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Abstract—Synthetically-generated audios and videos – so-
called deep fakes – continue to capture the imagination of
the computer-graphics and computer-vision communities. At the
same time, the democratization of access to technology that can
create a sophisticated manipulated video of anybody saying any-
thing continues to be of concern because of its power to disrupt
democratic elections, commit small to large-scale fraud, fuel dis-
information campaigns, and create non-consensual pornography.
We describe a biometric-based forensic technique for detecting
face-swap deep fakes. This technique combines a static biometric
based on facial recognition with a temporal, behavioral biometric
based on facial expressions and head movements, where the
behavioral embedding is learned using a CNN with a metric-
learning objective function. We show the efficacy of this approach
across several large-scale video datasets, as well as in-the-wild
deep fakes.

I. INTRODUCTION

Recent advances in computer graphics, computer vision,
and machine learning have made it increasingly easier to
synthesize compelling fake audio, image, and video. In the
audio domain, highly realistic audio synthesis is now possible
in which a neural network, with enough sample recordings,
can learn to synthesize speech in your voice [1]. In the static
image domain, highly realistic images of people can now be
synthesized using generative adversarial networks (GANs) [2],
[3]. And, in the video domain, realistic videos can be created
of anybody saying anything that its creator wants [4].

These so-called deep-fake videos can be highly entertaining
but can also be easily weaponized. The creation of non-
consensual pornography, for example, was the first use of
deep fakes, and continues to pose a threat particularly to
women, ranging from celebrities to journalists, and those that
simply attract unwanted attention [5]. We describe a forensic
technique to authenticate face-swap deep fake videos in which
a person’s facial identity is replaced with another’s.

There is a significant literature in the general area of digital
forensics [6]. Here we focus only on techniques for detecting
deep-fake videos, categorized as either low-level or high-level
approaches.

Low-level forensic techniques detect pixel-level artifacts
introduced by the synthesis process. Some of these techniques
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detect generic artifacts [7]–[10], while others detect explicit
artifacts that result from, for example, image warping [11], im-
age blending [12] and inconsistencies between the image and
metadata [13]. Although these techniques detect a variety of
fakes with relatively high accuracy, the drawback is that they
can be sensitive to unintentional laundering (e.g., transcoding
or resizing) or intentional adversarial attacks (e.g., [14]).

High-level approaches, in contrast, tend to generalize and
be more resilient to laundering and adversarial attacks. These
techniques focus on semantically meaningful features includ-
ing, for example, inconsistencies in eye blinks [15], head-
pose [16], physiological signals [17], and distinct manner-
isms [18]. We believe that, because current synthesis tech-
niques are frame-based, incorporating these types of semantic
and temporal dynamics is essential to staying slightly ahead
of the cat-and-mouse game of synthesis and detection.

The work of [18] is most similar to ours. In their work,
the authors analyzed hours of video of specific individuals (in
their case, various world leaders and presidential candidates)
in order to extract distinct and predictable patterns of facial
expressions and head movements. Specifically, from each
10-second clip of an individual, the authors extracted the
frame-by-frame facial expressions (parameterized as 18 action
units [19] and 3-D head rotation about two axes). The corre-
lation between all pairs of these 20 features yielded a 190-D
feature vector capturing an individual’s temporal mannerisms.
A one-class SVM [20] was employed to classify each 10-
second video clip as being consistent or not with the learned
mannerisms of an individual. The benefit of this approach
is that it captures temporal mannerisms that current frame-
based, deep-fake synthesis techniques are not (yet) able to
synthesize. The other benefit is that this approach, unlike low-
level detection schemes, is more robust to laundering attacks
and is more able to generalize to a large class of deep fakes
from face-swap to lip-sync, and puppet-master. The drawback
of this approach is that it can require significant effort to
create models for each individual and it is almost certainly
the case that the hand-crafted correlation-based features are
not optimal, nor are they capturing all of the distinct properties
that might distinguish a real from a fake video.

Building on this earlier work by [18], we employ a convolu-
tional neural network (CNN) with a metric-learning objective
function to learn a more discriminating behavioral biometric.



Fig. 1. An overview of our authentication pipeline (see Section II-C).

We pair this learned biometric with a facial biometric in order
to determine if a person’s identity in video clips as short
as four seconds is consistent with the facial and behavioral
properties extracted from reference videos. This approach is
specifically targeted towards face-swap deep fakes in which
the face of one person has been replaced with another.

