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Object segmentation by top-down processes

MARY J. BRAVO 1, HANY FARID 2

In cluttered scenes, some object boundaries may not be marked by image cues. In
such cases, the boundaries must be defined top-down as a result of object recog-
nition. Here we ask if observers can retain the boundaries of several recognized
objects in order to segment an unfamiliar object. We generated scenes consisting
of neatly stacked objects, and the objects themselves consisted of neatly stacked
colored blocks. Because the blocks were stacked the same way within and across
objects, there were no visual cues indicating which blocks belonged to which ob-
jects. Observers were trained to recognize several objects and we tested whether
they could segment a novel object when it was surrounded by these familiar, stud-
ied objects. The observer’s task was to count the number of blocks comprising the
target object. We found that observers were able to accurately count the target blocks
even when the target was surrounded by up to four familiar objects. These results
indicate that observers can use the boundaries of recognized objects in order to ac-
curately segment, top-down, a novel object.
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1 Introduction

We perceive a world organized into familiar
objects such as can openers, tractors and pic-
nic tables. Objects are defined by the connect-
edness of their parts, and we learn about this
connectedness through experience [14, 23, 1].
We perceive a can opener as an object because
we have noticed that when we pick up one of
its parts, all of the other parts come with it.
We perceive a tractor as an object because we
have noticed that when one part of the trac-
tor moves, all of the other parts move with
it. And, although we may have never seen it
move as a whole, we perceive a picnic table
as an object because we have noticed that its
parts always appear together.

While we learn about the connectedness of
object parts from visual experience, this con-
nectedness is not always easy to discern in a
given visual image [2, 11, 26]. For example,
when we look into a kitchen drawer, the parts
of the can opener may be contiguous not only
with each other but also with parts of the potato
masher and ice cream scoop. Admittedly, there
may be other visual cues that help us segment
these cooking utensils: the ice cream scoop
may be white, the potato masher black and
the can opener silver. But these similarity cues
are not always present, and they can even be
misleading when an object is made from sev-
eral materials.

The line drawing in Figure 1 illustrates this
problem. We perceive this drawing as repre-
senting two objects, a lamp and a table, even
though there are no clear visual cues that cause
us to organize the drawing this way. The am-
biguity depicted in this line drawing arises fre-
quently in the cluttered scenes we view ev-
ery day. That is, when objects are stacked on
top of or next to one another, there may be no
image cues differentiating parts that are truly
connected from parts that are merely adjacent.
And when an observer is permitted only a sin-
gle, monocular view of a scene, there may be

Figure 1: Why does the part labeled ’A’
group with the cylinder above it and not
the one below?

no image cues differentiating parts that are ad-
jacent in the world from parts that are only
adjacent in the image.

This ”part ownership” ambiguity that arises
in cluttered scenes clearly poses a problem for
models of human object recognition because
these models presuppose a segmented object.
A few computer vision models have attempted
to deal with the problems posed by clutter.
One such approach, termed hypothesize-verify,
involves the following steps (e.g., [21, 9, 5, 22]).
Bottom-up segmentation processes (e.g., the
Gestalt grouping rules) first delineate features
in the image. Depending on the model, the
complexity of these features ranges from con-
tours to surfaces to volumetric parts. A subset
of these features is then matched against ob-
ject representations in memory. The matches
are used to predict other features of the object
that should appear in the scene. If the pre-
dictions are correct and the existence of these
features is verified, the object is recognized.

We start then with the assumption that com-
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plete object segmentation 3 is not a necessary
prerequisite for object recognition. We also
assume that object segmentation is not a nec-
essary consequence of object recognition. On
the surface, this second assumption might seem
odd. It might seem more natural to suppose
that once you have recognized an object you
would automatically segment it from its back-
ground. But consider that recognition need
not be based on the whole object, some dis-
tinctive feature or part may suffice. (Imagine
coming across an alligator in the grass; once
you recognize a patch of scaly skin or a beady
eye, you may not find it necessary to fully seg-
ment the entire animal before reacting.) Fur-
thermore, if recognition involves a purely feed-
forward process, then precise information about
the locations of object parts may be discarded
in this process.

The goal of the experiments reported here
was to examine one of the ways in which ob-
ject recognition can lead to object segmenta-
tion. Once an object has been recognized, we
ask whether observers can mark its parts or
boundaries for exclusion when segmenting neigh-
boring objects. Essentially, we want to know
whether observers can ”subtract-out” familiar
objects in order to find the boundaries of an
unfamiliar object.

