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Abstract

Recovering 3D depth information from two or more 2D intensity images is a long standing
peoblem in the computer vision community. This paper presents a multi-basdline, coarse-to-fine
steroo algocithm which utilizes any member of images (more than 2) and multiple image scales to
recover 3D depth information. Several “view-selection strategies™ are introduced for combining
lnformation across the muelti-baseline and acrom scale space. The contrel strategies allow us to
oxploit, maximally, the benefits of large and small baselines and mask sxex while minimiziag
errors.  Results of recovering 3D depth imformation from a human head are presented. The
resulting depth maps are of good accuracy with a depth resolution of appracimately Smen.

1 Introduction

The major steps (e recovering depth information freen a pais or segqoence of images are: (1)
preprocessing, (2) matching, and (3) recovering dopth (see [1] for a review of stesvoo algorithms),
The preprocessing stage geoerally consists of a rectification step which accounts for lens distoction
and noo-parallel axis camera geoanetey ([3], [7]). This stage may also consist of an intensity
scemalization step, The peocess of matching is the most impostant azd dificult stage in most
stereo algorithms. The matching process determines correspondence between “features™ that are
projections of the same physacal estity in each view. Matching steategion may be categorized
by the primitives used for matching (e.g. featuses oc intemsity) and the imaging gecanetry (eg
pataliel or non-paralld optical axis]. Once the comrespondence between “features™ has been
established, caloulating the depth is usaally a straight foeward computation dependent on the
camera configuration and optics.

One of the et common Mereo reconstruction paradigms is matcking image features from
two parallel axis views (see [6] for & review). This method provides a disparity valoe & oo
matched pairs of points for each point in either the left or right image. The depth 7 can then



be recovered by the well known equation: z - Q.wben.!hthelotdleagthollhc pin-hole
camera model, and the baseline 8 is the distance between the two focal points of the cameras.
This approach to recovering stereo is attractive because of its simplicity; however, recovering an
sccarate, desse 31 depth map with this procedure has proven to be a formidable task.

The desired peopertion of a 3D depth map may vary depending on the application. For
example, mobile robots performing obstaclke avoidance are likely to be more interested in a fast,
coarse estimate of depth, whereas a robot interested In manipulating its enviconment is more
likely to be interestod in generating a more accurate depth map, The interests of the author ase
inm the area of telepresence [2]. Telepresence may described as a system where participants wear
& head mounted display to look around a remote enviconment. The surface goometries of the
remote environment are contizoously sensed by & multitude of cameras mosnted aloog the ceiling
and walls, from which depth maps are exteacted. For the application of telepresence the desired
propertion of a 3D depth map are (1) high density, (2) high resclation, (3) good localization; of
features and (4) minimal errces due to specularity, occlusion, and camera calibration,

Two standard parameters that most stereo algorithms vary are the daseline, and the mask
size over which coerelation is performed. Varying these parameters effects different properties
of the recovered depth map (See Figure 1), In pasticular, a large mask sze will result o a
bigh density depth map (i.e. good recovery in the absence of “features™) but poor localization
of features in the ‘x" and 'y’ dimension. A large baseline line allows for high resolution in the
‘2" dimession, but increases the likelihood of errars due to cecluding boundaries and repetitive
patterns in the scene.
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Figure 1: Tradeolls between the baseline (distance between succmsive views) and the mask sice
(sive of sampliag seighborkood is which feature matching is pesforined). For example, a large
mask sire results in high deasity bet bow Jocalization.

In this paper, a stereo algorithm i peesented which attempts 10 explost, maximally, the
benefits of amall and large baselines and mask sizes. In particular, & multi-baseline, cosrse-fo-
Jine approach to steroo is adoptod; where several closely spaced views are taken (mvalti-baseline)
and matching across these views is done for several different mask sizes {coarse-tofine). The
use of several views and mask sizes lstrodoces a need for more sophisticated matching and
combinalion strategien. Several such control strategios aze introduced for matching across the
mestli-baselize which greatly reduoce errors due Lo repetitive patterns and false matches that arise
from occluding boundaries. Control strategies are also introduced for combining information
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across varying mask sizes which lead to dense, high resolution depth maps.

