres-
ence of local intensity variations. It is possible, of
course, to fully explain the mapping between im-
ages with only a brightness modulation. In the
next section we describe how to avoid such a de-
generate solution.

2.3. Smoothness

Until now, we have assumed that the local affine
and contrast/brightness parameters are constant
within a small spatial neighborhood, Equation (11).
There is a natural tradeoff in choosing the size of
this neighborhood. A larger area makes it more
likely that the matrix -, .o C ¢’ will be invert-
ible, Equation (9). A smaller area, however, makes
it more likely that the constancy assumption will
hold. We can avoid balancing these two issues by
replacing the constancy assumption with a smooth-
ness assumption [14]. That is, we assume that the
model parameters m vary smoothly across space.
A smoothness constraint on the contrast/brightness
parameters has the added benefit of avoiding a
degenerate solution where a pure brightness mod-
ulation is used to describe the mapping between
images.

To begin, we augment the error function in Equa-
tion (11) as follows:

E(m) = Ey(m)+ Ey(m), (14)

where Ej(1) is defined as in Equation (11) with-
out the summation:
2
Ey(i) = @-#m}, (15)

with k£ and ¢ as in Equations (12) and (13). The
new quadratic error term F(171) embodies the smooth-
ness constraint:
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where ); is a positive constant that controls the
relative weight given to the smoothness constraint
on parameter m;.

This error function is again minimized by dif-
ferentiating, setting the result equal to zero and

solving, dE () /dii = dE, (1) /dini-+dEs (1) /diy =

0. The derivative of Ep(m) is:

dEy ()

dm 17

= —2¢[k - ).
The derivative of E4(1) is computed by first ex-
pressing the partials, dm;/0x and Om;/0y with
discrete approximations [14], and then differenti-
ating, to yield:

dE; (1)

el 2L(m — ),

(18)
where 77 is the component-wise average of 17 over
a small spatial neighborhood, and L is an 8 x 8
diagonal matrix with diagonal elements )\;, and
zero off the diagonal. Setting

dEy (m) /dm + dEg (i) /dim = 0, (19)
and solving for m at each pixel location yields
an enormous linear system which is intractable
to solve. As such, we express m in the following
form:

i = (ed"+1) ! (ek+zm). (o)

and employ aniterative scheme to solve for 1 [14].
An initial estimate of 77 is determined using the
closed-form solution of Section 2.2. This solution
yields an initial estimate of m, from which a new
estimate of 1 is obtained, Equation (20). This pro-
cess is repeated, where on each iteration a new
estimate of 77 is computed from the previous so-
lution.

The use of a smoothness constraint has the ben-
efit that it yields a dense locally affine but glob-
ally smooth mapping. The drawback is that the
minimization is no longer analytic. We have found,

nevertheless, that the iterative minimization is quite

stable and converges relatively quickly.

2.4. Implementation details

While the formulation given in the previous sec-
tions is relatively straight-forward there are a num-
ber of implementation details that are critical for
a successful implementation.

First, in order to simplify the minimization, the
error function of Equation (15) was derived through
a Taylor-series expansion. A more accurate es-
timate of the actual error function can be deter-

mined using a Newton-Raphson style iterative scheme [23].

In particular, on each iteration, the estimated warp
is applied to the source image, and a new warp is

estimated between the newly warped source and

target image. As few as five iterations greatly im-

proves the final estimate.

Second, the required spatial/temporal deriva-
tives have finite support thus fundamentally lim-
iting the amount of motion that can be estimated.
A coarse-to-fine scheme is adopted in order to
contend with larger motions [18, 3]. A Gaussian
pyramid is built for both source and target im-
ages, and the local affine and contrast/brightness
parameters estimated at the coarsest level. These
parameters are used to warp the source image in
the next level of the pyramid. A new estimate is
computed at this level, and the process repeated
through each level of the pyramid. The warps at
each level of the pyramid are accumulated yield-
ing a single final warp.

Finally, the calculation of the spatial/temporal
derivativesis a crucial step. Spatial /temporal deriva-
tives of discretely sampled images are often com-
puted as differences between neighboring sample
values. Such differences are typically poor ap-
proximations to derivatives and lead to substan-
tial errors. In computing derivatives we employ
a set of derivative filters specifically designed for
multi-dimensional differentiation [11]. These fil-
ters significantly improve the resulting registra-
tion.

3. Results

In all of the examples shown here, the source and
target are 256 x 256, 8-bit grayscale images with
intensity values scaled into the range [0, 1]. A three-
level Gaussian pyramid is constructed for both



the source and target image. At each pyramid
level a single global affine warp is first estimated
according to Equation (11), with , the spatial in-
tegration window, defined to be the entire image.
Then, the local affine and contrast/brightness pa-

rameters, 171 are estimated according to Equation (11),

with Q = 5x5 pixels. This estimate of 171 is used to
bootstrap the smoothness iterations, Equation (20).
In each iteration, \; = 1 x 10}, =1, ...,8and m;
is computed by convolving with the 3 x 3 ker-
nel (141;404; 14 1)/20. After 40 itera-
tions, the source is warped according to the fi-
nal estimate, and this process is repeated 5 times.
This entire process is repeated at each level of the
pyramid. Although a contrast/brightness map
is estimated, it is not applied when warping the
source image. In order to minimize artifacts due
to the warping, we accumulate successive warps
and apply a single warp to the original source
image at each scale. In order to minimize edge
artifacts, all convolutions are performed with a
mirror-symmetric boundary. The temporal deriva-
tives are computed using a 2-tap filter, and the
spatial derivatives using a 3-tap filter. All of these
parameters were held fixed in all of the examples
shown here. In general we find that the particu-
lar choice of these parameters is not crucial. Our
current MatLab implementation requires approx-
imately 25 minutes per image on a 1.2 GHz Linux
machine.