2 Experiment 1

To test whether object recognition can drive
object segmentation, we developed stimuli with
ambiguous part ownership. The stimuli we
used consisted of realistically rendered blocks
which were neatly stacked to form objects, Fig-
ure 2. Our observers studied the individual
block-objects during several training sessions.
They were then presented with scenes com-
posed of a number of these block-objects stacked

3Note that we define object segmentation as the seg-
mentation of the entire object (the entire can opener, the
entire lamp) from its background.

next to one another, Figure 4. Each scene also
contained a novel block-target positioned be-
tween two of the familiar objects, Figure 3.
The observer’s task was to find this target and
count its blocks. Because the objects and tar-
get were all neatly stacked next to one another,
there were no image-based cues indicating which
blocks belonged to the target and which to the
objects. Thus to perform this task, observers
were forced to rely on their knowledge of the
familiar objects to locate and count the target
blocks.

Since we asked observers to find the novel
target amongst familiar objects, it might ap-
pear that an observer could have simply searched
for something unfamiliar. When two objects
were placed next to one another, however, new
block configurations were created at the bound-
ary between them. And because the observer’s
task was to report the number of target blocks,
accurate performance required the observer to
find the boundaries of the familiar objects.

This first experiment simply examines whether
observers can perform the task. If they can,
this would show that observers can recognize
objects that they cannot fully segment from
image cues. More importantly, it would show
that they can keep track of the boundaries of
recognized objects in order to segment an un-
familiar object.

2.1 Methods: stimuli

The stimuli were created using OpenGL on an
SGI O2. To optimize the three dimensional
appearance of the displays, the stimuli were
rendered under a perspective projection with
directional and ambient lighting. A dark gray
plane defined the ground, the remaining back-
ground was light gray. The stimulus rotated
at 30 deg/sec about a central vertical axis. This
rotation provided strong motion parallax cues
for scene structure and it permitted viewing
from multiple vantage points. Except for the
free-viewing condition (see Training below),
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all stimuli were viewed from an elevation of
40 degrees.

2.1.1 Objects

Block objects were constructed by a fully auto-
mated computer program which neatly stacked
seven blocks. The program first placed one
block on the ground plane and then randomly
selected one of the five visible facets for the
placement of the second block. The program
then selected one of the visible facets for the
placement of the third block. This process was
repeated four more times as additional blocks
were added to random facets of the growing
object. The program imposed two restrictions
on the placement of the blocks. First, before
putting a block along a side facet, the program
checked that the block would be supported
by another block or by the ground plane. We
wanted the connectivity of all the blocks to
be ambiguous, and we assumed that an un-
supported block would appear to be physi-
cally attached to the block at its side. Sec-
ondly, the program required that each object
have at least one block stacked on top of an-
other block. Thus, any object that consisted
entirely of blocks on the ground plane was
automatically rejected. This requirement was
based on our subjective impression that flat
objects looked less object-like than objects with
more complex 3D shapes.

The seven blocks in each object were ran-
domly assigned one of four highly saturated
colors (red, blue, green or yellow). The blocks
were separated by a small gap so that neigh-
boring blocks with the same color would not
appear to merge into a single elongated block.
However, the gaps were so small that they did
not prevent the blocks from appearing con-
nected.

Twelve objects were selected from the out-
put of the program and used for training (Fig-
ure 2 shows four of these objects.) Two subjec-
tive criteria were used in selecting the train-

Figure 2: Four objects each constructed
by neatly stacking seven colored blocks.
Some blocks may be difficult to see in
these black and white images, however,
all blocks were clearly visible in our color
stimuli.

ing objects. First, we wanted them to be fairly
easy to discriminate, and so we chose a range
of shapes and color patterns. Second, we wanted
them to look like average objects. Thus, we
did not select objects with highly distinctive
features such as tall vertical stacks or large clus-
ters of similarly colored blocks. These hand-
selected objects were divided into two sets of
six objects. One set was used for the training
of observers S1 and S2 and as the unfamiliar
control for observers S3 and S4. The other set
was used for training observers S3 and S4 and
as the unfamiliar control for S1 and S2.

2.1.2 Targets

Targets were generated in exactly the same way
as the objects, but only four, five or six blocks
were used. A new target was generated for
each trial. Shown in Figure 3 are example tar-
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gets. We did not check that each of these ran-
domly generated targets was unique, but given
the many stacking and coloring permutations
it is likely that most were.