The algorithm peesented in this paper & based on the original multi baseline algorithm
in [4, 3). A description and discussion of thix algorithm is presented in Section 2. Section 3
introduces a stereo algorithm along with the comtrol strategies for combiming views across the
mutl-baseline and scale space. Section 4 presents experimental results of recovered depth maps
from a human subject aloag with a brief asalysis of the effectiveness of the control strategies
used in the algorithm, A brief discussion and futuge research directions s given i Section 5.

2 Multi-Baseline Stereo

Mast stereo algorithms perform feature matching acrosas only two views. This bassc paradigm
vulserable to false matches in the presence of repetitive patterns (see Figure 2}

Lot Rght ept-polar scan in X

Figure 2: Two imagm with ropetitive patterss {vertical lines). Matching pesformed from the
Jeft to the right image for & point oo line 1 results i a false mated (ie. two spilies appear is the
correlation curve),

The original prulti-baselive stereo algoeithm described in [4, 3] was isteoduced in order to
avoid false matches due to repetitive patterns. The basic idea is Lo compute correlation curves
between a referemce image (the left or right most image) and a series of equally space images
with successively larger baselines. The coerelation carves are then added and the coerect match
# taken to be at the global minisnum of this curve. This mathi-baseline eliminates false matches
due to repetitive patterns having a frequency greater than the shortest baselise. This method,
however, s limited in that the lergest baseline (e, distance between Jeft and right-mont cameras)
must remain relatively smsall to avedd the introduction of errors froen occluding boundaries. The
consequence of a small baseline is Jow depth resolution in the recovered depth maps.

1o this paper, we introduce mew-selection confrol strelegies which allows us to take advantage
of the multi-baseline approach for lerge baselines, thus allowing us 1o recover high resolution depth
maps. Several other comtrol strategies are abwo istroduced which allow us to combine depth maps
computed from varying mask sizes, allowing ws to recover accurate and dense depth maps.



3 View-Selection Strategies for Wide-Baseline Stereo

A malti-dascline, course-lo-fine intensity based algorithen for recovering 3D depth information
from a sequence of images is described in thas section, This approackh utilizes several control
strategies which allows ws to exploit, maximally, the benefits of both small and lage baselines
and mask sizes.

3.1 Intensity Matching

In order to recover dense depth maps, intensity matching, as opposed to feature matching, s
used in the stereo algorithm presented in this section. In particular, matching correlation error
Is given as the sum of absolute value of differences of intensities over a sampling window:

2 LL_-’L! (1)
e n
whese, 1, and [, are the intensity valoes in the images being matched and = is the the sumber of
pixels over which correlation is performed {16, mask size). This correlation measure was chosen
over the frequently used sum of squared differences for computational considerations.

3.2 Wide-Baseline Sterco

Most feature based matching algorithms generally rely on caly two images to recover a 3D depth
map [6]. This method is limited in that a single fixed baseline mest be chosen; thus elther good
resolution of mimimizing essors due 1o ccchason may be sacrificed. A fxed, large basoline makes
matching more difficult due to an increased chance of false matches imtroduced by occluding
boundaries. In additsom, a lasge baseline is especially peoblematic in the presence of repetitive
patterns |4, 3] (eg. vertical stripes om a shirt), Selection of a small baseline reduces the chance
of false matches but at a cost of poorer depth resolution.

In oeder to take advantage of the benefits of usieg & small and large baseline, matching
may be performed over a soquence of images [4, 31, For example, Figure 3 depicts a seven
image sequence where the distance between successive frames is small while the “full baseline”,
the distance between the left and right meot lmages (Ly and Ry), is large. Thete ate several
srategies that may be adopted for matching across such a sequence of images; below, we presomt
cae wach approach.

L === & 3

5 L4 c R, R R

Figure 3: Matching across aa image sequence,



Whereas the original malti baseline stereo algorithms [4, 3] performs correlation to the left
o right most image in a sequence of images, the algorithin described here correlates to the center
image in the sequence. Correlating to the center view, in effect, roduces the baseline by a factor
of two thus making errors due 1o occlusion, etc. loss likely, The benefit of the full baseline i,
later, partially recovered as will be described below.

