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Abstract. We have developed a general purpose registration algorithm
for medical images and volumes. The transformation between images is
modelled as locally affine but globally smooth, and explicitly accounts
for local and global variations in image intensities. An explicit model
of missing data is also incorporated, allowing us to simultaneously seg-
ment and register images with partial or missing data. The algorithm is
built upon a differential multiscale framework and incorporates the ex-
pectation maximization algorithm. We show that this approach is highly
effective in registering a range of synthetic and clinical medical images.

1 Introduction

The goal of image registration is to find a transformation that aligns one image
to another. Medical image registration has emerged from this broad area of re-
search as a particularly active field (see, for example, [8,6] for general surveys).
This activity is due in part to the many clinical applications including diagno-
sis, longitudinal studies, and surgical planning, and to the need for registration
across different imaging modalities (e.g., MRI, CT, PET, X-RAY, etc.). Medi-
cal image registration, however, still presents many challenges. Several notable
difficulties are 1.) the transformation between images can vary widely and be
highly nonlinear (elastic) in nature; 2.) images acquired from different modali-
ties may differ significantly in overall appearance and resolution; 3.) there may
not be a one-to-one correspondence between the images (missing/partial data);
and 4.) each imaging modality introduces its own unique challenges, making it
difficult to develop a single generic registration algorithm.

In our earlier work, we described a general-purpose registration algorithm
that contends with both large- and small-scale geometric and intensity distor-
tions [9]. In this paper, we describe an extension to this work that allows us to
explicitly contend with missing or partial data. Shown in Fig. 2 are examples
of the challenges posed by missing data. In these examples there are large por-
tions of the source image that have no corresponding match in the target image.
Without an explicit segmentation or localization of these missing regions, most
registration algorithms are unlikely to correctly register these images. Of course,
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if the registration between these images were known, then it would be straight-
forward to perform the segmentation. Similarly, if the segmentation were known,
the registration could proceed. Without a known segmentation or registration,
however, we are faced with a bit of a chicken and egg problem - which step should
be performed first? In order to contend with this problem we have employed the
expectation maximization algorithm that simultaneously segments and registers
a pair of images or volumes (see also [10]).

For purposes of completeness we will briefly review our previous registration
algorithm [9], and then describe the extension that allows us to contend with
missing data. We then show the efficacy of this approach on several synthetic
and clinical cases.

2 Registration

We formulate the problem of image registration within a differential (non feature-
based) framework. This formulation borrows from various areas of motion esti-
mation (e.g., [5,3]). In order to contend with partial or missing data, the expec-
tation maximization algorithm [2] is incorporated into this framework, allowing
for simultaneous segmentation and registration. We first outline the basic com-
putational framework, and then discuss several implementation details that are
critical for a successful implementation.

2.1 Local affine

Denote f(x, y, t) and f(x̂, ŷ, t−1) as the source and target images, respectively. 1

We begin by assuming that the image intensities between images are conserved
(this assumption will be relaxed later), and that the geometric transformation
between images can be modeled locally by an affine transform:

f(x, y, t) = f(m1x + m2y + m5, m3x + m4y + m6, t− 1), (1)

where m1, m2, m3, m4 are the linear affine parameters, and m5, m6 are the trans-
lation parameters. These parameters are estimated locally for each small spa-
tial neighborhood, but for notational convenience their spatial parameters are
dropped. In order to estimate these parameters, we define the following quadratic
error function to be minimized:

E(m) =
∑

x,y∈Ω

[f(x, y, t)− f(m1x + m2y + m5, m3x + m4y + m6, t− 1)]
2
,(2)

where m = ( m1 . . . m6 )
T
, and Ω denotes a small spatial neighborhood.