Because we wanted to compare performance
for top-down segmentation with bottom-up seg-
mentation, we also created targets that were
defined by an image cue. The blocks com-
prising these targets had a lower reflectance
than the object blocks. That is, because these
target blocks were assigned lower RGB levels
than the object blocks, they appeared darker.
The RGB level for the object blocks was 250
for all colors (250,0,0 for red, 0,250,0 for green,
250,250,0 for yellow and 0,0, 250 for blue). The
RGB level for the target blocks was reduced
by 10, 20, 30, 40, 50, or 100. We determined in
a pilot experiment that with this span of RGB
levels, target discriminability ranged from sub-
threshold to clearly supra-threshold.

We should note that the discriminability of
the object and target blocks was related to RGB
level in an complex way. This is because dis-
criminability probably depended not only on
RGB value but also on the block’s color and
the block’s context (i.e., whether it was next to
a similarly colored block). And since the RGB
level determines reflectance, the luminance of
each facet also varied with the illumination
(i.e., with the angle between the surface nor-
mal and the directional lighting source). De-
spite these potential sources of variability, the
overall relationship between RGB value and
discriminability was monotonic. Thus, by vary-
ing RGB level we were able to systematically
vary the strength of bottom-up segmentation.

2.1.3 Scenes

All scenes contained a target and four objects.
A different scene was created for each trial by
a fully automated program which implemented
the following steps. First, the target was po-
sitioned on the ground plane and two of its
sides (north, south, east or west) were ran-

Figure 3: Four example targets constructed
by neatly stacking four, five or six colored
blocks.

domly selected. An object was then positioned
along each of the selected sides. This ensured
that observers would have to identify at least
two object boundaries in order to locate the
target blocks. A bounding box was drawn around
this scene, and facets touching the box were
noted. One of these bounding facets was ran-
domly selected and a third object was placed
next to it. This process was repeated again for
the placement of the fourth object. Before be-
ing added to the scene, each object was ran-
domly rotated about its vertical axis by 0, 90,
180 or 270 degrees. The four objects in each
scene were selected randomly but without re-
placement from the training set so that no ob-
ject appeared more than once in a scene. In
the final step of the program, the scene’s cen-
ter of mass was moved to the middle of the
ground plane. It is important to note that the
target and objects were neatly stacked in the
scene so that adjacent blocks were aligned the
same way within and across the objects and
the target, Figure 4.
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Figure 4: Snapshots from two of the rotat-
ing scenes. Each scene was constructed by
neatly stacking four objects and one target.
Note that the boundaries within and across
objects are identical.

2.2 Methods: procedure

2.2.1 Training

Observers learned six objects during four, one-
hour training sessions. Each session included
self-paced exercises in which observers freely
viewed rendered objects or used wood blocks
to build real objects. Each session also included
tests of the observers’ knowledge of the ob-
jects, with the tests becoming more difficult
over time. The four training exercises are de-
scribed below.

1. Free viewing of the objects. The observers
started each session by viewing the indi-
vidual objects on the computer screen.
Each object was given a name (sed, tran,
mats, elel, choo and halb) and a number
(1, 2, 3, 4, 5 and 6) and these identifiers
appeared at the top of the screen when
the object was displayed. Using the ar-

row keys on the computer keyboard, the
observers were able to freely rotate the
object through any azimuth and positive
elevation. The objects rested on the ground
plane, and so observers never viewed them
from the bottom. This part of the train-
ing was entirely self-paced: the observers
could choose to view any one of the ob-
jects at any time, and the exercise was
terminated when observers felt ready to
try the identification task. Typically, ob-
servers studied the objects for 20-30 min-
utes on the first day and 5-10 minutes on
subsequent days.

2. Identifying the objects. An object was
displayed on the computer screen and
the observer was asked to identify it by
pressing the appropriate key on the key-
board. The keys were labeled with both
the object’s name and number. Audi-
tory feedback was given after an incor-
rect response. A test consisted of 36 tri-
als, and observers were required to pass
six tests of increasing difficulty. In the
first test, an object rotated through 360
degrees in 10 seconds. On the second
and third tests, a viewing azimuth was
randomly selected, and a static object was
displayed for 1 second and 0.5 seconds,
respectively. On the fourth, fifth and sixth
identification tests, the object rotated though
360 degrees in 10 seconds as in the first
test. But now additional blocks were stacked
next to the object, and the positions and
colors of these distractor blocks changed
on every trial. The number of these dis-
tractor blocks increased from three to five
across the tests.

3. Discriminating the objects from decoys.
An object was displayed on the screen
and, on 30% of the trials, the color of one
block was changed. The observers’ task
was to determine whether the displayed
object was a studied object or a decoy.
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Figure 5: As part of the object learning
stage observers constructed block objects
from real blocks.