II. BIOMETRICS

We next describe two biometric measurements that underlie
our forensic detection scheme. These include a biometric
based on temporal behavioral (facial expressions and head
movements) and a biometric based on static facial features.

A. Behavior

In [21], the authors proposed a self-supervised, encoder-
decoder network (Facial Attributes-Net, FAb-Net) trained to
embed the movement between video frames into a common
256-D space. The authors showed that the network, in turn,
learns an embedding space that represents head pose, facial
landmarks, and facial expression. We use these 256-D FAb-
Net features as building blocks to measure spatiotemporal
biometric behavior. A t-frame video clip of a person talking
is first reduced to a feature matrix X ∈ R256×t, where each
matrix column corresponds to each frame’s FAb-Net feature.

FAb-Net nicely captures the frame-based facial movements
and expressions but is, by design, identity-agnostic. We seek
to learn a modified embedding that both captures facial move-
ments and expressions, but also distinguishes these features
across individuals. That is, starting with the static FAb-Net
features, we learn a low-dimensional mapping that encodes
identity-specific spatiotemporal behavior, Fig. 1.

Given FAb-Net feature matrices for n, t-frame video clips
X1, . . . , Xn with identity labels y1, . . . , yn, we learn a map-
ping f(·) : R256×t → Rd, that projects Xi to an embedding
space such that the similarity Sij between f(Xi) and f(Xj)
is high if yi = yj (positive sample) and Sij is low if yi 6= yj
(negative sample). Because, the output f(Xi) is normalized to

lie on a unit sphere, a cosine similarity, between two vector-
based representations, is used to compute Sij .

To learn the mapping f(·), a CNN is trained with a multi-
similarity metric-learning objective function [22]. Following
the approach in [22], the loss for a mini-batch is computed
as follows. First, for every input Xi, hard positive and neg-
ative samples are selected. For hard negative samples (where
yi 6= yj), a sample Xj is selected if Sij > min{Sik − ε},
for all k such that yi = yk, and where ε is a small margin.
This formulation selects the most confusing negative samples
whose similarity with the input is larger than the minimum
similarity between the input and all positive samples. Simi-
larly, for hard positive samples (where yi = yj), a sample Xj

is selected if Sij < max{Sik+ ε}, for all k such that yi 6= yk.
Here, the most meaningful positive samples are selected by
comparing to the negative samples most similar to the input.

A soft weighting is then applied to rank these selected
samples according to their importance for learning the desired
embedding space. For a given input Xi, let Ni and Pi
represents the selected negative and positive samples that are
weighted as follows:

w−ij =
eβ(Sij−λ)

1 +
∑
k∈Ni

eβ(Sik−λ)
(1)

and

w+
ij =

e−α(Sij−λ)

1 +
∑
k∈Pi

e−α(Sik−λ)
, (2)

where α, β, and λ are hyper-parameters. Finally, the loss L
over a mini-batch of size m is:

L =
1

m

m∑
i=1

{
1

α
log

[
1 +

∑
k∈Pi

e−α(Sik−λ)

]

+
1

β
log

[
1 +
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eβ(Sik−λ)

]}
. (3)



TABLE I
CLASSIFICATION PERFORMANCE AS AUC (TOP) AND DETECTION
ACCURACIES AT A FIXED THRESHOLD OF τf = 0.86 (BOTTOM).

Average WLDR FF DFD DFDC-P CDF
AUC 0.97 0.99 0.99 0.95 0.92 0.99
real 96.5% 99.6% 99.2% 93.1% 93.1% 97.6%
fake 91.8% 95.8% 98.7% 93.2% 71.7% 99.4%
average 94.2% 97.7% 98.9% 93.2% 82.4% 98.5%

By performing supervised training using the identity labels,
the network is encouraged to learn an embedding space that
clusters the biometric signatures by identity.

Our model is trained on the VoxCeleb2 dataset [23], con-
taining over a million utterances from 5, 994 unique identities.
The size of the input feature matrix is fixed to t = 100,
corresponding to a 4-second video clip at 25 frames/second
(this clip size was selected as it was the minimum clip size of
the VoxCeleb2 utterances). We used the ResNet-101 network
architecture [24], where the input layer of the network is
modified to the size of our feature matrix (256×100). A fully-
connected output layer of size d = 512 is added on top of this
network, forming our final feature vector, which is normalized
to be zero-mean and unit-length before computing the loss. We
name this network Behavior-Net.