Consider for the moment caly the right halfl of the image sequence in Figure 3 (lmages €
through R3). The matching poist of a point 4, in image € can be determined in image Ry by
searching along as epi-polar lise. ' Let the point P be the matching point in image Ny The
matching point for Fy in image H; can then be determined by seasching about a epé-polar line
centered at the projection of F; im image ;. Finally, the matching poist for F5 in image R, can
be determined by searching about a epi-podar line centered at the projection of F in image Ry
The dispasity for Fo is then simply PT —~ By, where 7 i the 2 component of the poist F,. ¥ In
order to avoid errors due to occlusion, if the correlation error of a point in image F, s above a
pre-defined threshold, then the previously matched point Fi_y s directly projected into the last
inage in the sequence.

The projection of points is trivial given & known distasce between neaghboring images in
the sequence. Given an image sequence with n images, a polat F, in image ¢ is projected into
fmage ¢ 4 1 s follows:

Pis = Pos ((i41) 2 5)/(i = n) (2)

Errees in the projection can be compensated for by increasing the search seighborkood about
the projection point,

The process of computing disparity for a single point is repeated for each point i image
C, resulting in & disparity map relating points in image C 1o those i image Ry, The proces is
then repeated to compute & disparity map relating points in image C to those in image Ly,

In order to take advantage of the full baselive (image Ly to Iy), it is necessary to “com.
hine® the left and right disparity mage. | an ideal world these mags would be identical and
simply adding thesn would sufSce. However, due to occlusions, noise, intensity vanations, false
matches, ete. this approach is unrealistic and resulls in a lazge number of errors. As such, a
simple “combination rule™ to combane the Jeft and right dispasity map is adopted:

(D - Dgl < epand |Cp = Chl < ¢¢) then Dy = (D + Dy)
else if (Cr < Cr )then Dy = 2« D¢
oo Dy =2 Dy

where, [ and Dg cotresponds 1o the left and asd right disparity maps, respectively, Cp and Cy
correspond Lo the left and right correlation errors, respectively and [y corresponds to the final
disparity value. ¢p and c¢ are predefined thresholds set to a valee of | in the results presented
in section 4. These two thresholds dictate the error toderance between the left and right dispanty

maps.
“I'he matching powt s determined by comrelating Iitensity values over & Sued sae mask and selecting the

poist with a miskmam correlation. Correlation w computed s & sum of abeclute valee of &ffervaces.
"This assuses patalle] axs camera grometry




To this poist correlation han been performed only over a sngle mask size, the following
soction describes how varying mask sszes are incorpocated into thas algorithm,

3.3 Coarse-to-Fine

In order to benefit from the properties of correlating over a large and small mask size, dispanity
maps are computed foe a number of mask sizes. In particulas, using the proces described in the
previous section, disparity maps are computed for mask sizes ranging from 3 x 310 15 x IS
Associated with each of these disparity mags &s a correlation map, which associates a correlation
value with cach point in the image. The final disparity map is computed by isitially setting 1l
disparity values to be that of the coarsest map (15 x 15 mask). Each point in the final disparity
map is then updated through the smaller mask sizes as loag as the corredation of a smaller mask
is Jess than or equal to the correlation of a larger mask.

The algeeithm describod in the provious two sections ix outhined, in peendo-code, in Ap-
pendix A.

4 Results

4.1 Experimental Setup

In order to obtain a sequence of images while insuriag parallel axis motion, a CCD camera (Sony
XC-T7RR, 25ma lems) is mounted on the end effector of a PUMA 580, As image sogoctice
i» then obtained by repeatedly moving the PUMA a Sxed distance borizontally im front of an
object, and digitizing an image at each step (Figure 4).

Figure 4: Experimental setup.



4.2 Depth Maps

A five image sequence of the upper torso of a human subject was taken. The camera was
translated 7cm between successive views, giving a full baseline of 28cm. The subject was ap-
proximately 1m from the camera. The stereo reconstruction algorithm described in the previous
section was run on the subsampled 256 x 256 images (images were originally 512 x 512).

Figure 5: Image sequence.

