
Digital Image Forensics

farid@cs.dartmouth.edu

www.cs.dartmouth.edu/farid

0. History of Photo Tampering
0.1: History . 4
0.2: Readings .10

1. Format-Based Forensics
1.1: Fourier † . 11
1.2: JPEG † . 15
1.3: JPEG Header . 17
1.4: Double JPEG . 20
1.5: JPEG Ghost . 24
1.6: Problem Set . 27
1.7: Solutions . 28
1.8: Readings .30

2. Camera-Based Forensics
2.1: Least-Squares † . 31
2.2: Expectation Maximization † . 34
2.3: Color Filter Array . 37
2.4: Chromatic Aberration . 43
2.5: Sensor Noise . 47
2.6: Problem Set . 48
2.7: Solutions . 49
2.8: Readings .51

3. Pixel-Based Forensics
3.1: Resampling . 52
3.2: Cloning . 58
3.3: Thumbnails . 60
3.4: Problem Set . 65
3.5: Solutions . 66
3.6: Readings .67

4. Statistical-Based Forensics
4.1: Principal Component Analysis † . 68
4.2: Linear Discriminant Analysis † . 70
4.3: Computer Generated or Photographic? . 72
4.4: Computer Generated or Photographic: Perception76
4.5: Problem Set . 80
4.6: Solutions . 81
4.7: Readings .82

5. Geometric-Based Forensics
5.1: Camera Model † . 83
5.2: Calibration † .85
5.3: Lens Distortion † . 88
5.4: Rectification . 89
5.5: Composite . 91
5.6: Reflection . 92
5.7: Shadow . 94
5.8: Reflection Perception . 95
5.9: Shadow Perception .96
5.10: Problem Set . 97
5.11: Solutions . 98
5.12: Readings . 100

2

6. Physics-Based Forensics
6.1: 2-D Lighting . 101
6.2: 2-D Light Environment . 104
6.3: 3-D Lighting . 109
6.4: Lee Harvey Oswald (case study) . 111
6.5: Problem Set . 114
6.6: Solutions . 115
6.7: Readings . 116

7. Video Forensics
7.1: Motion † . 117
7.2: Re-Projected . 120
7.3: Projectile . 125
7.4: Enhancement . 131
7.5: Problem Set . 133
7.6: Solutions . 134
7.7: Readings . 135

8. Printer Forensics
8.1: Clustering † . 136
8.2: Banding . 138
8.3: Profiling . 138
8.4: Problem Set . 141
8.5: Solutions . 142
8.6: Readings . 143

9. MatLab Code
9.1 JPEG Ghost .144
9.2 Color Filter Array (1-D) . 147
9.3 Chromatic Aberration . 149
9.4 Sensor Noise . 151
9.5 Linear Discriminant Analysis . 155
9.6 Lens Distortion . 157
9.7 Rectification . 159
9.8 Enhancement . 162
9.9 Clustering . 166

10. Bibliography .167

Sections denoted with† cover basic background material.

0. History of Photo Tampering

0.1 History

0.2 Readings 0.1 History

Photography lost its innocence many years ago. Only a few decades
after Niepce created the first photograph in 1814, photographs
were already being manipulated. With the advent of high-resolution
digital cameras, powerful personal computers and sophisticated
photo-editing software, the manipulation of photos is becoming
more common. Here we briefly provide examples of photo tam-
pering throughout history, starting in the mid 1800s. In each case,
the original photo is shown on the right and the altered photo is
shown on the left.

circa 1864: This print purports to be of General Ulysses S. Grant
in front of his troops at City Point, Virginia, during the American
Civil War. Some very nice detective work by researchers at the
Library of Congress revealed that this print is a composite of three
separate prints: (1) the head in this photo is taken from a por-
trait of Grant; (2) the horse and body are those of Major General
Alexander M. McCook; and (3) the backgoround is of Confederate
prisoners captured at the battle of Fisher’s Hill, VA.

circa 1865: In this photo by famed photographer Mathew Brady,
General Sherman is seen posing with his Generals. General Francis

4

P. Blair, shown in the far right, was inserted into this photograph.

circa 1930: Stalin routinely air-brushed his enemies out of pho-
tographs. In this photograph a commissar was removed from the
original photograph after falling out of favor with Stalin.

1936: In this doctored photograph, Mao Tse-tung, shown on the
far right, had Po Ku removed from the original photograph, after
Po Ku fell out of favor with Mao.

1937: In this doctored photograph, Adolf Hitler had Joseph Goebbels
removed from the original photograph. It remains unclear why ex-
actly Goebbels fell out of favor with Hitler.

5

1939: In this doctored photo of Queen Elizabeth and Canadian
Prime Minister William Lyon Mackenzie King in Banff, Alberta,
King George VI was removed from the original photograph. This
photo was used on an election poster for the Prime Minister. It
is hypothesized that the Prime Minister had the photo altered
because a photo of just him and the Queen painted him in a more
powerful light.

1942: In order to create a more heroic portrait of himself, Benito
Mussolini had the horse handler removed from the original photo-
graph.

6

1950: It is believed that this doctored photograph contributed
to Senator Millard Tydings’ electoral defeat in 1950. The photo
of Tydings, shown on the right, conversing with Earl Browder, a
leader of the American Communist party, was meant to suggest
that Tydings had communist sympathies.

1960: In 1960 the U.S. Olympic hockey team defeated the Soviet
Union and Czechoslovakia to win its first Olympic gold medal in
hockey. The official team photo was doctored to include the faces
of Bill Cleary (front row, third from the left), Bob Cleary (middle
row, far left) and John Mayasich (top row, far left), who were not
present for the team photo. These players were superimposed onto
the bodies of players Bob Dupuis, Larry Alm and Herb Brooks,
respectively.

7

1961: On April 12, 1961 a Russian team of cosmonauts led by
Yuri Gagarin were the first humans to complete an orbit of earth.
One of the cosmonauts, Grigoriy Nelyubov, was removed from this
photo of the team taken after their journey. Nelyubov had been
expelled from the program for misbehavior.

1968: When in the summer of 1968 Fidel Castro (right) approves
of the Soviet intervention in Czechoslovakia, Carlos Franqui (mid-
dle) cuts off relations with the regime and goes into exile in Italy.
His image was removed from photographs. Franqui wrote about
his feeling of being erased: ”I discover my photographic death. Do
I exist? I am a little black, I am a little white, I am a little shit,
On Fidel’s vest.”

May 1970: This Pulitzer Prize winning photo by John Filo
shows Mary Ann Vecchio screaming as she kneels over the body
of student Jeffrey Miller at Kent State University, where National
Guardsmen had fired into a crowd of demonstrators, killing four
and wounding nine. When this photo was published in LIFE Mag-
azine, the fence post directly behind Vecchio was removed.

8

September 1971: The German Chancellor of West Germany,
Willy Brandt (far left), meets with Leonid Brezhnev (far right),
First Secretary of the Communist Party. The two smoke and
drink, and it is reported that the atmosphere is cordial and that
they are drunk. The German press publishes a photograph that
shows the beer bottles on the table. The Soviet press, however,
removed the bottles from the original photograph.

September 1976: The so called ”Gang of Four” were removed
from this original photograph of a memorial ceremony for Mao
Tse-Tung held at Tiananmen Square.

9

0.2 Readings

1. D.A. Brugion. Photo Fakery: The History and Techniques
of Photographic Deception and Manipulation. Brassey’s Inc.,
1999.

10

1. Format-Based Forensics

1.1 Fourier †

1.2 JPEG †

1.3 JPEG Header

1.4 Double JPEG

1.5 JPEG Ghost

1.6 Problem Set

1.7 Solutions

1.8 Readings

1.1 Fourier †

Figure 1.1 Sample 1-D

Fourier basis signals.

Consider a 1-D discretely sampled signal of length N :

f(x) = (1 2 4 5 3 0 . . . 7) . (1.1)

Although not made explicit, such a signal is represented with re-
spect to a basis consisting of the canonical vectors in RN . That
is, the signal is represented as a weighted sum of the basis vectors:

f(x) = 1 (1 0 0 0 0 0 . . . 0)

+ 2 (0 1 0 0 0 0 . . . 0)

+ 4 (0 0 1 0 0 0 . . . 0)

+ . . .

+ 7 (0 0 0 0 0 0 . . . 1) . (1.2)

More compactly:

f(x) =
N−1
∑

k=0

akbk(x), (1.3)

where bk(x) are the canonical basis vectors, and:

ak =
N−1
∑

l=0

f(l)bk(l). (1.4)

In the language of linear algebra, the weights ak are simply an
inner product between the signal f(x) and the corresponding basis
vector bk(x).

A signal (or image) can, of course, be represented with respect to
any of a number of different basis vectors. A particularly conve-
nient and powerful choice is the Fourier basis. The Fourier basis
consists of sinusoids of varying frequency and phase, Figure 1.1.
Specifically, we seek to express a periodic signal as a weighted sum
of the sinusoids:

f(x) =
1

N

N−1
∑

k=0

ck cos

(

2πk

N
x + φk

)

, (1.5)

where the frequency of the sinusoid is ωk = 2πk/N , the phase is
φk, and the weighting (or amplitude) of the sinusoid is ck. The

11

sinusoids form a basis for the set of periodic signals. That is,
any periodic signal can be written as a linear combination of the
sinusoids. This expression is referred to as the Fourier series.

Note, however, that this basis is not fixed because the phase term,
φk, is not fixed, but depends on the underlying signal f(x). It
is, however, possible to rewrite the Fourier series with respect
to a fixed basis of zero-phase sinusoids. With the trigonometric
identity:

cos(A + B) = cos(A) cos(B) − sin(A) sin(B), (1.6)

the Fourier series of Equation (1.5) may be rewritten as:

f(x) =
1

N

N−1
∑

k=0

ck cos(ωkx + φk)

=
1

N

N−1
∑

k=0

ck cos(φk) cos(ωkx) + ck sin(φk) sin(ωkx)

=
1

N

N−1
∑

k=0

ak cos(ωkx) + bk sin(ωkx). (1.7)

The basis of cosine and sine of varying frequency is now fixed.
Notice the similarity to the basis representation in Equation(1.3):
the signal is being represented as a weighted sum of a basis.

The Fourier series tells us that a signal can be represented in terms
of the sinusoids. The Fourier transform tells us how to determine
the relative weights ak and bk:

ak =
N−1
∑

l=0

f(l) cos(ωkl) and bk =
N−1
∑

l=0

f(l) sin(ωkl). (1.8)

As in Equation (1.4), these Fourier coefficients are determined
from an inner product between the signal and corresponding basis.

A more compact notation is often used to represent the Fourier se-
ries and Fourier transform which exploits the complex exponential
and its relationship to the sinusoids:

eiωx = cos(ωx) + i sin(ωx), (1.9)

where i is the complex value
√
−1. With this complex exponential

notation, the Fourier series and transform take the form:

f(x) =
1

N

N−1
∑

k=0

cke
iωkx and ck =

N−1
∑

l=0

f(l)e−iωkl, (1.10)

12

where ck = ak − ibk. This notation simply bundles the sine and
cosine terms into a single expression.