Again, the test was repeated six times.
Just as with the identification test above,
the tests were made progressively more
difficult by decreasing the stimulus du-
ration and by placing distractor blocks
around the object.

4. Building the objects from real blocks. Ob-
servers built the objects from one-inch
wooden blocks that were painted to match
the rendered blocks, Figure 5.

In order to pass each of the identification
and discrimination tests, observers were re-
quired to be correct on at least 32 of 36 tri-
als. On the last day of training, each observer
was required to quickly and accurately build
the objects from memory. All four of the ob-
servers recruited for this study passed the train-
ing phase and moved onto the experiment. The
experiment involved three, one-hour sessions
which were completed within the same three
week period as the training.

2.2.2 The experiment

In the experiment, the observer’s task was to
find the target in each scene and count its blocks.
This task was performed under three condi-
tions: (1) Top-down: the target was placed
alongside familiar objects. Because the target
blocks were indistinguishable from the object
blocks, the observers had to use knowledge of

the objects to segment the target. (2) Bottom-
up: the target was placed alongside unfamil-
iar objects. The target blocks were darker than
the object blocks and so the observer could
use an image cue to segment the target. (3)
Both: the target was placed alongside familiar
objects and its blocks were darker than those
of the objects. Observers could use bottom-up
and top-down cues to segment the target. 4

These three conditions were run in sepa-
rate, interleaved sets of 36 trials. In all, the
observer ran 27 sets, 9 for each condition, but
the results for the first set of each condition
were discarded as practice. The observer ini-
tiated the first trial in each set. The display
appeared after a second and remained on un-
til the observer responded by pressing the ap-
propriate key on the keyboard (”4”, ”5” or ”6”
for 4, 5, or 6 blocks in target). Feedback was
provided on incorrect trials.

Observers were paid $10 per hour and were
recruited from the undergraduate population
at Rutgers/Camden. Three male observers and
five female observers between the ages of 20
and 40 participated in the two studies reported
here. None of the observers had prior experi-
ence in a psychophysical study, nor were they
aware of the purpose of this study.

2.3 Results and Discussion

The data for four observers are shown in Fig-
ure 6. On the horizontal axis is the RGB level
difference between the target and object blocks.
On the vertical axis is percent correct (left col-
umn) or reaction time (right column). 5

4We recognize that all visual tasks involve top-down
and bottom-up information. Thus our top-down condi-
tion involves only relatively more top-down processing
than our bottom-up condition. And the name of our
Both condition refers to the fact that it is a combination
of conditions 1 and 2.

5As is usual for reaction time data, our data had a
skewed distribution. Because we did not want our re-
sults to be biased by a small number of very large reac-
tion times, we report only reaction times that fell within
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Figure 6: Speed and accuracy data for
four observers from Experiment 1. The
horizontal axis indicates the RGB level
difference between the target and object
blocks in the bottom-up and both condi-
tion. The dashed line corresponds to the
top-down condition, the open circles to the
bottom-up condition, and the filled-circles
to the both condition. N=48 for each cir-
cle, N=288 for the dashed line. The signif-
icance of the asterisks is explained in the
text.

The data for the bottom-up condition are
indicated by open circles. In this control con-
dition, scenes were composed of unfamiliar
objects and a target with a lower reflectance
than the objects. When the reflectance differ-
ence between the target and object blocks was
very large (an RGB level difference of 100),
the target was highly salient. Observers re-
sponded with a high level of accuracy in about
five seconds. As the difference was reduced,
accuracy fell and reaction times increased. For
an RGB difference of 10, accuracy was near
chance (33%). While it is not surprising that
observers were unable to count the target blocks
when these blocks were indistinguishable from
the object blocks, it is still worth noting be-
cause it indicates that there were no inadver-
tent stimulus cues defining the target. (Re-
call that the control objects for half of the ob-
servers were the experimental objects for the
other half.) This validates our claim that in the
top-down condition described next, observers
must have used their object knowledge to find
the target.

The data for the top-down condition are rep-
resented by the dashed horizontal line in Fig-
ure 6. In this condition, the RGB difference
between the target and object blocks was 0,
but we have represented the data as a line so
that it may be easily compared with the data
from the other conditions. To find the target
in these scenes, observers were forced to use a
top-down segmentation strategy. For all four
observers, accuracy was somewhat less than
that for scenes with salient bottom-up cues,
but it was still high. Responses were 2-3 times
slower.