Since this error function is non-linear in its unknowns, it cannot be minimized

1 We adopt the slightly unconventional notation of denoting the source and target im-
age with a temporal parameter t. This is done for consistency within our differential
formulation.



analytically. To simplify the minimization, we approximate this error function
using a first-order truncated Taylor series expansion:

E(m) ≈
∑

x,y∈Ω

[ft(x, y, t)− (m1x + m2y + m5 − x)fx(x, y, t)

−(m3x + m4y + m6 − y)fy (x, y, t)]
2
, (3)

where fx(·), fy(·), ft(·) are the spatial/temporal derivatives of f(·). Note that
this quadratic error function is now linear in its unknowns, m. This error function
may be expressed more compactly in vector form as:

E(m) =
∑

x,y∈Ω

[

k − c
T
m

]2
, (4)

where the scalar k and vector c are given as: k = ft + xfx + yfy and c =

( xfx yfx xfy yfy fx fy )
T
. This error function can now be minimized

analytically by differentiating with respect to the unknowns:

dE (m)

dm
=

∑

x,y∈Ω

−2c

[

k − c
T
m

]

, (5)

setting the result equal to zero, and solving for m yielding:

m =





∑

x,y∈Ω

c c
T





−1 



∑

x,y∈Ω

c k



 . (6)

This solution assumes that the first term, a 6× 6 matrix, is invertible. This can
usually be guaranteed by integrating over a large enough spatial neighborhood
Ω with sufficient image content. When an estimate cannot be made, the local
parameters are interpolated from nearby regions. With this approach a dense
locally affine mapping can be found between a source and target image.

2.2 Intensity variations

Inherent to the model outlined in the previous section is the assumption that
the image intensities between the source and target are unchanged (brightness
constancy). This assumption is likely to fail under a number of circumstances. To
account for intensity variations, we incorporate into our model an explicit change
of local contrast and brightness [11]. Specifically, our initial model, Equation (1),
now takes the form:

m7f(x, y, t) + m8 = f(m1x + m2y + m5, m3x + m4y + m6, t− 1), (7)

where m7 and m8 are two new (also spatially varying) parameters that embody a
change in contrast and brightness, respectively. Note that these parameters have



source target registered source

Fig. 1. Shown are examples of registration in the presence of significant geometric and
intensity variations. The source are CT images, and the target are photographs from
the Visible Human Project.

been introduced in a linear fashion. As before, this error function is approximated
with a first-order truncated Taylor series expansion to yield:

E(m) =
∑

x,y∈Ω

[

k − c
T
m

]2
, (8)

where the scalar k and vector c are now given as:

k = ft − f + xfx + yfy (9)

c = ( xfx yfx xfy yfy fx fy −f −1 )
T

, (10)

Minimizing this error function is accomplished as before by differentiating E(m),
setting the result equal to zero and solving for m. The solution takes the same
form as in Equation (6), with k and c as defined in Equations (9) and (10).

Intensity variations are typically a significant source of error in differential
motion estimation. The addition of the contrast and brightness terms allows us
to accurately register images in the presence of these variations, Fig. 1.

2.3 Smoothness

Until now, we have assumed that the local affine and contrast/brightness pa-
rameters are constant within a small spatial neighborhood, Equation (8). There
is a natural trade-off in choosing the size of this neighborhood. A larger area



makes it more likely that the matrix in Equation (6) will be invertible. A smaller
area, however, makes it more likely that the assumption of constant motion will
hold. We can avoid balancing these two issues by replacing the assumption of
constancy with a smoothness assumption [5]. That is, it is assumed that the
model parameters m vary smoothly across space. A smoothness constraint on
the contrast/brightness parameters has the added benefit of avoiding a degen-
erate solution where a pure intensity-based modulation is used to describe the
mapping between images.

We begin with an error function, E(m) = E1(m) + E2(m), that combines a
smoothness constraint, E2(m), with the previous geometric and intensity trans-
formation constraint, E1(m). The term E1(m) is defined as in Equation (8)

without the summation: E1(m) =
[

k − c
T
m

]2
, with k and c given by Equa-

tions (9) and (10). The new term E2(m) embodies the smoothness constraint:

E2(m) =

8
∑

i=1

λi

[

(

∂mi

∂x

)2

+

(

∂mi

∂y

)2
]

, (11)

where λi is a positive constant that controls the relative weight given to the
smoothness constraint on parameter mi. This error term penalizes solutions
proportional to the local change in each parameter across a small spatial neigh-
borhood. In so doing, we allow for a locally smooth, but globally elastic transfor-
mation. The full error function E(m) is minimized, as before, by differentiating,
setting the result equal to zero and solving for m. The derivative of E1(m) is
dE1 (m) /dm = −2c

[

k − c
T
m

]