Example 1.1 Show that if a signal f(x) is zero-mean, then the Fourier coeffi-

cient c0 = 0.

The Fourier coefficients ck are complex valued. These complex val-
ued coefficients can be analyzed in terms of their real and imag-
inary components, corresponding to the cosine and sine terms.
This can be helpful when exploring the symmetry of the under-
lying signal f(x), as the cosine terms are symmetric about the
origin and the sine terms are asymmetric about the origin. These
complex valued coefficients can also be analyzed in terms of their
magnitude and phase. Considering the complex value as a vector
in the real-complex space, the magnitude and phase are defined
as:

|ck| =
√

a2
k + b2

k and 6 ck = tan−1(bk/ak). (1.11)

The magnitude describes the overall contribution of a frequency in
constructing a signal, and the phase describes the relative position
of each frequency.

Example 1.2 If c = a + ib is a complex value, show that the following is true:

a = |c| cos(6 c) and b = |c| sin(6 c),

where |c| is the magnitude and 6 c is the phase.

In two dimensions, an N ×N image can be expressed with respect
to two-dimensional sinusoids:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

ckl cos(ωkx + ωly + φkl), (1.12)

with:

ckl =
N−1
∑

m=0

N−1
∑

n=0

f(m,n) cos(ωkm + ωln + φkl), (1.13)

Shown in Figure 1.2 are examples of the 2-D Fourier basis. From
left to right are basis with increasing frequency, and from top to

13

bottom are basis with varying orientation (i.e., relative contribu-
tions of horizontal ωk and vertical ωl frequencies).

As with the 1-D Fourier basis, the 2-D Fourier basis can be ex-
pressed with respect to a fixed basis as:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

akl cos(ωkx + ωly) + bkl sin(ωkx + ωly), (1.14)

where,

akl =
N−1
∑

m=0

N−1
∑

n=0

f(m,n) cos(ωkm + ωln) (1.15)

bkl =
N−1
∑

m=0

N−1
∑

n=0

f(m,n) sin(ωkm + ωln). (1.16)

Figure 1.2 Sample 2-D

Fourier basis images.

As with the 1-D Fourier basis and transform, the sine and cosine
terms can be bundled using the complex exponential:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

ckle
i(ωkx+ωly) (1.17)

ckl =
N−1
∑

m=0

N−1
∑

n=0

f(m,n)e−i(ωkm+ωln), (1.18)

where ckl = akl − bkl. The Fourier transform ckl is often denoted
as F (ωk, ωl).

Because the Fourier basis are periodic, the Fourier representation
is particularly useful in discovering periodic patterns in a signal
that might not otherwise be obvious when the signal is represented
with respect to a canonical basis.

14

1.2 JPEG †

The JPEG file format has emerged as a near universal image stan-
dard employed by nearly all commercial digital cameras. Given a
three channel color image (RGB), compression proceeds as follows.
An image is first transformed from RGB into luminance/chrominance
space (YCbCr). The two chrominance channels (CbCr) are typ-
ically subsampled by a factor of two relative to the luminance
channel (Y). Each channel is then partitioned into 8 × 8 pixel
blocks. These values are converted from unsigned to signed inte-
gers (e.g., from [0, 255] to [−128, 127]). Each block, fc(·), is con-
verted to frequency space, Fc(·), using a two-dimensional discrete
cosine transform (DCT):

Fc(ωk, ωl) =
7
∑

m=0

7
∑

n=0

fc(m,n) cos(ωkm) cos(ωln), (1.19)

where ωk = 2πk/8, ωl = 2πl/8, fc(·) is the underlying pixel values,
and c denotes a specific image channel. Note that this representa-
tion is simply the Fourier series where only the symmetric cosine
basis functions are employed.

Example 1.3 The Fourier transform assumes that the underlying signal or

image is periodic. What additional assumption does the DCT make? Show

how this assumption leads to a basis of only cosine terms in Equation (1.19).

Depending on the specific frequency ωk, ωl and channel c, each
DCT coefficient, Fc(·), is quantized by an amount qc(·):

F̂c(ωk, ωl) = round

(

Fc(ωk, ωl)

qc(ωk, ωl)

)

. (1.20)

This stage is the primary source of data reduction and information
loss.

With some variations, the above sequence of steps is employed by
all JPEG encoders. The primary source of variation in JPEG en-
coders is the choice of quantization values qc(·), Equation (1.20).
The quantization is specified as a set of three 8 × 8 tables asso-
ciated with each frequency and image channel (YCbCr). For low
compression rates, the values in these tables tend towards 1, and
increase for higher compression rates. The quantization for the
luminance channel is typically less than for the two chrominance

15

channels, and the quantization for the lower frequency components
is typically less than for the higher frequencies.

After quantization, the DCT coefficients are subjected to entropy
encoding (typically Huffman coding). Huffman coding is a variable-
length encoding scheme that encodes frequently occurring values
with shorter codes, and less frequently occurring values with longer
codes. This lossless compression scheme exploits the fact that
the quantization of DCT coefficients yields many zero coefficients,
which can in turn be efficiently encoded. Motivated by the fact
that the statistics of the DC and AC DCT coefficients are different
the JPEG standard allows for different Huffman codes for the DC
and AC coefficients (the DC coefficient refers to ωk = ωl = 0, and
the AC coefficients refer to all other frequencies). This entropy
encoding is applied separately to each YCbCr channel, employing
separate codes for each channel.

16

1.3 JPEG Header

The JPEG standard does not enforce any specific quantization
table or Huffman code. Camera and software engineers are there-
fore free to balance compression and quality to their own needs
and tastes. The specific quantization tables and Huffman codes
needed to decode a JPEG file are embedded into the JPEG header.
The JPEG quantization table and Huffman codes along with other
data extracted from the JPEG header have been found to form a
distinct camera signature which can be used for authentication.

The first three components of the camera signature are the image
dimensions, quantization table, and Huffman code. The image di-
mensions are used to distinguish between cameras with different
sensor resolution. The set of three 8 × 8 quantization tables are
specified as a one dimensional array of 192 values. The Huffman
code is specified as six sets of 15 values corresponding to the num-
ber of codes of length 1, 2 . . . 15: each of three channels requires
two codes, one for the DC coefficients and one for the AC coef-
ficients. This representation eschews the actual code for a more
compact representation that distinguishes codes based on the dis-
tribution of code lengths. In total, 284 values are extracted from
the full resolution image: 2 image dimensions, 192 quantization
values, and 90 Huffman codes.

A thumbnail version of the full resolution image is often embedded
in the JPEG header. The next three components of the camera
signature are extracted from this thumbnail image. A thumbnail
is typically no larger in size than a few hundred square pixels,
and is created by cropping, filtering and down-sampling the full-
resolution image. The thumbnail is then typically compressed and
stored in the header as a JPEG image. As such, the same com-
ponents can be extracted from the thumbnail as from the full
resolution image described in the previous section. Some camera
manufacturers do not create a thumbnail image, or do not encode
them as a JPEG image. In such cases, a value of zero can be
assigned to all of the thumbnail parameters. Rather than being a
limitation, the lack of a thumbnail is considered as a characteris-
tic property of a camera. In total, 284 values are extracted from
the thumbnail image: 2 thumbnail dimensions, 192 quantization
values, and 90 Huffman codes.

The final component of the camera signature is extracted from
an image’s EXIF metadata. The metadata, found in the JPEG
header, stores a variety of information about the camera and im-

17

age. According to the EXIF standard, there are five main image
file directories (IFDs) into which the metadata is organized: (1)
Primary; (2) Exif; (3) Interoperability; (4) Thumbnail; and (5)
GPS. Camera manufacturers are free to embed any (or no) infor-
mation into each IFD. A compact representation of their choice
can be extracted by counting the number of entries in each of these
five IFDs. Because the EXIF standard allows for the creation of
additional IFDs, the total number of any additional IFDs, and
the total number of entries in each of these are also used as an
additional feature. Some camera manufacturers customize their
metadata in ways that do not conform to the EXIF standard,
yielding errors when parsing the metadata. These errors are con-
sidered to be a feature of camera design and the total number of
parser errors are used as an additional feature. In total, 8 values
are extracted from the metadata: 5 entry counts from the stan-
dard IFDs, 1 for the number of additional IFDs, 1 for the number
of entries in these additional IFDs, and 1 for the number of parser
errors.

In summary, 284 header values are extracted from the full resolu-
tion image, a similar 284 header values from the thumbnail image,
and another 8 from the EXIF metadata, for a total of 576 val-
ues. These 576 values form the signature by which images can
be authenticated. To the extent that photo-editing software will
employ JPEG parameters that are distinct from the camera’s, any
manipulation will alter the original signature, and can therefore
be detected.

Specifically, photo alteration is detected by extracting the signa-
ture from an image and comparing it to a database of known au-
thentic camera signatures. Any matching camera make and model
can then be compared to the make and model specified in the im-
age’s EXIF metadata. Any mismatch is strong evidence of some
form of tampering.

In [3] the camera make, model, and signature were extracted from
1.3 million images. These images span 9, 163 different distinct
pairings of camera make, model, and signature and represent 33
different camera manufacturers and 773 different camera and cell-
phone models. A pairing of camera make, model, and signature is
referred to as a camera configuration. To begin, all cameras with
the same signature are placed into an equivalence class. An equiv-
alence of size n means that n cameras of different make and model
share the same signature. An equivalence class of size greater
than 1 means that there is an ambiguity in identifying the camera
make and model. We would, of course, like to maximize the num-

18

ber of camera configurations in an equivalence class of size 1 and
minimize the largest equivalence class size.

It was found that 69.1% of the camera configurations are in an
equivalence class of size one. 12.8% are in an equivalence class of
size two, 5.7% are in an equivalence class of size three, 87.6% are
in an equivalence class of size three or less, and the largest equiv-
alence class is of size 14, with 0.2% of the camera configurations.

Because the distribution of cameras is not uniform, it is also useful
to consider the likelihood of an image, as opposed to camera con-
figuration, being in an equivalence class of size n. 62.4% of images
are in an equivalence class of size one (i.e., are unique), 10.5% of
images are in an equivalence class of size two, 7.5% of images are
in an equivalence class of size three, and 80.4% of images are in
an equivalence class of size three or less.

Shown in the table below are the percentage of camera configura-
tions with an equivalence class size of 1 . . . 5, and the median and
maximum equivalence class size. Each row corresponds to differ-
ent subsets of the complete signature. Individually, the image,
thumbnail and EXIF parameters are not particularly distinct, but
when combined, they provide a highly distinct signature. This
suggests that the choice of parameters are not highly correlated,
and hence their combination improves overall distinctiveness.

Equivalence Class Size

1 2 3 4 5 median max

image 12.9% 7.9% 6.2% 6.6% 3.4% 11 185

thumb 1.1% 1.1% 1.0% 1.1% 0.7% 694 960

EXIF 8.8% 5.4% 4.2% 3.2% 2.6% 25 188

image+thumb 24.9% 15.3% 11.3% 7.9% 3.7% 3 91

all 69.1% 12.8% 5.7% 4.0% 2.9% 1 14

The signature from Adobe Photoshop (versions 3, 4, 7, CS, CS2,
CS3, CS4, CS5 at all qualities) were compared to the 9, 163 camera
signatures. In this case, only the image and thumbnail quantiza-
tion tables and Huffman codes were used for comparison. No over-
lap was found between any Photoshop version/quality and camera
manufacturer. As such, the Photoshop signatures, each residing
in an equivalence class of size 1, are unique. This means that any
photo-editing with Photoshop can be easily and unambiguously
detected.