The CNN training is performed for 10, 000 iterations with a
mini-batch of size 256. Following [22], in each mini-batch, 32
identities are randomly selected, for which 8 utterance videos
(each of variable length) are randomly selected, from which a
randomly selected 100-frame sequence is extracted. All other
optimization hyper-parameters are the same as in [22].

Even though the Behavior-Net features are trained only on
the VoxCeleb2 dataset, these features will be used to classify
different identities across different datasets. This generalizabil-
ity is both practically useful and suggests that the underlying
Behavior-Net captures intrinsic properties of people.

B. Appearance

Rapid advances in deep learning and access to large datasets
have led to a revolution in face recognition. We leverage
one such fairly straight-forward approach, VGG [25], a 16-
layer CNN trained to perform face recognition on a dataset
consisting of 2622 identities. VGG yields a distinct 4096-D
face descriptor per face, per video frame. These descriptors
are averaged over the 100 frames of the 4-second video clip
to yield a single facial descriptor, Fig. 1.

Faces for this facial biometric and the behavioral biometric
are extracted using OpenFace [26]. Once localized and ex-
tracted from a video frame, each face is aligned and re-scaled
to a size of 256× 256 pixels.

C. Authentication

Given authentic, 4-second video clips for all unique identi-
ties, two reference sets are created with the VGG facial and
Behavior-Net features. Define Fi to be the 4096 × mi real-
valued matrix consisting of the VGG features for mi video

source fake (face-swap) target

Fig. 2. Shown is an example frame of a face-swap deep fake (middle) from
the DFDC-P dataset, in which the source identity (left) should be mapped
onto the target (right), which is clearly not the case in this example.

clips of identity i. Similarly, define Bi to be the 512 × mi

real-valued matrix consisting of the Behavior-Net features for
the same mi video clips, also of identity i. Each column of
the matrices Fi and Bi contains the VGG and Behavior-Net
features for a single video clip.

Given these reference sets, an unseen 4-second video clip is
authenticated as follows. First, extract the facial and Behavior-
Net features, ~f ∈ R4096 and~b ∈ R512. Next, find the identities,
if and ib in the reference sets with the most similar features
using a cosine-similarity metric: if = argmaxi{max(~f t ·
Fi)} and ib = argmaxi{max(~bt ·Bi)}.

With these matched identities, a video clip is classified as
real or fake following two simple rules (see also Fig. 1):

1) A video clip is classified as real if the facial and
Behavior-Net identities are the same, if = ib, and
if the facial similarity is above a specified threshold,
cf >= τf , where cf = max(~f t ·Fif ) (i.e., a close facial
match is found).

2) A video clip is classified as fake if either:
a) the matched identities are different, if 6= ib, or
b) the facial similarity is below threshold, cf < τf .

The rationale for the asymmetric treatment of the facial and
Behavior-Net similarities is that in a face-swap deep fake,
the facial identity of a person is modified but typically not
the behavior. As a result, it is possible for a person’s facial
identity to be significantly different in a test video than in their
reference videos, in which case, we should not be confident
of the facial identity match.

III. RESULTS

We begin by describing the five datasets used for valida-
tion and analysis. We then describe the overall accuracy of
detection followed by an analysis of robustness and relative
importance of the appearance and behavioral features.

A. Datasets

The world leaders dataset (WLDR) [18] consists of sev-
eral hours of real videos of five U.S. political figures, their
political impersonators, and face-swap deep fakes between
each political figure and their corresponding impersonator. We
augmented this dataset with five new U.S. political figures.

The FaceForensics++ dataset (FF) [27] consists of 1000
YouTube videos of 1000 different people, mostly news anchors



and video bloggers. Each video was used to create four types
of deep fakes: DeepFake, FaceSwap, Face2Face, and Neural
Textures. We only use the first two categories of fakes as only
these are face-swap deep fakes. After removing videos with
multiple people or with identities overlapping to other datasets,
we were left with 990 real videos and the corresponding 1980
deep fake videos.

The DeepFake Detection dataset (DFD) [28] by
Google/Jigsaw consists of 363 real and 3068 face-swap
deep fakes of 28 paid and consenting actors. Each individual
was made to perform tasks like walking, hugging, talking,
etc. in different expressions ranging from happy, to angry,
neutral, or disgust. For our analysis, we selected only those
videos where the individual was talking, resulting in 185 real
and 1577 deep fake videos.

The Deep Fake Detection Challenge Preview dataset
(DFDC-P) [29] consists of 1131 real and 4113 face-swap deep
fakes videos of 66 individuals of various genders, ages and
ethnicities.