The last set of data, the filled-circles, corre-
sponds to the ”both” condition. In this con-
dition, the objects were familiar and the tar-
get blocks had a lower reflectance value than

two standard deviations of the mean. This truncation
method excluded less than 5% of the data. This exclu-
sion rate was similar across conditions and did not affect
the overall pattern of results.
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the object blocks. Thus observers could use
both top-down and bottom-up information to
segment the target. At the extremes of the
RGB range, observers used the best source of
information available. When the RGB differ-
ence between the target blocks and the object
blocks was small, performance resembled the
top-down condition. When this RGB differ-
ence was large, performance resembled the bottom-
up condition, although it was not quite as fast. 6

When the RGB difference was moderate (30
or 40), three of the four observers (S1, S2 and
S4) did better in the both condition than they
did in either the top-down or bottom-up con-
ditions. That is, the both condition produced
more accurate responses than the bottom-up
condition and faster responses than the top-
down condition. To compare accuracy levels,
we computed z-values using the equation, (P1−

P2)/
√

pq(1/N1 + 1/N2), where p = (P1N1 +
P2N2)/(N1 + N2), q = 100− p, P1, P2 are the
accuracy levels, and N1, N2 are the number of
trials for the both and bottom-up conditions.
In the graphs of accuracy, the asterisks indi-
cate RGB levels in which the both condition
was significantly more accurate than the bottom-
up condition with p < 0.05. To compare reac-
tion times, we performed an ANOVA on the
means of the eight blocks of trials run by each
observer. In the graphs of reaction time, the
asterisks indicate RGB levels in which the both
condition was significantly faster than the top-
down condition (F(1,14) > 4.6, p < 0.05). We
should note that this finding does not neces-
sarily imply that observers can integrate these
two very different sources of segmentation in-
formation. The task required observers to both
find and segment the target, and so the top-
down and bottom-up information may have

6For optimal performance, observers should have ig-
nored the familiar objects in the both condition and at-
tended only to the bottom-up cue. Apparently, they
were unable to do this. This may be because they had
recently spent four training sessions responding to the
directly to the objects.

contributed in different ways to the task. For
example, observers may have used bottom-
up information to locate the target, and top-
down information to find its boundaries. 7

The point of this experiment was simply to
show that observers can use their knowledge
of familiar objects to find the boundaries of an
unfamiliar target. Relative to salient bottom-
up segmentation, this top-down segmentation
is almost as accurate, but it is much slower.
This slowness may be exaggerated by our stim-
uli. The key design requirement for these stim-
uli was that they permit strict control over the
apparent connectedness of the object parts. We
also wanted the objects to be interchangeably
stackable so that we could generate hundreds
of unique scenes in an automated way. Blocks
seemed like an obvious choice. But in using
a single shape, we had to rely on a surface
property (color) to distinguish different parts.
Some have argued that surface properties play
a minimal role in object recognition, while oth-
ers argue that they can be important (for a re-
view see [24]). Further, since none of the ob-
jects were associated with unique parts, they
could only be distinguished by the configu-
rations of these parts. The reliance on color
patterns to distinguish these objects may have
made their recognition particularly slow.

In this first experiment, the target was al-
ways located between two objects, and so ob-
servers were required to retain information about
two object boundaries. It seems very likely
that there is a limit to the number of object
boundaries an observer can store in visual work-
ing memory. To try to find this limit we in-
creased the number of objects surrounding the
target in the next experiment.

7We also examined the effect of target size (the num-
ber of blocks in the target) on performance and found
a very similar pattern for all three conditions. There
was a consistent effect of target size on accuracy; ob-
servers performed better when the target contained
fewer blocks. Surprisingly, target size had little effect
on reaction time.
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3 Experiment 2

In this second experiment, a novel target was
located near the center of each scene and one
to six familiar objects were placed alongside
it. The observers task was again to count the
number of blocks in the target. Because there
were no visual cues defining the target blocks,
observers had to rely on their recognition of
the familiar objects to determine which blocks
belonged to the target. By varying the number
of objects surrounding the target, we hoped to
determine whether there is a limit to the num-
ber of recognized objects that an observer can
subtract-out of a scene in order to find a novel
target.

3.1 Methods

Four new observers were recruited to run in
this second experiment. Because the meth-
ods closely resembled those of the previous
experiment, we note only the differences here.
In this second experiment, scenes consisted of
one to six objects positioned around a central
target. In order to pack more objects around
the target it was necessary to use slightly larger
targets than in the previous experiment (5,6 or
7 blocks rather than 4, 5, or 6). It was also nec-
essary to use a different method for placing
the objects in the scenes. Rather than adding
objects along the perimeter of a bounding box,
the objects were positioned around the target
and then collisions between objects were de-
tected. If a collision did occur, the objects were
automatically rotated and repositioned until a
valid scene was generated.