19

1.4 Double JPEG

Recall that the encoding of a JPEG image involves three basic
steps: DCT, quantization, and entropy encoding. The decoding
of a compressed data stream involves the inverse of these steps,
taken in reverse order: entropy decoding, de-quantization, and
inverse DCT.

Consider the example of a generic discrete 1-D signal f(x). Quan-
tization is a point-wise operation1 that is described by a one-
parameter family of functions:

qa(u) =

⌊

u

a

⌋

, (1.21)

where a is the quantization step (a strictly positive integer), and
u denotes a value in the range of f(x). De-quantization brings the
quantized values back to their original range: q−1

a (u) = au. Note
that the function qa(u) is not invertible, and that de-quantization
is not the inverse function of quantization. Double quantization
is a point-wise operation described by a two-parameter family of
functions:

qab(u) =

⌊⌊

u

b

⌋

b

a

⌋

, (1.22)

where a and b are the quantization steps (strictly positive inte-
gers). Notice that double quantization can be represented as a
sequence of three steps: quantization with step b, followed by de-
quantization with step b, followed by quantization with step a.

Figure 1.3 Distribution

of single (a)-(b) and dou-

ble (c)-(d) quantized co-

efficients.

Consider an example where the samples of f(x) are normally dis-
tributed in the range [0, 127]. To illustrate the nature of the double
quantization artifacts, we quantize the signal f(x) in four differ-
ent ways, and show the resulting histograms, Figure 1.3. Shown in
panels (a) and (b) are the histograms of the same signal quantized
with steps 2 and 3. Shown in panels (c) and (d) are the histograms
of the same signal double quantized with steps 3 followed by 2, and
2 followed by 3. When the step size decreases some bins in the
histogram are empty, Figure 1.3(c). This is not surprising since
the first quantization places the samples of the original signal into
42 bins, while the second quantization re-distributes them into 64
bins. When the step size increases some bins contain more sam-
ples than their neighboring bins, Figure 1.3(d). This also is to

1For the purpose of illustration and in order to make the analysis easier we
will use the floor function in the quantization function. Similar results can be
shown if integer rounding is used instead.

20

be expected since the even bins receive samples from four original
histogram bins, while the odd bins receive samples from only two.
In both cases of double quantization, note the periodicity of the
artifacts introduced into the histograms.

Example 1.4 Consider double quantization by a factor of 2 followed by 3.

Using a simple bin counting argument, show that in the double quantized

signal the even histogram bins receive samples from four original bins, while

the odd bins receive samples from only two.

To better understand why the double quantization of a signal in-
troduces periodic artifacts, we will analyze the dependence be-
tween the histograms of single and double quantized signals. Con-
sider first the case of a single quantized signal denoted by fa(x) =
qa(f(x)), and denote the histograms of the original and quantized
signals by H(u) and Ha(v). Since qa(·) is a many-to-one function,
several values from the range of f(x) will map onto the same value
in the range of fa(x), i.e., several bins from H contribute to a bin
in Ha. For example, let v denote a value in the range of fa(x),
then the values in the range of f(x) that map to it are in the range
[av, av + (a − 1)]. Therefore, the relationship between H(u) and
Ha(v) is given by: Ha(v) =

∑a−1
k=0 H(av + k). Note that there are

exactly a bins in the original histogram that contribute to each
bin in the histogram of the quantized signal.

Consider next the case of a double quantized signal denoted by
fab(x) = qab(f(x)), and let its histogram be denoted by Hab(v).
In contrast to the single quantization case, the number of bins of H
that contribute to a bin of Hab will depend on the double quantized
bin value. Let v be a value in the range of fab(x). Denote umin

and umax as the smallest and largest values of u in the range of
f(x) that map to v, that is, they satisfy the following:

⌊⌊

u

b

⌋

b

a

⌋

= v. (1.23)

Using the following property of the floor function:

⌊z⌋ = m ⇒ m ≤ z < m + 1, (1.24)

where z is an arbitrary real number and m an integer, Equa-
tion (1.23) implies:

v ≤
⌊

u

b

⌋

b

a
< v + 1 ⇔ a

b
v ≤

⌊

u

b

⌋

<
a

b
(v + 1). (1.25)

21

Since ⌊u/b⌋ is an integer , Equation (1.25) can be rewritten using
the ceiling function to include only integers:

⌈

a

b
v

⌉

≤
⌊

u

b

⌋

≤
⌈

a

b
(v + 1)

⌉

− 1. (1.26)

From Equation (1.26) it can be seen that umin must satisfy:
⌊

umin

b

⌋

=

⌈

a

b
v

⌉

⇒ umin =

⌈

a

b
v

⌉

b, (1.27)

while umax must satisfy:
⌊

umax

b

⌋

=

⌈

a

b
(v + 1)

⌉

− 1 ⇒

umax =

(⌈

a

b
(v + 1)

⌉

− 1

)

b + (b − 1)

=

⌈

a

b
(v + 1)

⌉

b − 1. (1.28)

Since double quantization is a monotonically increasing function,
it follows that all the values between umin and umax will map
to v through double quantization. The relationship between the
original and double quantized histogram then takes the form:

Hab(v) =
umax
∑

u=umin

H(u). (1.29)

Note that the number of original histogram bins, n(v), contribut-
ing to bin v in the double quantized histogram depends on v, and
from Equations (1.27) and (1.28), can be expressed as:

n(v) = umax − umin + 1 = b

(⌈

a

b
(v + 1)

⌉

−
⌈

a

b
v

⌉)

. (1.30)

Note that n(v) is a periodic function with period b, i.e., n(v) =
n(v + b). This periodicity is the reason periodic artifacts appear
in histograms of double quantized signals.

From Equation (1.30), the double quantization artifacts shown
in Figure 1.3 can now be explained. Consider first the case of
double quantization using steps b = 3 followed by a = 2, Fig-
ure 1.3(c). The number of original histogram bins contributing to
double quantized histogram bins of the form (3k + 2) (k integer)
is given by:

n(3k + 2) = 3

(⌈

2

3
(3k + 3)

⌉

−
⌈

2

3
(3k + 2)

⌉)

= 3

(

2k + 2 − 2k −
⌈

4

3

⌉)

= 0. (1.31)

22

This is consistent with the observation that every (3k + 2)nd (k
integer) bin of the double quantized histogram is empty. In the
second example of double quantization in Figure 1.3, b = 2 and
a = 3, it can be shown that n(2k) = 4 and n(2k + 1) = 2 (k
integer). Again, this is consistent with the periodic artifacts shown
in Figure 1.3(d).

The periodicity in these histograms is usually clearly visible. The
periodicity can also be revealed by computing the magnitude of
the Fourier transform of the histogram, in which any periodicity
will manifest itself as spikes in the Fourier domain.

23

1.5 JPEG Ghost

The previous section described a technique to determine if a JPEG
image underwent double compression. This section describes a
similar technique, but one that is able to localize which parts of
an image underwent double compression.

Consider a set of DCT JPEG coefficients c1 quantized by an
amount q1 which are subsequently quantized a second time by an
amount q2 to yield coefficients c2. With the exception of q2 = 1
(i.e., no second quantization), the difference between c1 and c2

will be minimal when q2 = q1 and will increase as the difference
between q2 and q1 increases. Specifically, if q2 > q1 then the co-
efficients c2 become increasingly more sparse relative to c1, and if
q2 < q1 then, even though the second quantization is less than the
first, the coefficients c2 shift relative to c1 (Section 1.4).

0 10 20 30
0

1

2

3

4

quantization

di
ffe

re
nc

e
(×

 1
04)

(a)

Figure 1.4 Coefficient

difference at q1 = 17 and

q2 ∈ [1, 30].

Shown in Figure 1.4, for example, is the sum of squared differences
between c1 and c2 as a function of the second quantization q2,
where q1 = 17. Note that this difference increases as a function of
increasing q2, with the exception of q2 = q1, where the difference
is minimal. If q1 is not prime, as in this example, then multiple
minima may appear at quality values q2 that are integer multiples
of q1.

0 10 20 30
0

1

2

3

4

quantization

di
ffe

re
nc

e
(×

 1
04)

(b)

Figure 1.5 A JPEG

ghost at q2 = 23.

Consider now a set of coefficients c0 quantized by an amount q0

followed by quantization by an amount q1 < q0 to yield c1. That
is, the second quantization is at a higher quality than the first.
Further quantizing c1 by q2 yields the coefficients c2. As before,
the difference between c1 and c2 will be minimal when q2 = q1.
But, since the coefficients were initially quantized by q0, we expect
to find a second minimum when q2 = q0. Shown in Figure 1.5 is the
sum of squared differences between c1 and c2, as a function of q2,
where q0 = 23 and q1 = 17. As before, this difference increases as a
function of increasing q2, reaches a minimum at q2 = q1 = 17, and
most interestingly has a second local minimum at q2 = q0 = 23.
This second minimum is a JPEG ghost, as it reveals that the
coefficients were previously quantized (compressed) with a larger
quantization (lower quality).

Recall that the JPEG compression scheme separately quantizes
each spatial frequency within a 8 × 8 pixel block. One approach
to detecting JPEG ghosts would be to separately consider each
spatial frequency in each of the three luminance/color channels.
However, recall that multiple minima are possible when compar-

24

ing integer multiple quantization values. If, on the other hand, we
consider the cumulative effect of quantization on the underlying
pixel values, then this issue is far less likely to arise (unless all 192
quantization values at different JPEG qualities are integer multi-
ples of one another – an unlikely scenario. Therefore, instead of
computing the difference between the quantized DCT coefficients,
we consider the difference computed directly from the pixel values,
as follows:

d(x, y, q) =
1

3

3
∑

i=1

[f(x, y, i) − fq(x, y, i)]2, (1.32)

where f(x, y, i), i = 1, 2, 3, denotes each of three RGB color chan-
nels, and fq(·) is the result of compressing f(·) at quality q.

Shown in the top left panel of the figure below is an image whose
central 200×200 pixel region was extracted, compressed at a JPEG
quality of 65/100, and re-inserted into the image whose original
quality was 85. Shown in each subsequent panel is the sum of
squared differences, Equation (1.32), between this manipulated
image, and a re-saved version compressed at different JPEG qual-
ities. Note that the central region is clearly visible when the image
is re-saved at the quality of the tampered region (65). Also note
that the overall error reaches a minimum at the saved quality of
85.

original 35 40 45

50 55 60 65

70 75 80 85

A central region was extracted from the original, saved at JPEG quality 65,

and re-inserted into the image whose original quality was 85. Shown is the

difference between this image and a re-compressed version at different quali-

ties: a JPEG ghost is revealed at the original quality of 65 (and neighboring

qualities).