The Celeb-DF (Ver. 2) dataset (CDF) [30] is currently the
largest publicly available deep-fake dataset. It is reported as
containing 5639 face-swap deep fakes generated from 590
YouTube videos of 61 celebrities speaking in different settings
ranging from interviews, to TV-shows, and award functions
(we, however, only identified 59 unique identities in the
downloaded dataset).

For each identity in the WLDR, DFD, and DFDC-P datsets,
a random 80% of the real videos are used for the reference
set and the remaining 20% are used for testing. In these three
datasets there were sufficient videos of each individual in
similar contexts. In contrast, the FF and CDF datasets had
either only a small number of videos per individual or the
context for each individual varied drastically. For these two
datasets, therefore, we take a different approach to creating the
reference/testing sets. In particular, each real video is divided
in half, the first half of which is used for reference, and the
second half used for testing. Similarly, we split each fake video
in half, discard the first half and subject the second half to
testing. The first half is discarded because the real counterpart
of this video is used for reference, thus avoiding any overlap
in utterances between the reference and testing. We recognize
that this split is not ideal as video halves are not independent,
but as we will see below, there is little difference in the results
between the 80/20 splits and these 50/50 splits.

Each reference and testing video is re-saved at a frame-rate
of 25fps (and a ffmpeg quality of 20). This consistent frame-
rate allows us to partition each video into overlapping 4-second
clips, each of 100 frames, with a 5-frame sliding window.

B. Identification

Shown in Table I is the measure of efficacy for our algorithm
for each of five datasets, along with the average across all
datasets. The performance is reported as the area under the
curve (AUC) of the receiver operating characteristic curve
(top) and the detection accuracies of real and fake videos
(bottom) for a fixed threshold of τf = 0.86.

TABLE II
COMPARISON OF OUR APPROACH WITH PREVIOUS WORK OVER MULTIPLE
BENCHMARKS [30]. THE REPORTED VALUES CORRESPOND TO THE AUC.

ALTHOUGH NOT A PERFECT COMPARISON DUE TO SIGNIFICANTLY
DIFFERENT UNDERLYING METHODOLOGIES, OUR APPROACH DOES

PERFORM WELL. THE FF DATASET IN THIS COMPARISON CONSISTS OF
THE FACESWAP AND DEEPFAKE CATEGORIES.

WLDR FF DFD DFDC-P CDF
Protecting World Leaders [18] 0.93 – – – –
2-stream [7] – 0.70 0.52 0.61 0.53
XceptionNet-c23 [30] – 0.99 0.85 0.72 0.65
Head Pose [16] – 0.47 0.56 0.55 0.54
MesoNet [31] – 0.84 0.76 0.75 0.54
Face Warping [11] – 0.80 0.74 0.72 0.56
Ours: Appearance and Behavior 0.99 0.99 0.95 0.93 0.99

Note that the accuracy for the DFDC-P is unusually low.
This is because many of the fake videos in this dataset failed
to convincingly map the facial appearance of the desired
source identity into the target video. Shown in Fig. 2 is a
representative example of this problem. Shown is one frame
from the source video, one frame from the target video,
and the corresponding frame from the face-swap deep fake
video in which the source identity should be mapped into
the target video. In this example drawn from the DFDC-P
dataset, we can clearly see that the source identity was not
mapped into the target video, but rather continues to look like
the target. This difference accounts for the low accuracy on
the DFDC-P dataset as both behavior and appearance of the
fakes correspond to the target identity and are thus classified as
real by our algorithm. Although this effect is most pronounced
in the DFDC-P dataset, the DFD dataset also suffers from a
similar problem, failing to convincingly map the source to the
target identity.

We next evaluate our detection algorithm against three
in-the-wild, face-swap deep fake videos downloaded from
YouTube. These three deep fakes were created using the
following source and target combinations: 1) Steve Buscemi
mapped onto Jennifer Lawrence 1; 2) Tom Cruise mapped
onto Bill Hader 2; and 3) Billie Eilish mapped onto Angela
Martin 3. Because, only Jennifer Lawerence was already in
our reference set (CDF), real videos for the other five identities
were downloaded from YouTube to augment our reference set.
This included three minutes of videos of Angela Martin from
The Office and 20 minutes of interview videos for each of
Billie Eilish, Steve Buscemi, Bill Hader, and Tom Cruise. The
accuracy rate for each of these face-swap deep fakes is 100%.