. The derivative of E2(m) is computed by first
expressing the partials, ∂mi/∂x and ∂mi/∂y with discrete approximations [5],
and then differentiating, to yield dE2 (m) /dm = 2L(m − m), where m is the
component-wise average of m over a small spatial neighborhood, and L is an
8× 8 diagonal matrix with diagonal elements λi, and zero off the diagonal. Set-
ting dE1 (m) /dm+ dE2 (m) /dm = 0, and solving for m at each pixel location
yields an enormous linear system which is intractable to solve. Instead m is
estimated in the following iterative manner [5]:

m
(j+1) =

(

c c
T + L

)−1
(

c k + Lm
(j)

)

. (12)

The initial estimate m
(0) is determined from the closed-form solution of Sec-

tion 2.2. On the j + 1st iteration m
(j) is estimated from the previous estimate,

m
(j).
The use of a smoothness constraint has the benefit that it yields a dense lo-

cally affine and smooth transformation. The drawback is that the minimization is
no longer analytic. We have found, nevertheless, that the iterative minimization
is quite stable and converges relatively quickly (see Section 2.5).

2.4 Partial Data

Inherent to the registration algorithm described above is the assumption that
each region in the source image has a corresponding match in the target image.



As illustrated in Fig. 2, this need not always be the case. Under such situations,
our registration algorithm typically fails. One way to contend with partial or
missing data is to employ a pre-processing segmentation step. We propose, how-
ever, a more unified approach in which the registration and segmentation are
performed simultaneously.

We begin by assuming that each pixel in the source and target are either
related through the intensity and geometric model of Equation (7), denoted as
model M1, or cannot be explained by this transformation and therefore belongs
to an “outlier” model M2. Pixels belonging to the outlier model are those that do
not have a corresponding match between the source and target images. Assuming
that the pixels are spatially independent and identically distributed (iid), the
likelihood of observing a pair of images is given by:

L(m) =
∏

x,y∈Ω

P (q(x, y)), (13)

where, q(x, y) denotes the tuple of source, m7f(x, y, t)+m8, and target, f(m1x+
m2y+m5, m3x+m4y+m6, t−1), image intensities, Equation (7). To simplify the
optimization of the likelihood function, we consider the log-likelihood function:

log[L(m)] = log





∏

x,y∈Ω

P (q(x, y))





=
∑

x,y∈Ω

log [P (q(x, y)|M1)P (M1) + P (q(x, y)|M2)P (M2)] . (14)

Assuming that the priors on the models, P (M1) and P (M2), are equal, the
log-likelihood function simplifies to:

log[L(m)] =
∑

x,y∈Ω

log [P (q(x, y)|M1) + P (q(x, y)|M2)] , (15)

where the factored additive constant is ignored for purposes of maximization.
We assume next that the conditional probabilities take the following form:

log[L(m)] =
∑

x,y∈Ω

log
[

e−r2(x,y)/σ2

+ e−c2
]

. (16)

For model M1 we assume a Gaussian distribution (with variance σ2), where
r(x, y) is the residual error between the source and target defined as:

r(x, y) = [(m7f(x, y, t) + m8)− (f(m1x + m2y + m5,m3x + m4y + m6, t− 1))]. (17)

For model M2 we assume a uniform distribution (i.e., c is a constant). The
log-likelihood function is maximized by differentiating, setting the result equal
to zero and solving for m:

d log[L(m)]

dm
=

∑

x,y∈Ω

dr2(x,y)
dm

e−r2(x,y)/σ2

e−r2(x,y)/σ2 + e−c2
=

∑

x,y∈Ω

dr2(x, y)

dm
w(x, y) = 0, (18)



where w(·) is defined to be the ratio of the exponential distributions. As in
the previous sections, the residual r(·) is linearized with respect to the model
parameters m. The derivative of the residual, dr2(x, y)/dm, is then substituted
into the above to yield:

∑

x,y∈Ω

−2c[k− c
T
m]w = 0, (19)

with c and k given by Equations (9) and (10), and, as before, all spatial param-
eters are dropped for notational convenience. Solving for the model parameters
then yields the maximum likelihood estimator:

m =





∑

x,y∈Ω

(cc
T )w





−1 



∑

x,y∈Ω

(ck)w



 . (20)