25

There are some variations in the difference images within and
outside of the tampered region which could possibly confound a
forensic analysis. These fluctuations are due to the underlying
image content. Specifically, because the image difference is com-
puted across all spatial frequencies, a region with small amounts
of high spatial frequency content (e.g., a mostly uniform sky) will
have a lower difference as compared to a highly textured region
(e.g., grass). In order to compensate for these differences, a spa-
tially averaged and normalized difference measure can be consid-
ered. The difference image is first averaged across a b × b pixel
region:

δ(x, y, q) =
1

3

3
∑

i=1

1

b2

b−1
∑

bx=0

b−1
∑

by=0

[f(x + bx, y + by , i) − fq(x + bx, y + by, i)]2(1.33)

and then normalized so that the averaged difference at each loca-
tion (x, y) is scaled into the range [0, 1]:

d(x, y, q) =
δ(x, y, q) − minq[δ(x, y, q)]

maxq[δ(x, y, q)] − minq[δ(x, y, q)]
. (1.34)

There are two potential complicating factors that arise when de-
tecting JPEG ghosts in a general forensic setting. First, it is
likely that different cameras and photo-editing software packages
will employ different JPEG quality scales and hence quantization
tables. When iterating through different qualities it would be ideal
to match these qualities and tables, but this may not always be
possible. Working to our advantage, however, is that the difference
images are computed by averaging across all spatial frequencies.
As a result small differences in the original and subsequent quanti-
zation tables will likely not have a significant impact. The second
practical issue is that in the above examples it was assumed that
the tampered region remains on its original 8 × 8 JPEG lattice
after being inserted and saved. If this is not the case, then the
mis-alignment may destroy the JPEG ghost since new spatial fre-
quencies will be introduced by saving onto a new JPEG block
lattice. This problem can be alleviated by sampling all 64 possi-
ble alignments (a 0 to 7 pixel shift in the horizontal and vertical
directions). Specifically, an image is shifted to each of these 64
locations prior to saving at each JPEG quality.

26

1.6 Problem Set

1. Write MatLab code that simulates and reveals the effects of
double JPEG compression. Specifically, your code should:

• Generate 1, 000 random floating-point coefficients hav-
ing a normal distribution.

• Scale these coefficients into the range [0, 255].
• Quantize these coefficients by a reasonable amount.
• Display a histogram of the quantized coefficients and

the magnitude of the Fourier transform of this his-
togram.

• Quantize the coefficients again with larger and smaller
quantization steps.

• Display a histogram of the double quantized coefficients
and the magnitude of the Fourier transform of this his-
togram.

• Explore and report on the range of quantization values
that reveal the double quantization artifacts.

27

1.7 Solutions

Example 1.1 The Fourier transform is given by:

ck =
N−1
∑

l=0

f(l)e−iωkl.

Recall that ωk = 2πk/N . The term c0 is specified by replacing k
with 0 to yield:

c0 =
N−1
∑

l=0

f(l)e−i 2π0
N

l

=
N−1
∑

l=0

f(l)e0

=
N−1
∑

l=0

f(l).

That is, c0 is simply the sum of the signal. Since it was assumed
that the mean of the signal is zero, c0 must be 0. And more,
generally, the term c0 (the DC term) is always proportional to the
mean of the signal.

Example 1.2 Denote the complex value c as c = a + ib. In
the complex plane shown in Figure 1.6, c is a 2-D vector with
horizontal (real) component a and vertical (complex) component
b. The magnitude of the vector is

√
a2 + b2 and the angle of the

vector relative to the horizontal axis (the phase) is tan−1(b/a).

Figure 1.6 Complex

plane.

From basic geometry, we see that: cos(φ) = a/
√

a2 + b2 or a =√
a2 + b2 cos(φ), where the magnitude |c| is

√
a2 + b2 and where

the angle φ is simply the phase 6 c, yielding a = |c| cos(6 c). A
similar construction yields b =

√
a2 + b2 sin(φ) = |c| sin(6 c).

Example 1.3 The DCT assumes that the underlying image is
symmetric (or even). The 2-D Fourier transform is given by:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

akl cos(ωkx + ωly) + bkl sin(ωkx + ωly).

If we assume that the underlying image is symmetric, then the
asymmetric (odd) sinusoidal component of the Fourier basis is not
needed, and the 2-D Fourier transform can be written as:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

akl cos(ωkx + ωly),

28

which, using the identity cos(A+B) = cos(A) cos(B)−sin(A) sin(B),
can be rewritten as:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

akl(cos(ωkx) cos(ωly) − sin(ωkx) sin(ωly)).

Once again, the sinusoidal components are not required yielding:

f(x, y) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

akl cos(ωkx) cos(ωly),

which is the DCT.

Example 1.4 Consider ten bins of a histogram (top row in the
figure below) that are quantized by a factor of 2 into four bins (sec-
ond row). Requantization requires expanding these bins to their
original nine (third row) followed by quantization by a factor of
3 into three bins (fourth row). In the final double quantized his-
togram bins 0 and 2 contain information from four original bins,
while histogram bin 1 contains information from only (the shad-
ing and color coding denote the path of a bin’s contents through
quantization and double quantization).

29

1.8 Readings

1. H. Farid. Exposing digital forgeries from JPEG ghosts.
IEEE Transactions on Information Forensics and Security,
1(4):154 160, 2009.

2. E. Kee and H. Farid. Digital image authentication from
thumbnails. In SPIE Symposium on Electronic Imaging, San
Jose, CA, 2010.

3. E. Kee, M.K. Johnson, and H. Farid. Digital image authen-
tication from JPEG headers. IEEE Transactions on Infor-
mation Forensics and Security, 6(3):1066-1075, 2011.

4. B. Mahdian and S. Saic. Detecting double compressed JPEG
images. In International Conference on Imaging for Crime
Detection and Prevention, 2009.

5. A.C. Popescu and H. Farid. Statistical tools for digital foren-
sics. In 6th International Workshop on Information Hiding,
Toronto, Canada, 2004.

30

2. Camera-Based Forensics

2.1 LS †

2.2 EM †

2.3 CFA

2.4 CA

2.5 Noise

2.6 Problem Set

2.7 Solutions

2.8 Readings

2.1 Least-Squares (LS) †

You are given a collection of data points (xi, yi), for i = 1 . . . n,
and asked to fit a line to these data. The model of a line:

y = mx + b, (2.1)

is parametrized by two parameters: the slope m and y-intercept
b. Each data point (xi, yi) provides one constraint on these two pa-
rameters. A total of n such constraints provides an over-constrained
system that can be expressed in matrix form as:











x1 1
x2 1
...

...
xn 1











(

m
b

)

=











y1

y2
...

yn











(2.2)

Xu = y. (2.3)

This linear system of equations will have a solution only when the
vector y is contained in the column space of matrix X: that is,
when y can be expressed as a linear combination of the columns of
the matrix X. From a geometric perspective, this will occur when
all points (xi, yi) lie precisely on a line. If, however, the points
deviate even slightly from a perfect line, then y will not be in the
column space of X, and there will be no solution to the above
linear system. It is in these situations that we seek a solution that
minimizes some measure of goodness of fit of a line to the points.

Figure 2.1

Least-squares minimizes

the vertical displacement

of points from the line.

Shown in Figure 2.1 are six data points that lie slightly off of a
line. The fit line minimizes the overall vertical displacement of the
points from the line. Minimizing this vertical distance, mx+b−y,
lends itself to a particularly straight-forward optimization, termed
least-squares. In matrix form, the vertical distance between points
and a line with slope m and y-intercept b is given by:











x1 1
x2 1
...

...
xn 1











(

m
b

)

−











y1

y2
...

yn











(2.4)

Xu − y. (2.5)

31

We seek to minimize the sum of these squared distances:

n
∑

i=1

(mxi + b − yi)
2 = (Xu − y)T (Xu − y). (2.6)

The minimization of this error is expressed as a quadratic error
function in the parameters of the line:

E(u) = ‖Xu − y‖2, (2.7)

where ‖·‖ denotes vector norm. This quadratic error is minimized
by differentiating:

dE

du
= 2XT (Xu − y), (2.8)

setting equal to zero and solving for u:

2XT (Xu − y) = 0 (2.9)

XT Xu = XT y (2.10)

u = (XT X)−1XTy, (2.11)

yielding the least-squares estimation of the line parameters. The
matrix XT X will be singular and hence not invertible if the rows
of the matrix X are linearly dependent. Geometrically, this cor-
responds to one of two situations: (1) the n points are identical
in which case there is no unique solution to fitting a line to a sin-
gle point; or (2) the n points lie on a vertical line in which case
m = ∞.

This basic framework is, of course, applicable to estimating any
model that is linear in their unknown parameters. For example, a
parabola y = ax2+bx+c can be fit to n points by first constructing
the following linear system:











x2
1 x1 1

x2
2 x2 1
...

...
...

x2
n xn 1















a
b
c



 =











y1

y2
...

yn











(2.12)

Xu = y, (2.13)

and then solving using the least-squares solution in Equation (2.11).
Similarly, the matrix formulation of a plane z = ax + by + c is:











x1 y1 1
x2 y2 1
...

...
...

xn yn 1















a
b
c



 =











z1

z2
...

zn











(2.14)

Xu = z, (2.15)

and the least-squares solution is u = (XT X)−1XT z.

32

Example 2.1 Where possible, write out the least-squares system for the fol-
lowing (where a, b, and c are the model parameters):

1. y = a log(x) + b

2. z = axy + b

3. y = xa

Weighted least-squares allows for a non-uniform treatment of the
contribution of each individual point to the overall error. The
error function of Equation (2.7) takes the form:

Figure 2.2

Least-squares (solid) and

weighted least-squares

(dashed).

E(u) = W‖Xu − y‖2, (2.16)

where W is a diagonal n × n weighting matrix with diagonal ele-
ments wi corresponding to the weight associated with the ith point.
A larger weight places more emphasis on minimizing that point’s
deviation from the model. This error function is minimized by
differentiating:

dE

du
= 2XT W (Xu − y), (2.17)

setting equal to zero and solving for u to yield the weighted least-
squares solution:

2XT W (Xu− y) = 0 (2.18)

XT WXu = XT Wy (2.19)

u = (XT WX)−1XT Wy. (2.20)

Notice that if W is the identity matrix, then this solution reverts
back to the least-squares solution of Equation (2.7).

Shown in Figure 2.2 are six data points fit with a line using least-
squares (solid line) and weighted least squares (dashed line) where
the two bottom left most points were weighted disproportionately
relative to the other points. Notice how the line minimizes the
error for these points at the price of significantly higher error for
the remaining points.

33

2.2 Expectation Maximization (EM) †

The Expectation/Maximization (EM) algorithm simultaneously
segments and fits data generated from multiple parametric models.
For example, shown in Figure 2.3 are a collection of data points
(xi, yi) generated from one of two linear models of the form:

y(i) = a1x(i) + b1 + n1(i) (2.21)

y(i) = a2x(i) + b2 + n2(i), (2.22)

where the model parameters are a1, b1 and a2, b2, and the system
is modeled with additive noise n1(i) and n2(i).

