
A Statistical Prior for Photo Forensics:
Object Removal

Wei Fan and Hany Farid
Dartmouth College
Hanover, NH 03755

Dartmouth Computer Science Technical Report TR2017-837

Abstract—If we consider photo forensics within a Bayesian

framework, then the probability that an image has been manip-

ulated given the results of a forensic test can be expressed as a

product of a likelihood term (the probability of a forensic test

detecting manipulation given that an image was manipulated) and

a prior term (the probability that an image was manipulated).

Despite the success of many forensic techniques, the incorporation

of a statistical prior has not been previously considered. We

describe a framework for incorporating statistical priors into

any forensic analysis and specifically address the problem of

quantifying the probability that a portion of an image is the

result of content-aware fill, cloning, or some other form of

information removal. We posit that the incorporation of such

a prior will improve the overall accuracy of a broad range of

forensic techniques.

Index Terms—Image forensics, image manipulation, perceptual

similarity

I. INTRODUCTION

To date, many photo forensic techniques have been proposed
to detect various forms of photo manipulation [1]. Because
most of these techniques require manual intervention, the hu-
man analyst remains a critical part of many forensic analyses.
In Fig. 1 (left), for example, an analyst might reasonably
assume that the addition of a child would have been technically
difficult to fake because of the complex interaction between
the two people in the scene. In Fig. 1 (right), however, the
addition of the child would have been relatively easy because
the child is isolated from her surroundings. This type of prior
information should be incorporated into any forensic analysis.

Broadly speaking, we can characterize photo manipulation
into one of three categories: (1) removal; (2) addition; or
(3) modification of one or more people/objects. We seek to
quantify the prior likelihood that part of an image has been
manipulated in one of these ways.

There are myriad of forensic techniques for detecting photo
manipulation. Formally, we would like to ask what is the
probability that an image was manipulated given the result
of a forensic test, P (m|f). Within a Bayesian framework, we
can express this probability as P (m|f) / P (f |m) · P (m),
where P (f |m) is the (typically) known true positive rate of
the forensic test and P (m) is the prior that the image was
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Fig. 1. It would have been difficult to digitally insert the child into the image
on the left due to the complex physical interaction between mother and child.
In contrast, it would have been relatively easy to insert the child into the image
on the right because the child is isolated from her surroundings. [photo credits:
(left) flickr user Paul Wan: flic.kr/p/5nsFFy; (right) flickr user Ian D. Keating:
flic.kr/p/eK8aDg]

manipulated. To date, we have no systematic and quantitative
way of quantifying the prior P (m). We describe an approach
to quantify this prior for object removal – we leave the task
of quantifying a prior for object addition and modification to
future work.

We draw inspiration for quantifying object removal from
Photoshop’s content-aware fill feature [2]. Content-aware fill
removes an object by copying and synthesizing image content
to create a seamless transition with nearby content. This ma-
nipulation replaces an object with content that is perceptually
similar (but not necessarily identical) to other content in the
image. We reason, therefore, that the perceptual similarity of
one region to the rest of the image will provide a measure
of likelihood that this region is the result of content-aware
fill or another similar manipulation. We first describe how to
quantify this perceptual similarity and then describe how to
convert this measure to a probability of object removal.

II. PERCEPTUAL SIMILARITY

Standard techniques for measuring perceptual similarity rely
heavily on a pixel-to-pixel comparison [3]. While this is
appropriate in many situations, it is not appropriate to the type
of perceptual similarity that we seek to quantify. To illustrate
this, consider the three textures in Fig. 2. The left texture is
perceptually similar to the middle texture and the right texture
is perceptually dissimilar to the middle texture (in terms of
both color and structure). In contrast to this obvious perceptual
similarity, SSIM [4] and root mean square (RMS) each rate
the middle texture as more similar to the right than the left
texture. Our similarity measure correctly rates the middle and
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Fig. 2. Shown are two perceptually similar textures (middle and left) and a
perceptually dissimilar texture (right). According to both SSIM and RMS, the
middle texture is more similar to the right than the left texture (larger SSIM
values correspond to higher similarity). In contrast, our similarity measure, s,
correctly identifies the middle and left textures as perceptually similar and the
middle and right textures as highly dissimilar (larger values of s correspond
to higher similarity).

left textures as highly similar and the middle and right textures
as highly dissimilar.