Figures 6, 7 and 8 show the resulting rendered depth map. Figure 6 shows the rendered
depth map (clockwise) rotated by 45° about the x-axis, about the y-axis, rotated by —45° about
the x-axis and about the y-axis. Figure 7 shows the same views where the depth map was
upsampled to 512 x 512 using bicubic spline interpolation. Figure 8 shows the upsampled views
rotated by £90° about the y-axis. The upsampled depth map has a resolution of approximately
dmm.

4.3 Analysis

It is not clear what the “best” method is for combining left and right disparity maps and for
combining disparity maps across scale space. The method presented in this paper is based on
some simple heuristics; further study into this area is certainly warranted. In order to aid in
this study we have performed some preliminary analysis on how effective the various control
strategies introduced in this paper are.

Table 1 shows the fraction of time the disparity map for a given mask size was obtained
from the left, right or both disparity maps (see Table 1). Figure 9 shows, for the 15 x 15 mask
size, what region of the image used the left, right, and both disparity maps; in this figure, dark
gray corresponds to the left disparity map only, gray corresponds to a combination of both the
left and right disparity maps, and white corresponds to the right disparity map only. Note it is
at the occluding boundaries (i.e. left and right sides of the head) that the disparity is computed
from only the right and left disparity map, respectively. From this figure it is clear why the
control strategy introduced in this paper helps to avoid errors due to occluding boundaries.

Table 2 shows the fraction of the time in which each mask size was used in generating the
final disparity maps. Recall that the final disparity map is initially set to the coarsest disparity
map (i.e. 15 x 15) and is updated through different mask sizes as long as the correlation from
a smaller mask size is less than that of a larger mask size. We have found that, as expected,
smaller mask sizes are more effective in regions where “features” are present and in regions of
high texture, while larger mask sizes are more effective in more uniform regions. Combining



Rendered depth map.

Figure 6









Table 1: Combéning left and right disparzity maps

Mask Size % Using Left % Using Right % Using Both
Disparity Map  Disparity Map

l)lltflll'.)‘ §‘ A

TE 37 2.1 ETE!
H x5 2.5 20 53.1
¥y 19.5 209 5.8
Px9 19.5 2.3 .5
Il x 1) I89 20.1 a1
1313 185 19.7 0.5
15 x 15 I8.3 19.7 Ll 6

Figure 9: Combining left and right Ssparity mags. Dark gray corresponds to the left dispazity
map only, gray cotresposds 10 a combipation of both the lelt and ngh! Suparny mape, and
white correspoads to the right dispasity map saly

dwparity maps acrces difezett masks sizes reanlts in deose 3D depth mapn with few errors due
to false matches

A more thetough investigation into Lhe “coutrod strategm” is currestly under tmvewligation
We, however, note that the simsple sirateghes described above generates degth maps with fewer
etrory due 10 occluding boundaries and false matches than 1he original malts baselioe algocithm
described in z‘. 3]. Figure 10 shows the resalts of running oar impdementation of the cciginal

multh basedine algocithm on the imege sequence shown i Figure 5
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Table 2: Combining disparity maps across varying mask sizes.

Mask Size  Percent

3x3 17.96
S5x5 10.33
Tx?7 T4
Px9 5.50
11 x 1l 450
13 x 13 4.08
15 « 15 50.41

The anganal mults- baseline stereo algorithim correlates to the left-most image in the sequence.
Carrelation curves are computed between the left-most image and each subsequent image in the
soquence. The final disparity is gotten from 15 minimsm of 1he sum of all the correlation curves.
The algorithm was run with a fixed mask size of 9 x 9, Since a coarse-to-fine approach was not
incorpocated into this algorithm we do not expect as good resolution. Note, however, that the
errors due o occlusion (right sde of the head) are mvach mote severe in this image thas in Figures
6. 7, and 8 The errors in the chin are most hkely dwe to false matches and was obsesved in our
stereo algorithm before the various control strategies were introdoced.