Figure 2.3 Data from

two models

If we are told the model parameters, then determining which data
point was generated by which model would be a simple matter of
choosing, for each data point i, the model k that minimizes the
error between the data and the model prediction:

rk(i) = |akx(i) + bk − y(i))|, (2.23)

for k = 1, 2 in our example. On the other hand, if we are told which
data points were generated by which model, then estimating the
model parameters reduces to solving, for each model k, an over-
constrained set of linear equations:











xk(1) 1
xk(2) 1

...
...

xk(n) 1











(

ak

bk

)

=











yk(1)
yk(2)

...
yk(n)











, (2.24)

where the xk(i) and yk(i) all belong to model k. In either case,
knowing one piece of information (the model assignment or param-
eters) makes determining the other relatively easy. But, lacking
either piece of information makes this a considerably more difficult
estimation problem. The EM algorithm is an iterative two step
algorithm that estimates both the model assignment and param-
eters.

The “E-step” of EM assumes that the model parameters are known
(initially, the model parameters can be assigned random values)
and calculates the likelihood of each data point belonging to each
model. In so doing the model assignment is made in a “soft”
probabilistic fashion. That is, each data point is not explicitly
assigned a single model, instead each data point i is assigned a
probability of it belonging to each model k. For each model the
residual error is first computed as:

rk(i) = akx(i) + bk − y(i) (2.25)

34

from which the likelihoods are calculated. We ask, what is the
likelihood of point i belonging to model k given the residual error.
For our two model example:

P (ak, bk|rk(i)) =
P (rk(i)|ak, bk)P (ak, bk)

P (rk(i))

=
P (rk(i)|ak, bk)

P (r1(i)|ak, bk) + P (r2(i)|ak, bk)
, (2.26)

for k = 1, 2.

Figure 2.4 Six iterations

of EM.

The expansion of the conditional probability is from Bayes rule:
P (B|Ak) = P (Ak|B)P (B)

∑

l
P (Al|B)P (B)

. If we assume a Gaussian probability

distribution, then the likelihood takes the form:

wk(i) = P (ak, bk|rk(i)) =
e−r2

k
(i)/σ

e−r2
1(i)/σ + e−r2

2(i)/σ
, (2.27)

where, σ is proportional to the amount of noise in the data.

The “M-step” of EM takes the likelihood of each data point be-
longing to each model, and re-estimates the model parameters us-
ing weighted least-squares. That is, the following weighted error
function on the model parameters is minimized:

Ek(ak, bk) =
n
∑

i=1

wk(i)[akx(i) + bk − y(i)]2. (2.28)

The intuition here is that each data point contributes to the esti-
mation of each model’s parameters in proportion to the belief that
it belongs to that particular model. This quadratic error function
is minimized by computing the partial derivatives with respect to
the model parameters, setting the result equal to zero and solving
for the model parameters. Differentiating:

∂Ek(ak, bk)

∂ak
=

n
∑

i=1

2wk(i)x(i)[akx(i) + bk − y(i)]

∂Ek(ak, bk)

∂bk
=

n
∑

i=1

2wk(i)[akx(i) + bk − y(i)], (2.29)

setting both equal to zero yields the following set of linear equa-
tions:

ak

n
∑

i=1

wk(i)x(i)2 + bk

n
∑

i=1

wk(i)x(i) =
n
∑

i=1

wk(i)x(i)y(i) (2.30)

ak

n
∑

i=1

wk(i)x(i) + bk

n
∑

i=1

wk(i) =
n
∑

i=1

wk(i)y(i). (2.31)

35

Rewriting in matrix form:

(∑n
i=1 wk(i)x(i)2

∑n
i=1 wk(i)x(i)

∑n
i=1 wk(i)x(i)

∑n
i=1 wk(i)

)(

ak

bk

)

=

(∑n
i=1 wk(i)x(i)y(i)
∑n

i=1 w(i)y(i)

)

Axk = b

xk = A−1b, (2.32)

yields a weighted least squares solution for the model parameters.

Example 2.2 Show that the solution in Equation (2.32) is identical to solving

the set of linear equations in Equation (2.24) using weighted least-squares.

The EM algorithm iteratively executes the “E” and “M” step,
repeatedly estimating and refining the model assignments and pa-
rameters. Shown in Figure 2.4 are several iterations of EM applied
to fitting data generated from two linear models. Initially, the
model parameters are randomly assigned, and after six iterations,
the algorithm converges to a solution.

The EM algorithm can be sensitive to the value of σ used. It
is often recommended that with a reasonable starting value, the
value of σ can be updated on each EM iteration as follows:

σ =

∑n
i=1 w(i)r2(i)
∑n

i=1 w(i)
. (2.33)

36

2.3 Color Filter Array (CFA)

Most digital cameras capture color images using a single sensor
in conjunction with an array of color filters. As a result, only
one third of the samples in a color image are captured by the
camera, the other two thirds are interpolated. This interpolation
introduces specific correlations between the samples of a color im-
age. When creating a digital forgery these correlations may be
destroyed or altered. We describe the form of these correlations,
and propose a method that quantifies and detects them in any
portion of an image.

Figure 2.5 Bayer array

A digital color image consists of three channels containing samples
from different bands of the color spectrum, e.g., red, green, and
blue. Most digital cameras, however, are equipped with a single
CCD or CMOS sensor, and capture color images using a color
filter array (CFA). The most frequently used CFA, the Bayer array,
employs three color filters: red, green, and blue. The red and blue
pixels are sampled on rectilinear lattices, while the green pixels
are sampled on a quincunx lattice, Figure 2.5. Since only a single
color sample is recorded at each pixel location, the other two color
samples must be estimated from the neighboring samples in order
to obtain a three-channel color image. Let S(x, y) denote the CFA
image in Figure 2.5, and R̃(x, y), G̃(x, y), B̃(x, y) denote the red,
green, and blue channels constructed from S(x, y) as follows:

R̃(x, y) = S(x, y) if S(x, y) = rx,y (2.34)

= 0 otherwise

G̃(x, y) = S(x, y) if S(x, y) = gx,y (2.35)

= 0 otherwise

B̃(x, y) = S(x, y) if B(x, y) = bx,y (2.36)

= 0 otherwise

where (x, y) span an integer lattice. A complete color image,
with channels R(x, y), G(x, y), and B(x, y) needs to be estimated.
These channels take on the non-zero values of R̃(x, y), G̃(x, y),
and B̃(x, y), and replace the zeros with estimates from neighbor-
ing samples.

The estimation of the missing color samples is referred to as CFA
interpolation or demosaicking. CFA interpolation has been ex-
tensively studied and many methods have been proposed. The
simplest methods for demosaicking are kernel-based interpolation
methods that act on each channel independently. These meth-
ods can be efficiently implemented as linear filtering operations on

37

each color channel:

R(x, y) =
N
∑

u,v=−N

hr(u, v)R̃(x − u, y − v) (2.37)

G(x, y) =
N
∑

u,v=−N

hg(u, v)G̃(x − u, y − v) (2.38)

B(x, y) =
N
∑

u,v=−N

hb(u, v)B̃(x − u, y − v), (2.39)

where R̃(·), G̃(·), B̃(·) are defined in Equations (2.34)-(2.36), and
hr(·), hg(·), hb(·) are linear filters of size (2N + 1) × (2N + 1).
Different forms of interpolation (nearest neighbor, bilinear, bicu-
bic, etc.) differ in the form of the interpolation filter used. For
the Bayer array, the bilinear filter for the red and blue channels
are separable. The 1-D filter is:

hl = (1/2 1 1/2) . (2.40)

The 2-D filter is the outer product between hl and itself.

There are many other CFA interpolation algorithms including
smooth hue transition, median filter, gradient-based, adaptive color
plane, and threshold-based variable number of gradients. Regard-
less of their specific implementations, each CFA interpolation algo-
rithm introduces specific statistical correlations between a subset
of pixels in each color channel.

Since the color filters in a CFA are typically arranged in a periodic
pattern, these correlations are periodic. Consider, for example,
the red channel, R(x, y), that has been sampled on a Bayer array,
Figure 2.5, then CFA interpolated using bilinear interpolation. In
this case, the red samples in the odd rows and even columns are the
average of their closest horizontal neighbors, the red samples in the
even rows and odd columns are the average of their closest vertical
neighbors, and the red samples in the even rows and columns are
the average of their closest diagonal neighbors:

R(2x + 1, 2y) =
R(2x + 1, 2y − 1)

2
+

R(2x + 1, 2y + 1)

2

R(2x, 2y + 1) =
R(2x − 1, 2y + 1)

2
+

R(2x + 1, 2y + 1)

2

R(2x, 2y) =
R(2x − 1, 2y − 1)

4
+

R(2x − 1, 2y + 1)

4

+
R(2x + 1, 2y − 1)

4
+

R(2x + 1, 2y + 1)

4
.

38

Note that in this simple case, the estimated samples are perfectly
correlated to their neighbors. As such, a CFA interpolated image
can be detected (in the absence of noise) by noticing, for example,
that every other sample in every other row or column is perfectly
correlated to its neighbors. At the same time, the non-interpolated
samples are less likely to be correlated in precisely the same man-
ner. Furthermore, it is likely that tampering will destroy these
correlations, or that the splicing together of two images from dif-
ferent cameras will create inconsistent correlations across the com-
posite image. As such, the lack of correlations produced by CFA
interpolation can be used to expose it as a forgery.

We begin by assuming a simple linear model for the periodic cor-
relations introduced by CFA interpolation. That is, each inter-
polated pixel is correlated to a weighted sum of pixels in a small
neighborhood centered about itself. While perhaps overly sim-
plistic when compared to the highly non-linear nature of most
CFA interpolation algorithms, this simple model is both easy to
parametrize and can reasonably approximate each of the CFA in-
terpolation algorithms described above. Note that most CFA algo-
rithms estimate a missing color sample from neighboring samples
in all three color channels. For simplicity, however, we ignore
these inter-channel correlations and treat each color channel inde-
pendently.

If the specific form of the correlations is known (i.e., the param-
eters of the linear model), then it would be straightforward to
determine which samples are correlated to their neighbors. On
the other hand, if it was known which samples are correlated to
their neighbors, the specific form of the correlations could be easily
determined. In practice, of course, neither are known. To simul-
taneously estimate both we employ the expectation/maximization
(EM) algorithm.

Recall that the expectation-maximization algorithm (EM) is a
two-step iterative algorithm: (1) in the E-step the probability of
each sample belonging to each model is estimated; and (2) in the
M-step the specific form of the correlations between samples is
estimated.

We first formulate the estimation for a 1-D signal. Let f(x) denote
a color channel (red, green, or blue) of a CFA interpolated signal.
We begin by assuming that each sample in f(x) belongs to one
of two models: (1) M1 if the sample is linearly correlated to its

39

neighbors, satisfying:

f(x) =
N
∑

u=−N

αuf(x + u), (2.41)

where the model parameters are given by the linear coefficients
α = {αu| −N ≤ u ≤ N} (N is an integer and α0 = 0) ; or (2) M2

if the sample is not correlated to its neighbors, i.e., is generated
by an “outlier process”.