Lastly, shown in Table II is a comparison of our detection
accuracy, measured using area under the curve (AUC), to six
previous deep-fake detection schemes. Our scheme outper-
forms or is equal to previous approaches across all datasets.
Note, however, that this is not a perfect comparison because
our approach has access to a reference set of only real videos to

1https://www.youtube.com/watch?v=r1jng79a5xc
2https://www.youtube.com/watch?v=VWrhRBb-1Ig
3https://www.instagram.com/p/B6lXvJlIU92/

https://www.youtube.com/watch?v=r1jng79a5xc
https://www.youtube.com/watch?v=VWrhRBb-1Ig
https://www.instagram.com/p/B6lXvJlIU92/


(a) (b) (c)

Fig. 3. Shown in panels (a) and (b) are the distributions of spatiotemporal behavior similarity, measured as the cosine similarity between Behavior-Net feature
vectors. Shown in panel (c) is the distribution of spatial FAb-net similarity. See Section III-C for a detailed explanation of each panel.

compare against, as compared to these other fully-supervised
approaches with access to real and fake reference videos.

C. Analysis

Our Behavior-Net feature was designed to capture spa-
tiotemporal behavior, while the VGG feature captures facial
identity. Here we analyze our results in more detail to ensure
that these two features are not entangled and that the Behavior-
Net does in fact capture temporal properties not captured by
the static FAb-Net features.

In the first analysis, we show that Behavior-Net does in fact
capture behavior and not just a person’s facial identity. Shown
in Fig. 3(a) are the distributions of Behavior-Net similarities
between source (blue)/target (orange) identities relative to their
face-swap deep fakes (recall that a face-swap deep fake is
created by mapping an identity in a source video to a target
video). The similarity of the target behavior relative to the
face-swap deep fakes is much higher than the source, meaning
that even though the facial identity in the deep fake matches
the source, the behavioral identity still matches the target. This
indicates that the Behavior-Net is capturing more information
than just facial identity.

In the second analysis, we show that Behavior-Net cap-
tures identity-specific behaviors and not just identity-agnostic
expressions or behaviors. This analysis is based on the real
videos in the DFD dataset, where each of the 28 actors were
recorded talking in different contexts ranging from a casual
conversation sitting on a couch to a speech at a podium. Each
of these contexts captured a specific facial expression ranging
from neutral, to angry, happy, and laughing. And, each of these
contexts were recorded twice, once with a still camera and
once with moving camera. Shown in Fig. 3(b) are the distribu-
tions of Behavior-Net similarities between the same person in
the same context (blue), the same person in different contexts
(orange), and different people in the same context (green).
When different people are recorded in the same context, we
see that their Behavior-Net features are not similar, indicating
that Behavior-Net captures identity-specific behaviors and not
just specific contexts. At the same time, however, we see,

that context can change an individual behavior (the orange
vs. blue distributions). For example, a person is likely to
have a different behavior when they are speaking casually
to their friends as opposed to giving a formal speech to a
large crowd. Nevertheless, our Behavior-Net captures identity-
specific behaviors, albeit somewhat context dependent. Shown
in Fig. 3(c) are the same distributions as in panel (b) but for
only the static FAb-Net features. The distributions for the same
person in the same context (blue), the same person in different
contexts (orange), and different people in the same context
(green) are all nearly identical, revealing that the static FAb-
Net features does not capture identity-specific information.

In the third analysis, we analyse the amount of data required
to build a reference set for an individual. For this analysis,
the same reference set as before was used for the identities
in FF, DFD, DFDC-P, and CDF. For the identities in the
WLDR dataset (the only one with hours of video per person),
the reference sets consists of between 1 and 2000 randomly
selected 4-second clips. With 2, 30, 50, 100, 1000, and 2000
video clips, the average detection accuracy for identities in
the WLDR dataset are 65.4%, 92.2%, 93.2%, 94.0%, 97.3%,
and 97.7%, respectively. This rapid increase in accuracy and
leveling off shows that large reference sets are not needed,
assuming, again, that the context in which the individual is
depicted is similar.

In this fourth, and final, analysis, we analyse the robust-
ness of classification against a simple compression laundering
operation. The video clips in our reference and testing sets,
Section III-B, are each encoded at a relatively high ffmpeg
quality of qp=20 (the lower this value, the higher the quality).
Each testing video clip was recompressed at a lower quality
of qp= 40 and classified against the original reference set. For
the same threshold (τf = 0.86), the average detection accuracy
remains high at 94.5% (WLDR), 98.1% (FF), 93.2% (DFD),
80.9% (DFDC-P), and 93.3% (CDF). These results are almost
identical to the high-quality videos in Table I.