Despite some shortcomings on the part of SSIM in capturing
perceptually similarity, our perceptual similarity measure is
inspired by the building blocks of SSIM that measures quanti-
ties such as luminance, contrast, and structure. In the next few
sections, we describe the four building blocks of our measure
and then describe how to combine these components into a
single measure of perceptual similarity.

A. Notation

We will denote a 3-channel RGB image as I
c

(x, y) = I

c

(~x)

where c 2 {r, g, b}, and ~x = (x, y) corresponds to the
horizontal and vertical pixel location. When converted from
RGB to HSV space, an image will be denoted as I

c

(~x) where
c 2 {h, s, v} corresponds to each of the HSV image channels.

Consider now a n ⇥ n neighborhood centered at pixel
location ~x
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= (x
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neighborhood sorted in descending order as ˆ
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), where the
subscript c denotes the image channel, the subscript i denotes
the pixel location in the image, and the superscript k denotes
the k

th spatial value in sorted order.

B. Color: hue

We consider the similarity of two image regions in terms
of the hue channel, I

h

(·). The hue takes on a value in the
range [0, 1] but is circular in nature so a hue value of 0 is the
same as a hue value of 1. The difference between two hue
values h1 and h2 is therefore measured in angular units as
|2⇡h1 � 2⇡h2| % ⇡, where % is the modulus operator.

The difference in hue between two n ⇥ n pixel neighbor-
hoods centered at ~x
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is defined to be:
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��� % ⇡. The angular differ-
ence in hue is subjected to two non-linearities: the difference is

subjected to a point-wise cosine non-linearity and differences
in angular hue larger than a specified threshold of ✓0 are
pegged to a value of ✓0. Combined with the additive and
divisive normalization, the effect of this second non-linearity
is that the overall similarity s

h

(·) is equal to 0 for any angular
hue difference greater than ✓0.

Note that this similarity is computed over the sorted hue
values ˆ

I

h

(·) and not the original hue values I

h

(·). By doing
so, we avoid a pixel-by-pixel comparison that often fails to
capture the desired measure of perceptual similarity.

The hue similarity term, s
h

(·), is a scalar in the range [0, 1]

where values close to 0 correspond to a dissimilar hue and
values close to 1 correspond to a similar hue.

C. Color: saturation

In this section we will consider the similarity of two image
regions in terms of the saturation channel, I

s

(·). The difference
in saturation between two n⇥n pixel neighborhoods centered
at ~x

i

and ~x

j

is defined to be:
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This mean-squared distance is subjected to a point-wise non-
linearity (an exponential) of the form:
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Note again that this similarity is computed over the sorted
saturation values ˆ

I

s

(·). The saturation similarity term, s
s

(·), is
a scalar in the range [0, 1] where values close to 0 correspond
to a dissimilar saturation and values close to 1 correspond to
a similar saturation.

D. Color: value

In this section we will consider the similarity of two image
regions in terms of the value channel, I

v

(·). This similarity
term takes on the same form as the saturation term defined
above. The difference in intensity value between two n ⇥ n

pixel neighborhoods centered at ~x
i

and ~x

j

is defined to be:
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This mean-squared distance is again subjected to a point-wise
non-linearity of the form:
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As in the case of the hue and saturation, this similarity is
computed over sorted values ˆ

I

v

(·). The similarity term, s
v

(·),
for intensity value is a scalar in the range [0, 1] where values
close to 0 correspond to a dissimilar intensity value and values
close to 1 correspond to a similar intensity value.



E. Structure

The color-based terms of hue s

h

(·), saturation s

s

(·), and
value s

v

(·) measure the overall similarity in color between
two neighborhoods. These terms do not, however, measure
the structural similarity in terms of local structure and spatial
frequency. This fourth, and final, structure-based term is
designed to fill this gap.