In the E-step, the residual error for the first model is:

r1(x) = f(x) −
N
∑

u=−N

αuf(x + u) (2.42)

Assuming that the probability of observing a sampled generated
by model M1 follows a Gaussian, the likelihood then takes the
form:

w1(x) = Pr(α | r1(x)) =
e−r2

1(x)/σ

e−r2
1(x)/σ + 1/δ

, (2.43)

where a uniform distribution is assumed for the probability of
observing a sample generated by the outlier model, M2.

In the M-step, a new estimate of α is computed using weighted
least squares to minimize the following quadratic error function:

E(α) =
∑

x

w1(x)



f(x) −
N
∑

u=−N

αuf(x + u)





2

. (2.44)

This error function is minimized by computing the gradient with
respect to α, setting this gradient equal to zero, and solving for α
yielding:

α = (F T WF)−1F T W f . (2.45)

where, if N = 2, for example, the vector f is:

f = (f(3) f(4) f(5) . . .)T , (2.46)

and where the matrix F is:

F =











f(1) f(2) f(4) f(5)
f(2) f(3) f(5) f(6)
f(3) f(4) f(6) f(7)

...
...

...
...











, (2.47)

40

and W is a diagonal weighting matrix with w1(x) along the diag-
onal. The E-step and the M-step are iteratively executed until a
stable estimate of α is achieved.

In 2-D, let f(x, y) denote a color channel (red, green, or blue) of
a CFA interpolated image. We again assume that each sample
in f(x, y) belongs to one of two models: (1) M1 if the sample is
linearly correlated to its neighbors, satisfying:

f(x, y) =
N
∑

u,v=−N

αu,vf(x + u, y + v), (2.48)

where the model parameters are given by the linear coefficients
α = {αu,v| − N ≤ u, v ≤ N} (N is an integer and α0,0 = 0) ; or
(2) M2 if the sample is not correlated to its neighbors, i.e., is
generated by an “outlier process”.

In the E-step, the residual error for the first model is:

r1(x, y) = f(x, y) −
N
∑

u,v=−N

αu,vf(x + u, y + v) (2.49)

Assuming that the probability of observing a sampled generated
by model M1 follows a Gaussian, the likelihood then takes the
form:

w1(x, y) = Pr(α | r1(x, y)) =
e−r2

1(x,y)/σ

e−r2
1(x,y)/σ + 1/δ

, (2.50)

where a uniform distribution is assumed for the probability of
observing a sample generated by the outlier model, M2.

In the M-step, a new estimate of α is computed using weighted
least squares to minimize the following quadratic error function:

E(α) =
∑

x,y

w1(x, y)



f(x, y) −
N
∑

u,v=−N

αu,vf(x + u, y + v)





2

(2.51)

This error function is minimized by computing the gradient with
respect to α, setting this gradient equal to zero, and solving the re-
sulting linear system of equations. Setting equal to zero the partial
derivative with respect to one of the coefficients, ∂E/∂αs,t = 0,
yields:

∑

x,y

w1(x, y)f(x + s, y + t)
N
∑

u,v=−N

αu,vf(x + u, y + v) =

∑

x,y

w1(x, y)f(x + s, y + t)f(x, y). (2.52)

41

Re-ordering the terms on the left-hand side yields:

N
∑

u,v=−N

αu,v

(

∑

x,y

w1(x, y)f(x + s, y + t)f(x + u, y + v)

)

=

∑

x,y

w1(x, y)f(x + s, y + t)f(x, y). (2.53)

This process is repeated for each component, αs,t to yield a system

Figure 2.6 A CFA and

non-CFA image and the

results of CFA analysis.

of linear equations that can be solved using standard techniques.
The E-step and the M-step are iteratively executed until a stable
estimate of α is achieved.

Shown in the upper three panels of Figure 2.6, from top to bottom,
is an original CFA interpolated image, the resulting CFA analysis
displayed as a probability map, and the magnitude of the Fourier
transform of the probability map. The results of the CFA analysis
is displayed as the probability of each pixel belonging to model M1

(i.e., correlated to their neighbors) in which a white pixel denotes
a high probability and a black pixel denotes a low probability. The
peaks in the Fourier transform correspond to the periodicity in the
probability map which reveal the expected CFA correlations for
an authentic image.

Shown in the lower three panels of Figure 2.6, from top to bottom,
is an original CFA interpolated image, the resulting CFA analysis
displayed as a probability map, and the magnitude of the Fourier
transform of the probability map. In this case, the image does
not contain the expected CFA correlations as can be seen by the
lack of periodicity in the probability map and peaks in the Fourier
transform.

42

2.4 Chromatic Aberration (CA)

Most images contain a variety of aberrations that result from im-
perfections and artifacts of the optical imaging system. In an ideal
imaging system, light passes through the lens and is focused to a
single point on the sensor. Optical systems, however, deviate from
such ideal models in that they fail to perfectly focus light of all
wavelengths. The resulting effect is known as chromatic aberration
which occurs in two forms: longitudinal and lateral. Longitudinal
aberration manifests itself as differences in the focal planes for dif-
ferent wavelengths of light. Lateral aberration manifests itself as
a spatial shift in the locations where light of different wavelengths
reach the sensor – this shift is proportional to the distance from
the optical center. In both cases, chromatic aberration leads to
various forms of color imperfections in the image. When tamper-
ing with an image, these aberrations are often disturbed and fail
to be consistent across the image. We describe how to exploit
these aberrations for forensic analysis.

Figure 2.7 Lateral chro-

matic aberrations (1-D).

In classical optics, the refraction of light at the boundary between
two media is described by Snell’s Law:

n sin(θ) = nf sin(θf), (2.54)

where θ is the angle of incidence, θf is the angle of refraction, and
n and nf are the refractive indices of the media through which
the light passes. The refractive index of glass, nf , depends on the
wavelength of the light that traverses it. This dependency results
in polychromatic light being split according to wavelength as it
exits the lens and strikes the sensor. Shown in Figure 2.7, for
example, is a schematic showing the splitting of short wavelength
(solid blue ray) and long wavelength (dashed red ray) light. The
result of this splitting of light is termed lateral chromatic aber-
ration. In this 1-D formulation where the incident light reaches
the lens at an angle θ, and is split into short wavelength (solid
blue ray) and long wavelength (dashed red ray) light with an an-
gle of refraction of θr and θb, Figure 2.7. These rays strike the
sensor at positions xr and xb. The relationship between the an-
gle of incidence and angles of refraction are given by Snell’s law,
Equation (2.54), yielding:

n sin(θ) = nr sin(θr) (2.55)

n sin(θ) = nb sin(θb), (2.56)

which are combined to yield:

nr sin(θr) = nb sin(θb). (2.57)

43

Dividing both sides by cos(θb) gives:

nr sin(θr)/ cos(θb) = nb tan(θb)

= nbxb/f, (2.58)

where f is the lens-to-sensor distance. If we assume that the dif-
ferences in angles of refraction are relatively small, then cos(θb) ≈
cos(θr). Equation (2.58) then takes the form:

nr sin(θr)/ cos(θr) ≈ nbxb/f

nr tan(θr) ≈ nbxb/f

nrxr/f ≈ nbxb/f

nrxr ≈ nbxb

xr ≈ αxb, (2.59)

where α = nb/nr.

Figure 2.8 Lateral chro-

matic aberrations (2-D).

For a two-dimensional lens and sensor, the distortion caused by lat-
eral chromatic aberration takes a form similar to Equation (2.59).
An incident ray reaches the lens at angles θ and φ, relative to the
x = 0 and y = 0 planes, respectively. The application of Snell’s
law yields:

nr sin(θr) = nb sin(θb) (2.60)

nr sin(φr) = nb sin(φb). (2.61)

Following the above 1-D derivation yields the following 2-D model:

(xr, yr) ≈ α(xb, yb). (2.62)

Shown in Figure 2.8 is vector-based depiction of this aberration,
where each vector v = (xr − xb yr − yb). Note that this model
is simply an expansion/contraction about the center of the image.

In real lenses, the center of optical aberrations is often different
from the image center due to the complexities of multi-lens sys-
tems. The previous model can therefore be augmented with an
additional two parameters, (x0, y0), to describe the position of the
expansion/contraction center. The model now takes the form:

xr = α(xb − x0) + x0 (2.63)

yr = α(yb − y0) + y0. (2.64)

Using the green channel as reference, we would like to estimate
the aberration between the red and green channels, and between

44

the blue and green channels. Deviations or inconsistencies in these
models will then be used as evidence of tampering.

Recall that the model for lateral chromatic aberration consists of
three parameters, two parameters for the center of the distortion
and one parameter for the magnitude of the distortion. These
model parameters will be denoted (x1, y1, α1) and (x2, y2, α2) for
the red to green and blue to green distortions, respectively.

The estimation of these model parameters can be framed as an
image registration problem. Specifically, lateral chromatic aberra-
tion results in an expansion or contraction between the color chan-
nels, and hence a misalignment between the color channels. We,
therefore, seek the model parameters that bring the color channels
back into alignment. There are several metrics that may be used
to quantify the alignment of the color channels. To help contend
with the inherent intensity differences across the color channels
we employ a metric based on mutual information that has proven
successful in such situations.

We will describe the estimation of the red to green distortion pa-
rameters (the blue to green estimation follows a similar form).
Denote the red channel of a RGB image as R(x, y) and the green
channel as G(x, y). A corrected version of the red channel is de-
noted as R(xr, yr) where:

xr = α1(x − x1) + x1 (2.65)

yr = α1(y − y1) + y1. (2.66)

The model parameters are determined by maximizing the mutual
information between R(xr, yr) and G(x, y) as follows:

argmaxx1,y1,α1
I(R;G), (2.67)

where R and G are the random variables from which the pixel
intensities of R(xr, yr) and G(x, y) are drawn. The mutual infor-
mation between these random variables is defined to be:

I(R;G) =
∑

r∈R

∑

g∈G
Pr(r, g) log

(

Pr(r, g)

Pr(r) Pr(g)

)

, (2.68)

where Pr(·, ·) is the joint probability distribution, and Pr(·) is the
marginal probability distribution.

45

Example 2.3 Show that if a pair of random variables are independent, then

the mutual information, Equation (2.68), is zero.

Figure 2.9 An image

with CA, calibrated CA,

and estimated CA.

This metric of mutual information is maximized using a brute-
force iterative search. On the first iteration, a relatively course
sampling of the parameter space for x1, y1, α1 is searched. On
the second iteration, a refined sampling of the parameter space is
performed about the maximum from the first stage. This process
is repeated for a specified number of iterations. While this brute-
force search can be computationally demanding, it does ensure
that the global minimum is reached.

Shown in Figure 2.9, from top to bottom, is an image, its actual
red to green chromatic aberration, and the estimated chromatic
aberration. The small circular mark denotes the center of the chro-
matic aberrations. Note both that the model of chromatic aberra-
tion captures the actual aberrations reasonably well, and that the
estimated aberrations are fairly similar to the actual aberrations
in terms of the magnitude and direction of the distortion.