To test our registration algorithm, we gener-
ated synthetic data by applying a locally smooth
warp and contrast/brightness field to a target im-
age. These smooth fields were randomly gener-
ated by specifying a warp parameter at equally
spaced points along a coarse rectilinear grid. In-
termediate values were interpolated using Book-
stein’s thin-plate splines [8]. On average each pixel
was warped by £8 pixels (not including a pos-
sible global affine transform), the multiplicative
contrast variation was between 0.8 and 1.0, and
the additive brightness variation between 0.0 and
0.2 (with image intensities in [0, 1]). Shown in Fig-
ure 2(d)-(f) are examples of these warp fields.

Shown in Figure 2(a) and (b) is a synthetically
generated source, and target image, respectively.
Shown in panel (c) is the source image after reg-

istration. Shown in panels (d) and (e) are the ap-
plied contrast/brightness maps, and shown in pan-
els (g) and (h) are the estimated maps. Note that
while there is a tradeoff between the estimated
contrast and brightness maps, errors in this es-
timate do not impact the estimated warp field.
Shown in panel (f) is the synthetic warp as ap-
plied to a rectilinear grid. Shown in panel (i) is
the result of applying the inverse of the estimated
warp to panel (f). If the estimate was perfect, the
result should be a rectilinear grid. Notice that in
the areas of image content, this is nearly the case.

Shown in Figure 3 are results from four more
synthetically warped images. In each case, a dif-
ferent random warp and contrast/brightness field
was applied to the source image. In each case,
the registered source image is in good agreement
with the target image.

Shown in Figure 4 are results from four clini-
cal cases. In each case, the source and target im-
ages are either from different subjects, from sub-
jects at different times, or from different modal-
ities. Shown across each row are the source and
target images, the registered source, and the es-
timated warp. Even in the presence of signifi-
cant intensity variations, the registered source is
in good agreement with the target image.

And finally shown in Figure 1 are the results
from an extreme and completely unrealistic syn-
thetic warp, which we show to illustrate the ro-
bustness and flexibility of our registration tech-
nique. Unlike the previous examples, the model
used here is one of translation only (i.e., no affine
or contrast/brightness terms), and the smooth-
ness parameters on these translation terms was
reduced to 1 x 1072, These small changes were
necessary to accommodate the extreme nature of
the synthetic warp.

4. Discussion

We have presented an elastic registration algo-
rithm built upon a differential framework. Our
registration model incorporates both a geometric
mapping that is locally affine and globally smooth,
and contrast/brightness modulations that are glob-
ally smooth. The simple differential estimation
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Figure 1: Shown is a target image, a source im-
age exposed to an extreme warp, and the result
of our registration.

techniques, and the flexibility of the model has
proven to be highly effective across a broad range
of medical images. We have tested our algorithm
on a number of synthetic images generated ac-
cording to the assumptions of our model. We have
also shown the efficacy of our algorithm on clin-
ical images, thus suggesting that these assump-
tions are reasonable.

Our current implementation suffers from a few
shortcomings. First, the registration of a 256 x
256 image requires approximately 45 minutes on
a high-end PC. We are hopeful that optimization
of our algorithm and a C-based implementation
will significantly reduce this run-time. Our im-
plementation is image-based and not yet able to
register volume data. The basic framework, how-
ever, extends naturally to higher-dimensions and
we are currently working on a 3-D implementa-
tion.

In general, we believe that differential estima-
tion techniques can be quite elegant and power-
ful. While we believe that the application to im-
age registration is promising, it is unlikely that

this approach will supplant the multitude of ex-

isting registration techniques. We expect, rather,

that this approach will provide motivation for fur-
ther investigation into differential methods as well
as their incorporation into other registration algo-

rithms.
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Figure 2: Complete results from a synthetic warp. Shown along the top are the source, target and
estimated warped source. Shown in panels (d), (e) and (g), (h) are the applied and estimated con-
trast/brightness maps. Shown in panel (f) is the applied warp. Shown in panel (i) is the inverse of the
estimated warp applied to panel (f) - if the estimate was perfect, this result should be a rectilinear grid, as
is nearly the case.
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Figure 3: Results from synthetic warps. Shown in each row is the source, target and estimated warped
source. If the estimated warp was perfect, the last column should appear as a rectilinear grid, see also
Figure 2.
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Figure 4: Results from clinical images with unknown registration. Shown in each row is the source, target
and estimated warped source. Shown in the last column is the estimated warp field.
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