We begin by computing the first-order horizontal and verti-
cal derivatives of the value channel I

v

(·):

d
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d
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(x, y) = I

v

(x, y) ? p(x) ? d(y), (7)

where ⇤ is the convolution operator and d(·) and p(·) are the
three-tap filters defined in [5]. From each of these directional
derivatives, we compute four auto-correlations of a n⇥n pixel
neighborhood. In particular, four correlations are computed
along the horizontal, vertical, diagonal, and anti-diagonal
directions with a delay of one pixel. This yields a total of eight
auto-correlation values (four for the horizontal derivative and
four for the vertical derivative) which are then packed into a
single vector ~c.

The structural similarity between two regions centered at ~x
i

and ~x
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is then given by:
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where k·k denotes the `2-norm.
The structural similarity term, s

c

(·), is a scalar in the range
[0, 1] where values close to 0 correspond to a dissimilar struc-
ture and values close to 1 correspond to a similar structure.

F. Overall Similarity

The four similarity measures (three color and one structure
terms) are combined with a simple product to yield the
similarity measure between two neighborhoods centered at
spatial locations ~x

i

and ~x

j

:

s(i, j) = s

h

(i, j) · s
s

(i, j) · s
v

(i, j) · s
c

(i, j). (9)

Because each of the four measures on the right-hand side are
in the range [0, 1], the final similarity measure is also bound
into this range. The rationale for multiplying these values is
that if any of the four individual terms is dissimilar (close to 0)
then the entire similarity measure is penalized. Or, put another
way, a high similarity measure (close to 1) is only obtainable
if each individual measure is close to unit-value.

III. FROM PERCEPTUAL SIMILARITY TO
STATISTICAL PRIOR

Our perceptual similarity measure is defined between two
n ⇥ n neighborhoods. Here we describe how to extend
this analysis to measure the perceptual similarity between
an arbitrary sized image region – e.g., the output of clone
detection [6]–[8] – and the rest of the image.

Define the set of all image pixel locations as I, the set of
all pixel locations in a user-specified region as R, and the

remaining pixel locations as D = I � R. Our goal is to
determine the perceptual similarity of the region R to the rest
of the image D. We accomplish this by iteratively matching
n⇥n neighborhoods using a modified RANSAC algorithm [9].

To begin, we define M to be the set {(~x
i

, ~x

j

)} for all
~x

i

2 R where ~x

j

is the pixel location that maximizes s(i, j),
Equation (9), over all j 2 D. That is, based on only a n⇥ n

neighborhood, ~x
i

in the region of interest is maximally similar
to ~x

j

outside of the region of interest.
The iterative matching algorithm then proceeds as fol-

lows. Select a random pair of matching neighborhoods in
M and compute the 2-D translation ~

t between these two
neighborhoods. For every pixel location in R compute the
similarity s(i, t) between the neighborhoods centered at ~x

i

and
~x

t

= ~x

i

+

~

t (if ~x
t

is not in D, then this location is ignored). If
this similarity is within a specified threshold of the maximal
similarity for ~x

i

specified in M then add ~x

i

to an initially
empty set M⇤ and set the similarity for ~x

i

to S(i) = s(i, t).
Starting with the initially randomly selected point, eliminate
any pixel locations in M⇤ that is not connected to this point
within an 8-pixel neighborhood connectivity. For every pixel
in this region, set C(·) to be the cardinality of M⇤. This
connectivity constraint favors matching a smaller number of
spatially coherent regions as opposed to a larger number of
spatially disparate regions. On each successive iteration, all
pixel locations in the trimmed M⇤ are removed from M, and
these iterations are repeated until M is empty.

At the end of this iterative matching, each pixel location ~x

i

in the region of interest R has associated with a similarity S(i)

and a cardinality C(i) of the size of the connected region to
which it belongs. This similarity and cardinality are converted
to a probability as follows:

P (~x

i

) = min(log100(C(i)), 1) · exp
 
� |(S(i)� 1|

↵

�

!
. (10)

The exponential non-linearity penalizes small values of S(i)

(recall that a similarity value of 1 corresponds to maximal sim-
ilarity while a value of 0 corresponds to minimal similarity).
The multiplicative term in front of the exponential penalizes
small regions – this penalty is clipped at the high end so as not
to disproportionately reward regions larger than 100 pixels.