46

2.5 Sensor Noise

Each pixel in a digital camera’s sensor records the amount of in-
cident light that strikes it. Slight imperfections in manufacturing
introduce small amounts of noise in the recorded image. This noise
is spatially varying and consistent over time and can therefore be
used for forensic and ballistic purposes [1].

The image imperfections can be modeled as:

I(x, y) = I0(x, y) + γI0(x, y)K(x, y) + N(x, y), (2.69)

where I0(·) is the noise-free image, γ is a multiplicative constant,
K(·) is the multiplicative noise (termed photo-response non-uniformity
noise (PRNU)), and N(·) is an additive noise term. The multi-
plicative PRNU factor is used for forensic and ballistic purposes.

The PRNU is estimated from a series of authentic images Ik(x, y)
with k = 1 . . . N taken from the camera in question. Each image
is denoised with any standard denoising filter and subtracted from
the original image:

Wk(x, y) = Ik(x, y) − Îk(x, y), (2.70)

where Îk(x, y) are the denoised images. The terms Wk(x, y) sup-
press the underlying image content and make the estimation of
the PRNU more reliable. The PRNU is estimated as:

K(x, y) =

∑n
k=1 Wk(x, y)Ik(x, y)
∑n

k=1 I2
k(x, y)

. (2.71)

The PRNU can then be used to determine if an image originated
from a specific camera, or if a portion of an image has been altered.
For the latter application, an image in question I(x, y) is denoised
and subtracted from itself to yield W (x, y) as described above.
The PRNU K(x, y) is estimated from a set of images known to
have originated from the same camera as I(x, y). The correlation
between the PRNU and the image being analyzed is given by:

ρ = I(x, y)K(x, y) ⊗ W (x, y), (2.72)

where ⊗ denotes normalized correlation. The correlation ρ is used
as a measure of authenticity and can be computed locally in order
to detect localized tampering.

47

2.6 Problem Set

1. Write MatLab code that implements EM for the two-line
fitting problem shown in Figure 2.4. Specifically, your code
should:

• Randomly generate a slope and intercept for two lines.
• Randomly generate points on these lines.
• Corrupt these points with small amounts of noise.
• With random starting conditions, use EM to iteratively

estimate the model parameters and model assignments.
• On each EM iteration, your code should render the cur-

rent estimates of the lines and the data points.
• Run one thousand simulations and report on the overall

accuracy of the model estimation.

48

2.7 Solutions

Example 2.1

1.







log(x1) 1
...

...
log(xn) 1







(

a
b

)

=







y1
...

yn







2.







xy1
1 1
...

...
xyn

n 1







(

a
b

)

=







z1
...

zn







3. y = xa is non-linear in the model parameter a and can
therefore not be solved using least-squares. The log of this
model can, however, be solved using least-squares: log(y) =
a log(x) is linear in the parameter a. Solving this system
minimizes the log of the least-squares error, which is differ-
ent than minimizing the least-squares error in the original
model.

Example 2.2 The weighted least-squares version of Equation (2.24)
is:

W











xk(1) 1
xk(2) 1

...
...

xk(n) 1











(

ak

bk

)

= W











yk(1)
yk(2)

...
yk(n)











, (2.73)

where W is a diagonal matrix with elements wk(i). Left-multiplying
left- and right-hand sides by the transpose of the data matrix
yields:

(

xk(1) . . . xk(n)

1 . . . 1

)





wk(1) . . . 0
...

...

0 . . . wk(n)









xk(1) 1
...

...

xk(n) 1





(

ak

bk

)

=

(

xk(1) . . . xk(n)

1 . . . 1

)





wk(1) . . . 0
...

...

0 . . . wk(n)









yk(1)
...

yk(n)



 .

Multiplying by the weighting matrix yields:

(

xk(1) . . . xk(n)

1 . . . 1

)





wk(1)xk(1) wk(1)
...

...

wk(n)xk(n) wk(n)





(

ak

bk

)

=

(

xk(1) . . . xk(n)

1 . . . 1

)





wk(1)yk(1)
...

wk(n)yk(n)



 ,

49

(∑

i
wk(i)x(i)2

∑

i
wk(i)x(i)

∑

i
wk(i)x(i)

∑

i
wk(i)

)(

ak

bk

)

=

(∑

i
wk(i)x(i)y(i)
∑

i
wk(i)y(i)

)

,

which is identical to Equation (2.32).

Example 2.3 If two random variables X and Y are indepen-
dent, then Pr(X,Y) = Pr(X) Pr(Y). In this case, the ratio in
Equation (2.68) is 1, the log of which is 0 yielding a mutual infor-
mation I(X,Y) = 0.

50

2.8 Readings

1. J. Fridrich. Digital image forensic using sensor noise. IEEE
Signal Processing Magazine, 26(2):26-37, 2009.

2. M.K. Johnson and H. Farid. Exposing digital forgeries through
chromatic aberration. In ACM Multimedia and Security
Workshop, Geneva, Switzerland, 2006.

3. A.C. Popescu and H. Farid. Exposing digital forgeries in
color filter array interpolated images. IEEE Transactions
on Signal Processing, 53(10):3948-3959, 2005.

51

3. Pixel-Based Forensics

3.1 Resampling

3.2 Cloning

3.3 Thumbnails

3.4 Problem Set

3.5 Solutions

3.6 Readings

3.1 Resampling

Consider the creation of a digital forgery that shows a pair of fa-
mous movie stars, rumored to have a romantic relationship, walk-
ing hand-in-hand. Such a photograph could be created by splicing
together individual images of each movie star and overlaying the
digitally created composite onto a sunset beach. In order to cre-
ate a convincing match, it is often necessary to re-size, rotate, or
stretch portions of the images. This process requires re-sampling
the original image onto a new sampling lattice. Although this
re-sampling is often imperceptible, it introduces specific correla-
tions into the image, which when detected can be used as evidence
of digital tampering. We describe the form of these correlations,
and how they can be automatically detected in any portion of an
image.

Figure 3.1 Upsampling

a 1-D signal.

Consider a 1-D discretely-sampled signal f(x) with m samples,
Figure 3.1(a). The number of samples in this signal can be in-
creased or decreased by a factor p/q to n samples in three steps:

1. up-sample: create a new signal fu(x) with pm samples, where
fu(px) = f(x), x = 1, 2, ...,m, and fu(x) = 0 otherwise,
Figure 3.1(b).

2. interpolate: convolve fu(x) with a low-pass filter:
fi(x) = fu(x) ⋆ h(x), Figure 3.1(c).

3. down-sample: create a new signal fd(x) with n samples,
where fd(x) = fi(qx), t = 1, 2, ..., n. Denote the re-sampled
signal as g(x) ≡ fd(x), Figure 3.1(d).

Different types of re-sampling algorithms (e.g., linear, cubic) differ
in the form of the interpolation filter h(x) in step 2. Since all three
steps in the re-sampling of a signal are linear, this process can
be described with a single linear equation. Denoting the original
and re-sampled signals in vector form, f and g, respectively, re-
sampling takes the form:

g = Ap/qf , (3.1)

52

where the n × m matrix Ap/q embodies the entire re-sampling
process. For example, the matrix for up-sampling by a factor of
4/3 using linear interpolation (Figure 3.1) has the form:

A4/3 =



















1 0 0 0
0.25 0.75 0 0
0 0.50 0.50 0
0 0 0.75 0.25
0 0 0 1

. . .



















. (3.2)

Depending on the re-sampling rate, the re-sampling process will in-
troduce correlations of varying degrees between neighboring sam-
ples. For example, consider the up-sampling of a signal by a factor
of two using linear interpolation. In this case, the re-sampling ma-
trix takes the form:

A2/1 =



















1 0 0
0.5 0.5 0
0 1 0
0 0.5 0.5
0 0 1

. . .



















. (3.3)

Here, the odd samples of the re-sampled signal g take on the values
of the original signal f , i.e., g2i−1 = fi, i = 1, . . . ,m. The even
samples, on the other hand, are the average of adjacent neighbors
of the original signal:

g2i = 0.5fi + 0.5fi+1, (3.4)

where i = 1, . . . ,m−1. Note that since each sample of the original
signal can be found in the re-sampled signal, i.e., fi = g2i−1 and
fi+1 = g2i+1, the above relationship can be expressed in terms of
the re-sampled samples only:

g2i = 0.5g2i−1 + 0.5g2i+1. (3.5)

That is, across the entire re-sampled signal, each even sample is
precisely the same linear combination of its adjacent two neigh-
bors. In this simple case, at least, a re-sampled signal could be
detected (in the absence of noise) by noticing that every other
sample is perfectly correlated to its neighbors. To be useful in a
general forensic setting we need, at a minimum, for these types of
correlations to be present regardless of the re-sampling rate.

Consider now re-sampling a signal by an arbitrary amount p/q.
In this case we first ask, when is the ith sample of a re-sampled

53

signal equal to a linear combination of its 2N neighbors, that is:

gi
?
=

N
∑

k=−N

αkgi+k, (3.6)

where αk are scalar weights (and α0 = 0). Re-ordering terms, and
re-writing the above constraint in terms of the re-sampling matrix
yields:

gi −
N
∑

k=−N

αkgi+k = 0 (3.7)

(ai · f) −
N
∑

k=−N

αk(ai+k · f) = 0 (3.8)



ai −
N
∑

k=−N

αkai+k



 · f = 0, (3.9)

where ai is the ith row of the re-sampling matrix Ap/q, and f is the

original signal. We see now that the ith sample of a re-sampled
signal is equal to a linear combination of its neighbors when the ith

row of the re-sampling matrix, ai, is equal to a linear combination
of the neighboring rows,

∑N
k=−N αkai+k.

For example, in the case of up-sampling by a factor of two, Equa-
tion (3.3), the even rows are a linear combination of the two ad-
jacent odd rows. Note also that if the ith sample is a linear com-
bination of its neighbors then the (i− kp)th sample (k an integer)
will be the same combination of its neighbors, that is, the corre-
lations are periodic. It is, of course, possible for the constraint of
Equation (3.9) to be satisfied when the difference on the left-hand
side of the equation is orthogonal to the original signal f . While
this may occur on occasion, these correlations are unlikely to be
periodic.

Given a signal that has been re-sampled by a known amount and
interpolation method, it is possible to find a set of periodic samples
that are correlated in the same way to their neighbors. Consider
again the re-sampling matrix of Equation (3.2). Here, based on
the periodicity of the re-sampling matrix, we see that, for example,
the 3rd, 7th, 11th, etc. samples of the re-sampled signal will have
the same correlations to their neighbors.

54

Example 3.1 Describe how the third row of Equation (3.2) is correlated to the

first, second, fourth, and fifth rows (i.e., what is α1, α2, α4, α5?). Give an

intuition for why the fourth and fifth rows are not similarly correlated to their

neighboring rows.

The specific form of the correlations can be determined by finding
the neighborhood size, N , and the set of weights, α, that satisfy:
ai =

∑N
k=−N αkai+k, Equation (3.9), where ai is the ith row of the

re-sampling matrix and i = 3, 7, 11, etc. If, on the other-hand, we
know the specific form of the correlations, α, then it is straight-
forward to determine which samples satisfy gi =

∑N
k=−N αkgi+k,

Equation (3.7).