Note that this solution is a weighted version of the earlier least-squares solution,
Equation (6), where the weighting, w, is proportional to the likelihood that each
pixel belongs to model M1. As before, a smoothness constraint can be imposed
to yield the following iterative estimator:

m
(j+1) =

(

(c c
T )w + L

)−1
(

(c k)w + Lm
(j)

)

. (21)

This estimator for m, however, requires an estimate of the weight w which itself
requires an estimate of m. The expectation/maximization algorithm (EM) [2] is
used to resolve this circular estimator, and proceeds as follows:

1. E-step: compute the weights w (with an initial estimate of m from the
solution of Section 2.3).

2. M-step: estimate the model parameters m, Equation (21).
3. Repeat steps 1 and 2 until the difference between successive estimates of m

is below a specified threshold.

The E-step is the segmentation stage, where pixels that do not have a corre-
sponding match between source and target images have a close to zero weight
w. These pixels are therefore given less consideration in the M-step which esti-
mates the registration parameters m. The EM algorithm allows for simultaneous
segmentation and registration, and hence allows us to contend with missing data.

2.5 Implementation details

While the formulation given in the previous sections is relatively straight-forward
there are a number of implementation details that are critical for a successful
implementation. First, in order to simplify the minimization, the error function
of Equation (8) was derived through a Taylor-series expansion. A more accurate
estimate of the actual error function can be determined using a Newton-Raphson
style iterative scheme [12]. In particular, on each iteration, the estimated geo-
metric transformation is applied to the source image, and a new transformation



is estimated between the newly warped source and target image. As few as
five iterations greatly improves the final estimate. Second, calculation of the
spatial/temporal derivatives in Equations (9) and (10) is a crucial step. These
derivatives are often computed using finite differences which typically yield poor
approximations. We employ a set of derivative filters, specifically designed for
multi-dimensional differentiation [4], that significantly improve the registration
results. And third, a coarse-to-fine scheme is adopted in order to contend with
larger motions [7, 1]. A Gaussian pyramid is first built for both source and target
images, and the full registration is estimated at the coarsest level. This estimate
is used to warp the source image in the next level of the pyramid. A new esti-
mate is computed at this level, and the process repeated throughout each level of
the pyramid. The transformations at each level of the pyramid are accumulated
yielding a single final transformation.

The generalization of the algorithm from 2-D images to 3-D volumes is rel-
atively straight-forward. Briefly, to accommodate a 3-D affine transformation,
an additional six affine parameters are added to the geometric and intensity
transformation model of Equation (7). Linearization and minimization of this
constraint proceeds as in the 2-D case. The smoothness constraint of Equa-
tion (11) takes on an additional (∂mi/∂z)2 term, and the iterative estimator
of Equation (12) is of the same form, with k and c accommodating a different
set of, now 3-D, spatial/temporal derivatives. The solution of Section (2.4) pro-
ceeds in a similar manner, with the initial constraint of Equation (13) updated
to accommodate the 3-D geometric and intensity transformation model.

In the current MatLab implementation, running on a 2.8 GHz Linux machine,
a pair of 256 × 256 images requires 4 minutes to register. A pair of 64 × 64 ×
64 volumes requires 30 minutes.

3 Results

We have tested the efficacy of our registration technique on both synthetic and
clinical data in both 2-D and 3-D, Fig. 2-3. In the first two examples, regions
were replaced with a uniform black or noise region. In the other examples the
skull region was stripped from an axial, sagittal, and complete brain volume. In
all cases, the registration is successful even with significant amounts of missing
data. This registration would have failed without an explicit model of missing
data incorporated directly into the registration algorithm. In all of the results
of Fig. 1-3, all system parameters were held fixed.

4 Discussion

We have presented a general purpose registration algorithm. The geometric
transformation is modelled as locally affine but globally smooth, and explic-
itly accounts for local and global variations in image intensities. An explicit
model of missing data is also incorporated, allowing us to simultaneously seg-
ment and register images with partial or missing data. All of the components
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Fig. 2. Shown are synthetic and clinical examples of registration with significant por-
tions of missing data.



source target registered source

Fig. 3. Shown is an example of 3-D registration with partial data. The brighter regions
shown with the registered source are the portions of the target that are missing in the
source - these regions are superimposed to show the accuracy of the registration.

are combined within an integrated framework yielding a robust and effective
registration algorithm within and across different imaging modalities.
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