As in the previous experiment, the target
could be identified in one of two ways, de-
pending on the condition. In the top-down
condition, the target blocks were indistinguish-
able from the object blocks, but the observers
were familiar with the objects. Thus the ob-
servers could use their object knowledge to
segment the target. In the bottom-up condi-

tion, the objects were unfamiliar, but the tar-
get blocks had an RGB value of 150, while the
object blocks had an RGB value of 250. Be-
cause the target was noticeably darker than
the objects, observers could use a bottom-up
cue to segment the target. These two condi-
tions were interleaved in eight sets of 48 trials.

As our measure of segmentation, we asked
observers to report the number of blocks com-
posing the target. Although the counting task
required that observers determine which blocks
belonged to the target, it did not explicitly test
whether observers perceived the target as a
whole object. To test whether observers could
perceive the whole target, we also ran an ab-
breviated version of the experiment in which
observers were required to build the target,
from memory, out of blocks. To reduce the ob-
server’s memory load, the number of blocks
in the target was reduced to 4 or 5 (and the
observers were instructed as such). The num-
ber of objects in the scene was fixed at four.
Observers were allowed to inspect the scenes
for as long as they wished before they started
building the targets. The scene was removed
from view during building and observers were
not given feedback. This building task was
run in two blocks of 16 trials for both the top-
down and bottom-up conditions.

3.2 Results and Discussion

The data in Figure 7 show how well observers
were able to count the number of blocks in the
target as the number of familiar objects sur-
rounding this target varied from one to six.
We consider first the accuracy data from the
bottom-up condition (open circles). In this con-
trol condition, the target blocks were notice-
ably darker than the object blocks, and observers
could use a salient image cue to segment the
target. For this condition, accuracy fell off very
gradually, and was still well above chance even
when six objects surrounded the target.

The filled circles correspond to the top-down
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condition in which observers had to rely on
their knowledge of the familiar objects to seg-
ment the target. For all four observers, accu-
racy fell off gradually as the number of objects
surrounding the target increased from one to
four. When the number of objects increased to
five, however, accuracy dropped off sharply,
and when the number of objects was increased
to six, performance fell almost to chance (33%).
It appears that when observers segment a novel
object by excluding familiar objects, they can
reliably exclude about four objects. While it
may be coincidental, it is interesting to note
that other experiments using very different method-
ologies have shown that four objects is the up-
per limit of visual working memory [19, 20, 8,
10].

For completeness, we have included the re-
action time data from this experiments (right
column of Figure 7). As the filled circles indi-
cate, the top-down segmentation process was
very slow relative to the bottom-up segmen-
tation process. If we exclude conditions that
had an accuracy less than 75% (i.e., scenes with
more than four objects in the top-down condi-
tion) then the average slope in the top-down
condition was 2.3 seconds per object, while
the average slope in the bottom-up condition
was 0.47 seconds per object. It is important to
note that these set size effects reflect both in-
ternal processing time and external (stimulus)
limitations. In our three-dimensional stimuli,
the targets and distant objects were sometimes
partially occluded by near objects. When this
happened observers had to wait for the scene
rotation to bring the occluded blocks into view.
The chance for such occlusions was the same
for the top-down and bottom-up conditions,
but it did vary with the number of objects in
the scene. So while these occlusions cannot
account for the reaction time difference between
the top-down and bottom-up conditions, they
can at least partly explain the increase in reac-
tion times with object number for both condi-
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Figure 7: Speed and accuracy data for four
observers from Experiment 2. The filled
circles correspond to the top-down condi-
tion, the open circles to the bottom-up con-
dition.

11



tions. 8

We have assumed, that in order to accurately
count the blocks belonging to the target, ob-
servers would need to isolate this unfamiliar
object. But it is possible that observers may
have simply moved systematically through the
display, counting the blocks that did not be-
long to a familiar object without representing
these extra blocks themselves as a distinct ob-
ject. To test whether observers perceive the
target as a distinct object, we also conducted
an abbreviated version of the experiment in
which observers were required to build the
target, from memory, using colored blocks. In
the displays for this building task, the target
was always surrounded by four objects. The
targets built by the observers were scored as
correct, small error or large error. Correct re-
sponses included exact replicas of the target in
the scene as well as its mirror image. Incorrect
responses were divided into two kinds: small
and large. Small errors involved one of the
following: 1) the colors of two blocks were in-
terchanged, 2) one block was the wrong color
but this incorrect color was found elsewhere
in the target, or 3) the position of a block was
off by one facet. Errors were considered large
if they involved two small errors or one of the
following: 4) one block was the wrong color
and this incorrect color was not found else-
where in the target, 5) one block was more
than one facet away from its correct position,
6) one block was missing, or 7) one block was
extra.