Shown in top two rows of Fig. 3 are three iterations of
this process. The first row shows the user-specified region of
interest (green) and the matched regions (red). The second
row shows the probability P (·), Equation (10). The pixels
corresponding to the plane have low probability because
there are no similar coherent regions in the image, while the
surrounding sky has high probability because of its similarity
to the rest of the sky. Shown in the next two rows is the
same information but now for a version of the image in
which the plane was removed using Photoshop’s content-aware
fill. The user-specified region has uniformly high probability
suggesting a high likelihood that this part of the image is
the result of some form of object removal. Any part of the
sky would have yielded a similar result so the result of this
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Fig. 3. Shown in panels (a)-(c) and (d)-(f) are several iterations involved in the estimation of the probability of object removal, Equation (10). The green
bounding box corresponds to the user-supplied region of interest. The red regions correspond to the matched locations on a single iteration. The probability
maps, shown below each image, correspond to the pixel-wise probability of object removal. Because the plane is dissimilar to the rest of the image, it results
in a relatively low probability as compared to the sky region which is highly similar to other parts of the image. [photo credit (original): flickr user Zippo S,
flic.kr/p/n9TjSf]



analysis does not indicate manipulation, but only a prior on
the likelihood of manipulation.

IV. VALIDATION

One of the challenges of this work is devising a systematic
mechanism for validating our perceptual measure of similarity.
To this end, we generated chimeric textures as shown in
Fig. 5. Each texture in this figure is constructed by combining
two textures T1 and T2 with a statistical feature vector ~

f1

and ~

f2 [10]. Specifically, a central region in texture T1 is
replaced with a texture synthesized from the following linear
combination of statistical feature vectors: ~f

r

= (1�r)

~

f1+r

~

f2,
where r 2 [0, 1]. When r = 0, the central texture perceptually
matches the surrounding texture T1 and when r = 1 the central
texture perceptually matches the texture T2.

Shown in Fig. 5 are four mixtures (with r 2
{0.0, 0.3, 0.6, 1.0}) for eight pairs of source textures of varying
similarity. Also shown in each figure is the morphing value r

plotted as a function of probability of object removal P (·),
Equation (10). This probability is averaged over the central
region (error bars correspond to plus/minus one standard
deviation). In each case, P (·) and r are well correlated and at
a qualitative level, the rate of decay in probability as a function
of texture mixture is consistent with the perceptual similarity
of the central and surrounding regions.

Shown in Fig. 4 are results from real-world images with
a user-specified region (green) and the resulting probability
of object removal. Shown are (a) an original image, (b) an
image subjected to Photoshop’s content-aware fill to remove an
object, and (c)-(d) two images with cloning. In each case, our
perceptual measure of similarity appropriately characterizes
the specified regions of interest.

A. Implementation Details

We describe the various parameters used in our implementa-
tion. The neighborhood size is n = 15 pixels. The parameters
for the perceptual similarity measure are ✓0 = ⇡/6, �

s

= 0.2,
�

v

= 0.2, and �

c

= 0.2 (see Equations (1), (3), (5), and
(8)). The parameters for converting similarity to probability
are ↵ = 0.0625 and � = 4 (see Equation (10)).

The computational demands for our analysis depend on
a number of factors including the size of the user-specified
region and the overall size of the image. For the images shown
in Fig. 4, the analysis (implemented in MatLab) took between
13 minutes and 50 minutes running on a 2.7 GHz processor.
Considerable effort will be needed to improve the run-time
efficiency of this algorithm.
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Fig. 5. Shown in each panel are (top) a series of chimeric textures in which the central region has varying degrees of perceptual similarity to the surround
(specified by a mixture term r), and (bottom) the relationship between r and our measure of similarity P (·). Each data point corresponds to the average
probability in the central region and the error bars correspond to plus/minus one standard deviation.
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