5 Discussion

This paper introduces a multi-baseline, coanse-to-fine stereo algorithm with several control strate-
gres for combining disparity information across the image sequence and combining depth infor.
mation aczoss scale space. These comtyol Meategion allow us 1o benefit, maximally, from the luge
and small baseline and mask sizes while introducing few errors. The resulting depth maps are
of high density, high resolution (appraxdimately Smm) and low errces due to occlusicn, repetitive
patterus, and false eantches,

Future directions currently imclude expanding the muthi-baseline to incorporate vertical as
well as horizontal camera displacements (L.e. a “grid™ of camseras). In addition we are intes.
ested in investigating methods to integrate depth maps taken from different perspectives. The
addition of more cameras and views will increase the importance of the type of "control™ issues
inteoduced in this paper. Our foture woek includes furtber investigation isto this mpect of stereo
reconstruction.

We are also currently beginning a thorough analysis of the errors introduced at each stage
of the stereo recomstroction process. In particelar, camera calibration, unage rectification [due
to lens distortion and non-parallel axis cansera geometry), and the matching stage of the stereo
algorithm. This type of analysis will hopefully result in a better understanding of where error
are introduced into the depth map and how they may be avoided,
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6 Appendix A

Below is the multi-baseline, coarse-1o-fine stereo algoeithm outlined in Section 3. The algorithm
was implemented in 'C” on a Sparc platform.

/* compute disparity maps for varyisg sask sizes ¢/

for a = 3 2o 15 { /* mask size * mn x m ¢/
/* compute ::Ft disparity map ¢/
for each pi (z,y) ta ceater image
for I =i ton { /* images in right half of image sequence */
fiad matching poiat (21.y1) in image I /e correlate #/
¢ = (min correlation)/ma”2 /* norsalize correlation ¢/

project (x1,yl1) iato image [e)

right _disparity » xi1 - x
right _correlation = ¢

/e ccopute left disparity sap »/
for each fuol (x,y) in center image

for 1 = 3 ton ( /e images ia left 2alf of image seguance ¢/
find satching point (x1,y1) ia smage I /* correlate ¢/
¢ = (ain correlation)/u"2 /* sermalize correlation */

project (x1,yl) into image I+l

left _disparity = xi1 - x
left _correlatioa = ¢

[+ combine left and right disparity sap ¢/

sf( | right_correlatioa - left _correlation | < Ec &k
| right disparity - left _disparity | < B4 ) {
disparity.m = left _disparity ¢ righs disparity
correlatica s * (left _correlation ¢ right _correlaticn)/2.0

} else 17( left_correlatios < right_ correlation ) {
disparity.m = 2 ¢ left di ity
correlation s = left_correlaticn

} else {
disparity m = 2 ¢ right disparity
correlation.m = right _correlationa

}

/* cosbine disparity maps acroas varying mask sizes ¢/
final disparity = correlation_15 /* et fipal disparity %tc coarsest map ¢/
final _correlation = correlation 1%

form= 13 %0 3 (
12( correlation s < fisal_correlatiom ) (
final disparity = correlation s
final _correlation » correlation.s



}

/v compute depth #/
depth = (f length)*(baseline) / final disparity

/* pest-processing */
smooth (gawssian) final depth map

15



References

[1] U. Dbond and J. Aggarwal. Structure from sterco - a review. JEEE Trensactions on Sysdemss,
Man end Cybernetics, 19(6):1459-1510, 1989,

[2] H. Pechs, G. Bishop, K. Arthur, L. McMillan, R. Bajesy, S. Lee, and H. Farid, Virtual space
teleconferencing using a sea of cameras. Unpublished Results

[3] T. Kanade. A multiple baseline stereo,

[4] M, Okutcni and T. Kanade, A mwltiple-baseline steren, JEEE Transsctions ox Patfern
Analysis and Machine Intelligence, 154):353 363, 1993

[5] R Teai. A versatile camera calibration tochasque for high-accuracy 3d machine vision metrol-
ogy using off theshelf tv cameras and lenses. JEEE Jowrnal of Robotics and Awtomation,
RA-3(4):323-344, 1987,

(6] J. Weng, N. Ahuja, and T. Huang, Matching two perspective views, [EEE Transactions on
Pattern Analpsis and Mechine Intelligence, 14(8):806-825 1992

{7} 1. Weng, P. Coben, and M. Hermiou. Camera calibration with distostion models and accuracy
evaluation. JEEE Transactions on Pattern Analysis and Mackine Intelligence, 14(10)965
950, 1992

i6