As the data in Table 1 indicate, on the ma-
jority of trials observers were able to build an

8We have also conducted a similar experiment with
stationary stimuli. In this experiment, the objects were
always placed on the north, east and west sides of the
target and the target was viewed from the south. Thus
the target blocks were never occluded by the objects, but
the total number of objects was limited to a maximum
of three. With these stationary stimuli, the average slope
for the top-down condition was 1.66 seconds per object
and the average slope for the bottom-up condition was
0.41 seconds per object (N = 4).

small large
subject condition correct error error

S1 top-down 28 2 2
bottom-up 28 3 1

S2 top-down 24 3 5
bottom-up 25 4 3

S3 top-down 21 6 5
bottom-up 25 2 5

S4 top-down 26 3 3
bottom-up 27 3 2

Table 1: Building accuracy from Experi-
ment 2: top-down versus bottom-up, N =
32.

exact replica of the target object, from mem-
ory. Although the percentage of correct tar-
gets was slightly lower for the top-down dis-
plays (77%) than for the bottom-up displays
(82%), performance was similar for the two
conditions. Even when errors were made, it
was always possible to determine the corre-
spondence between the built target and the
model target, and the errors were limited to
those described above. Thus the results from
this building task suggest that when using top-
down processes to segment the novel target,
observers were able to perceive the target as a
whole object.

4 General Discussion

A number of researchers have noted that many
objects do not exist as visual entities in the im-
age. As Marr put it, ”regions that have seman-
tic importance do not always have any partic-
ular visual distinction” [11] (p.270). So while
bottom-up segmentation may yield contours,
surfaces, or even object parts, it does not re-
liably yield objects. Our stimuli are extreme
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examples of scenes in which the boundaries
within objects are no different from the bound-
aries between objects. Thus the objects could
not be fully segmented using bottom-up cues.
Nonetheless our observers could recognize the
objects in our scenes. More significantly, we
found that observers could use the boundaries
of several recognized objects to segment an
unfamiliar object. Before we discuss this find-
ing, we will briefly review the existing evi-
dence showing that object recognition does not
require full object segmentation.

Some of the most compelling evidence that
object recognition does not require object seg-
mentation comes from demonstrations and ex-
periments involving quantized stimuli [7, 4,
13]. Of these, perhaps the most famous is the
Dalmatian dog scene by R.C. James. This two-
toned image depicts a spotted dog in a sun
dappled yard. Because the scene has been quan-
tized to two luminance values, many contours
are missing from the image and there are few
image cues defining the dog’s boundaries. Nonethe-
less, observers can still recognize the dog. It
should also be noted, however, that when ob-
servers are first presented with this scene, they
initially perceive a field of black spots. Thus,
when virtually all of the image information
concerning the object boundaries has been re-
moved, recognition is very slow.

Other demonstrations that object recogni-
tion does not require object segmentation have
taken a complementary approach. Rather than
eliminating object contours, the object contours
are made continuous with other contours in
the image [6, 12]. Thus, bottom-up segmen-
tation processes group the contours of the ob-
ject with those of the background. As with the
quantized stimuli, object recognition may be
greatly delayed with these embedded figure
stimuli. But because observers are still able to
detect the figure, this research indicates that
object recognition may proceed without object
segmentation.

A third line of research showing that object

recognition does not require full object seg-
mentation has focused on ambiguous figure-
ground stimuli similar to Rubin’s vase stim-
ulus. In these stimuli, the object boundary
is neither missing nor camouflaged, instead
there is a single highly salient boundary sep-
arating a black region and a white region. But
rather than perceiving this boundary as com-
mon to both regions, observers perceive one
region as owning the boundary and the other
region as extending behind it. The boundary-
owning region is the figure, the other region is
the ground. Which region owns the boundary
fluctuates over time, giving rise to a bistable
percept of figure and ground. Peterson has
shown that the region that is most likely to
be seen as the figure first and longest is de-
termined in part by the degree to which the
regions correspond to familiar objects [15, 16,
18, 17]. This research shows that border own-
ership, or equivalently depth-ordering, need
not be resolved prior to object recognition.