IV. DISCUSSION

We have developed a novel technique for detecting face-
swap deep fakes. This technique leverages a fundamental flaw
in these deep fakes in that the person depicted in the video
is simply not the person that it purports to be. We have
shown that a combination of a facial and behavioral biometric
is highly effective at detecting these face-swap deep fakes.
Unlike many other techniques, this approach is less vulnerable
to counter attack and generalizes well to previously unseen
deep fakes with previously unseen people.

Our forensic technique should generalize to so-called
puppet-master deep fakes in which one person’s facial expres-
sions and head movements are mapped onto another person.
These deep fakes suffer from the same basic problem as face-
swap deep fakes in that the underlying behavior of the person
is not that who it purports to be. As such, our combined facial
and behavioral biometric should be able to detect these deep
fakes.

We will, however, likely struggle to classify so-called lip-
sync deep fakes in which only the mouth has been modified
to be consistent with a new audio track. The facial identity
and the vast majority of the behavior in these deep fakes
will be consistent with the person depicted. To overcome this
limitation, we seek to customize our behavioral model to learn
explicit inconsistencies between the mouth and the rest of the
face and/or underlying audio signal.

ACKNOWLEDGMENT

The PI’s research group (Farid) is partially supported with
funding from the Defense Advanced Research Projects Agency
(DARPA FA8750-16-C-0166). The views, opinions, and find-
ings expressed are those of the authors and should not be
interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. The PI’s
research group is also partially supported by Facebook. There
is no collaboration between Facebook and DARPA. We thank
Yipin Zhou for her help in data collection.

REFERENCES

[1] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” 2016. 1

[2] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4401–4410. 1

[3] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” 2019. 1

[4] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-
Garcia, “Deepfakes and beyond: A survey of face manipulation and fake
detection,” 2020. 1

[5] B. Chesney and D. Citron, “Deep fakes: A looming challenge for privacy,
democracy, and national security,” California Law Review, vol. 107, p.
1753, 2019. 1

[6] H. Farid, Photo Forensics. MIT Press, 2016. 1
[7] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis, “Two-stream neural

networks for tampered face detection,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017. 1, 4

[8] N. Yu, L. Davis, and M. Fritz, “Attributing Fake Images to GANs:
Learning and Analyzing GAN Fingerprints,” in IEEE International
Conference on Computer Vision, 2018. 1

[9] X. Zhang, S. Karaman, and S.-F. Chang, “Detecting and simulating
artifacts in GAN fake images,” arxiv: 1907.06515, 2019. 1

[10] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “CNN-
generated images are surprisingly easy to spot...for now,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2020. 1

[11] Y. Li and S. Lyu, “Exposing deepfake videos by detecting face warping
artifacts,” arXiv: 1811.00656, 2018. 1, 4

[12] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo,
“Face X-ray for more general face forgery detection,” arXiv preprint
arXiv:1912.13458, 2019. 1

[13] M. Huh, A. Liu, A. Owens, and A. A. Efros, “Fighting fake news: Image
splice detection via learned self-consistency,” in European Conference
on Computer Vision, 2018. 1

[14] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” arXiv: 1608.04644, 2016. 1

[15] Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing AI created
fake videos by detecting eye blinking,” in IEEE International Workshop
on Information Forensics and Security, 2018, pp. 1–7. 1

[16] X. Yang, Y. Li, and S. Lyu, “Exposing deep fakes using inconsistent
head poses,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2019, pp. 8261–8265. 1, 4

[17] U. A. Ciftci and I. Demir, “Fakecatcher: Detection of synthetic portrait
videos using biological signals,” arXiv: 1901.02212, 2019. 1

[18] S. Agarwal, H. Farid, Y. Gu, M. He, K. Nagano, and H. Li, “Protecting
world leaders against deep fakes,” in IEEE Conference on Computer
Vision and Pattern Recognition, Workshop on Media Forensics, 2019,
pp. 38–45. 1, 3, 4

[19] P. Ekman and W. V. Friesen, “Measuring facial movement,” Environ-
mental Psychology and Nonverbal Behavior, vol. 1, no. 1, pp. 56–75,
1976. 1

[20] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471. 1

[21] O. Wiles, A. S. Koepke, and A. Zisserman, “Self-supervised learning of
a facial attribute embedding from video,” arXiv: 1808.06882, 2018. 2

[22] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
2, 3

[23] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep speaker
recognition,” arXiv: 1806.05622, 2018. 3

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778. 3

[25] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015. 3
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