Our experiments resemble these earlier ex-
periments in that they required observers to
recognize objects that they could not fully seg-
ment using only bottom-up processes. But our
experiments differed from this research because
we required observers to use the recognition
of the familiar objects to segment an unfamil-
iar object. Thus, after recognizing the object,
our observers had to segment it (mark its parts
or boundaries) and then retain this informa-
tion in order to segment a novel object.

While it is clear that observers must accu-
mulate information about object boundaries
in order to perform this task, the nature of
this information is unclear. To perform this
task, observers could have retained informa-
tion about the entire object, the boundary of
the object, or just the boundary between the
object and the target. But it is also possible
that observers do not retain any information
about the objects at all. That is, instead of
marking blocks owned by familiar objects and
then counting unmarked blocks, observers could
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have marked the blocks that were not owned
by objects and then counted the marked blocks.
Of course this latter strategy still requires ob-
ject recognition to guide object segmentation,
since it still requires determining whether a
block is owned by a familiar object. 9

The reader may get a rough idea of the phe-
nomenology of this experiment by trying the
following word game. Embedded in this let-
ter string are five, four-letter words and a four-
letter nonsense word:

biketreechipretoitchoven.

Note first that there are many four letter clus-
ters that are not words but are also not the tar-
get because they belong to words (e.g., ketr
oreech). Because there are so many non-target
non-words, a strategy of looking for non-words
would produce poor performance. A more re-
liable strategy is to first look for the words
(bike, tree, chip, itch, oven) and then
determine which letters are left over (reto).
While this task obviously differs from ours in
many key respects, we suggest that it also re-
quires a kind of recognition-driven segmenta-
tion.

This idea of marking an internal scene rep-
resentation in order to determine spatial rela-
tionships was developed in detail by Shimon
Ullman [25, 26]. He proposed that after an
automatic, bottom-up analysis of the image, a
number of task-driven, attentive routines were
used to recover spatial relations. We suggest
that the top-down segmentation we are explor-
ing in these experiments involves just such a

9While recognizing the limitations of introspection,
we think it is worth mentioning that the observers in
the second experiment reported using both strategies.
When the number of objects was small, these observers
thought they identified the boundaries of the objects
and then counted the blocks between these boundaries.
When the number of objects was large, however, they
claimed they could no longer keep track of the objects
and so instead tried to systematically scan the scene and
count blocks that did not belong to any object.

task-driven, attentive process. Attention is re-
quired to recognize the objects and it is re-
quired to keep track of their boundaries in vi-
sual working memory. Our finding that per-
formance drops off sharply when the number
of objects exceeds four is consistent with the
evidence that four objects is the capacity limit
for visual working memory [19, 20, 8, 10].

Our main goal for these experiments was to
begin to develop methods for studying what
we see as a significant gap between research
in mid-level and high-level vision. Researchers
interested in mid-level vision have set as their
goal, not object segmentation, but surface seg-
mentation. This is because objects are ill-defined
as entities in the world. (As Marr wrote, ”Is
a nose an object? Is a head one? Is it still
one if attached to the body?” [11].) And sim-
ilarly objects are ill-defined as entities in the
visual image. Surfaces, in contrast, do not suf-
fer from these shortcomings. Surfaces can be
defined mathematically and it is thought that
they can be recovered directly from an image
using only a small set of generic assumptions.
Thus the goal of mid-level vision is generally
construed as building, from the bottom-up, a
surface representation. On the other hand, re-
searchers interested in the high-level problem
of object recognition do not start with a sur-
face representation, they start with a segmented
object. If mid-level vision ends with segmented
surfaces and object recognition begins with seg-
mented objects, how does the visual system
span this gap?

One might argue that the gap is only illu-
sory because most objects are delineated by
visual cues which makes their recovery straight-
forward. Certainly, many objects appear to
be well-defined by one Gestalt grouping rule
or another. But we think this is an illusion
similar to the illusion we experience during
spoken-language perception. When we listen
to someone speaking, we have the impression
that there are distinct boundaries that allow
us to pick out the words prior to recognition.
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But in natural speech, word boundaries are
not consistently marked by pauses or other
stimulus cues. (We realize this when we listen
to speakers of a foreign language.) The word
segmentation we perceive arises less from cues
in the stimulus than from our recognition of
the words [3]. Our claim is that there is often
an analogous situation in visual perception:
the object segmentation we perceive arises not
from cues in the stimulus but from our recog-
nition of the objects. Of course, this would
suggest that we can only segment familiar ob-
jects. The experiments reported here examine
one of the ways in which object recognition
might assist in the segmentation of an unfa-
miliar object.
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