In practice, of course, neither the re-sampling amount nor the
specific form of the correlations are typically known. In order to
determine if a signal has been re-sampled, we employ the expecta-
tion/maximization algorithm (EM) to simultaneously estimate a
set of periodic samples that are correlated to their neighbors, and
the specific form of these correlations.

Recall that the expectation-maximization algorithm (EM) is a
two-step iterative algorithm: (1) in the E-step the probability of
each sample belonging to each model is estimated; and (2) in the
M-step the specific form of the correlations between samples is
estimated.

In the E-step, the residual error for the first model is:

r1(i) = gi −
N
∑

k=−N

αkgi+k. (3.10)

Assuming that the probability of observing a sampled generated
by model M1 follows a Gaussian, the likelihood then takes the
form:

w1(i) = Pr(α | r1(x, y)) =
e−r2

1(i)/σ

e−r2
1(i)/σ + 1/δ

, (3.11)

where a uniform distribution is assumed for the probability of
observing a sample generated by the outlier model, M2.

In the M-step, a new estimate of α is computed using weighted
least squares, by minimizing the following quadratic error function:

E(α) =
∑

i

w(i)



gi −
N
∑

k=−N

αkgi+k





2

. (3.12)

55

This error function is minimized by computing the gradient with
respect to α, setting the result equal to zero, and solving for α,
yielding:

α = (GT WG)−1GT Wg. (3.13)

where, if N = 2, for example, the vector g is:

g = (g3 g4 g5 . . .)T , (3.14)

and where the matrix G is:

G =











g1 g2 g4 g5

g2 g3 g5 g6

g3 g4 g6 g7
...

...
...

...











, (3.15)

and W is a diagonal weighting matrix with w(i) along the diagonal.
The E-step and the M-step are iteratively executed until a stable
estimate of α is achieved.

Shown below are the results of running EM on the original and
re-sampled signals of Figure 3.1.

Figure 3.2 Upsampling

a 2-D image.

Shown on the top of this figure is the original signal where each
sample is annotated with its probability of being correlated to its
neighbors (the first and last two samples are not annotated due to
border effects - a neighborhood size of five (N = 2) was used in this
example). Similarly, shown on the bottom is the re-sampled signal
and the corresponding probabilities. In the later case, the periodic
pattern is obvious, where only every 4th sample has probability 1,
as would be expected from an up-sampling by a factor of 4/3. As
expected, no periodic pattern is present in the original signal.

The extension to 2-D images is relatively straight-forward. As
with 1-D signals, the up-sampling or down-sampling of an image
is still linear and involves the same three steps: up-sampling, in-
terpolation, and down-sampling - these steps are simply carried
out on a 2-D lattice. And as with 1-D signals, the re-sampling of
an image introduces periodic correlations.

56

Consider, for example, the simple case of up-sampling by a factor
of two. Shown in Figure 3.2 is, from top to bottom, a portion of
an original 2-D sampling lattice, the same lattice up-sampled by a
factor of two, and a subset of the pixels of the re-sampled image.
Assuming linear interpolation, these pixels are given by:

y2 = 0.5y1 + 0.5y3 (3.16)

y4 = 0.5y1 + 0.5y7 (3.17)

y5 = 0.25y1 + 0.25y3 + 0.25y7 + 0.25y9, (3.18)

where y1 = x1, y3 = x2, y7 = x3, y9 = x4. Note that of all the
pixels of the re-sampled image in the odd rows and even columns
(e.g., y2) will all be the same linear combination of their two hor-
izontal neighbors. Similarly, the pixels of the re-sampled image in
the even rows and odd columns (e.g., y4) will all be the same linear
combination of their two vertical neighbors. That is, the correla-
tions are, as with the 1-D signals, periodic. And in the same way
that EM was used to uncover these periodic correlations with 1-D
signals, the same approach can be used with 2-D images.

57

3.2 Cloning

Figure 3.3 An altered

photo with cloning (top)

and the original photo

(bottom).

A common form of photo manipulation is to copy and paste por-
tions of an image to replicate an object or conceal a person in
a scene, Figure 3.3. The presence of identical (or virtually iden-
tical) regions in an image can, therefore, be used as evidence of
tampering.

Given any two regions in an image, it is a simple matter to deter-
mine how similar they are using any standard measure of image
similarity (e.g., root mean square distance). Searching all possi-
ble pairs of regions and region sizes in even a modest-sized image,
however, is computationally intractable. In addition, changes in
geometry or color of the cloned region further increases the com-
plexity of the search. The complexity of the search for cloned
regions can be reduced by operating on salient image features, as
opposed to pixels. One such approach is described here [3].

The popular scale invariant feature transform (SIFT) extracts
salient keypoints and associates with each keypoint a 128 dimen-
sional feature vector extracted from the histograms of image gra-
dients in a local neighborhood. In order to achieve scale and rota-
tion invariance the size of the neighborhood is determined by the
dominant scale of the keypoint, and all gradients are aligned with
the keypoint’s dominant orientation. In order to achieve some in-
variance to color changes, the feature vector is normalized to unit
length.

An initial matching of keypoints is then computed by finding, for
each keypoint, a matching keypoint with minimal Euclidean dis-
tance (L2 norm) between corresponding feature vectors.

The random sample consensus algorithm (RANSAC) is then used
to find the largest subset of matching keypoints. To begin, we con-
sider the case when the cloned regions are only translated copies
of each other. The RANSAC algorithm is a three-step iterative
algorithm: (1) a random group of three or more matched key-
points are selected, pi and qi, i ≥ 3; (2) the optimal transla-
tion between these matched points is estimated by minimizing
‖pi − (qi + t)‖2, where t = (tx ty) is the 2-D translation vector;
and (3) all remaining matched keypoints are classified as inliers
if ‖pi − (qi + t)‖2 is less than a specified threshold, and outliers
otherwise. These three steps are repeated a specified number of
times. The RANSAC algorithm returns the largest set of matched
keypoints (inliers) as a possible cloned region.

58

Example 3.2 Show that the translation t that minimizes the least-squares er-
ror ‖pi − (qi + t)‖2 is:

t =
1

N

N
∑

i=1

pi − qi (3.19)

This basic framework can easily be extended to consider the case
when the cloned region has undergone a geometric distortion (e.g., ro-
tation or scaling). This is done by estimating in step 2 of the
RANSAC algorithm an affine M and translation t transformation
between matched keypoints: ‖pi−(Mqi+t)‖2, where M is a 2×2
affine matrix.

Figure 3.4 Clone detec-

tion.

Shown in Figure 3.4 are the results of clone detection for the image
in the top panel of Figure 3.3. The red/green and yellow/blue color
coding corresponds to the detected regions.

59

3.3 Thumbnails

A thumbnail version of the full resolution image is often embed-
ded in an image’s JPEG header. This thumbnail is created at the
time of recording through a series of filtering operations, contrast
adjustment, and compression. The specific choices for these op-
erations differ between camera manufacturers and photo-editing
software and can therefore be used as a signature for image au-
thentication.

Given a full resolution image f(x, y), the thumbnail is created
by a series of six steps: crop, pre-filter, down-sample, post-filter,
contrast and brightness adjustment, and JPEG compression. If
the original resolution image is of a different aspect ratio than the
thumbnail, then the image needs to either be padded or cropped
accordingly. The amount of padding or cropping is specified by
four parameters cl, cr, ct, cb, where cl and cr correspond to the
padding/cropping on the left and right, and ct and cb on the top
and bottom, Figure 3.5. A positive value corresponds to a padding
(with a pixel value of 0), and a negative value corresponds to a
cropping.

Figure 3.5 Creating the crop boundary for the full resolution image f(x, y).

Top row: create an initial crop boundary f̂0(x, y) so that its aspect ratio

matches the thumbnail t(x, y); down-sample to create t̂0(x, y); align with the

actual thumbnail t(x, y) by scaling and translating by M = (sx, sy , ∆x, ∆y) to

yield t̂(x, y). Bottom row: adjust the initial crop boundary f̂0(x, y) by M to

yield the desired crop boundary f̂(x, y). The crop boundary is specified by the

margins cl, cr, ct, cb.

60

Denoting the cropped image as f̂(x, y), the next four processing
steps are specified as follows:

t(x, y) = α
(

D{f̂(x, y) ⋆ h1(x, y)} ⋆ h2(x, y)
)

+ β, (3.20)

where t(x, y) is the thumbnail, h1(·) is the pre-filter, D{·} is the
down-sampling operator, h2(·) is the post-filter, ⋆ is the convo-
lution operator, and α and β are the multiplicative contrast and
additive brightness adjustment terms, respectively. The pre-filter
is typically a low-pass filter applied to avoid spatial aliasing prior
to down-sampling, and the optional post-filter is typically a sharp-
ening filter. In the final step, the thumbnail is JPEG compressed
with a specified quantization table. In order to simplify this model,
a series of assumptions are made:

• the pre-filter is assumed to be a circularly symmetric Gaus-
sian, exp(−(x2 + y2)/σ2), with width σ

• the pre-filter is unit sum

• the post-filter is 3 × 3 pixels in size

• the post-filter is symmetric (h2(x, y) = h2(−x, y) and h2(x, y) =
h2(x,−y)), yielding a filter of the form (a b a ; b c b ; a b a)

• the post-filter is unit-sum, constraining c = 1 − (4a + 4b).

With these constraints, the full model for creating a thumbnail
is specified by 11 processing parameters: 2 for the size of the
thumbnail, 4 for the cropping/padding, 1 for the pre-filter, 2 for
the post-filter, 2 for the contrast and brightness. In addition, there
are 128 compression parameters: the JPEG quantization table is
specified by two 8×8 tables corresponding to the quantization for
the luminance and chrominance channels (see also Section 1.3).2

This yields a total of 139 model parameters. The estimation of
these model parameters is described next.

In the first step of thumbnail construction, a rectangular cropping
boundary relative to the full resolution image is specified. This
cropping boundary is determined by anisotropically scaling and
translating a bounding box of the same size as the full resolution
image such that the cropped and downsampled image matches the
extracted thumbnail, Figure 3.5.

The cropping parameters are estimated by first specifying an ini-
tial boundary that has the same aspect ratio as the thumbnail,

2It is assumed that the two chrominance channels employ the same quan-
tization table.

61

are scaled to encompass the maximum image dimension, and are
translated such that the image is centered within the boundary,
Figure 3.5. The full resolution image f(x, y) is then cropped ac-
cording to this boundary, padded with zeros (where necessary),
and downsampled to yield an initial thumbnail:

t̂0(x, y) = D{f̂0(x, y)}, (3.21)

where f̂0(x, y) is the initial cropped image, and the downsam-
pling rate is max(Nx/nx, Ny/ny), where (Nx, Ny) and (nx, ny) are
the image and thumbnail dimensions, respectively. This initial
thumbnail is then anisotropically scaled and translated to match
the extracted thumbnail t(x, y):

t(x, y) = t̂0(sxx + ∆x, syy + ∆y), (3.22)

where (sx, sy) and (∆x,∆y) are the scaling and translation param-
eters. These parameters are estimated using a coarse-to-fine dif-
ferential registration technique (see Section 7.1). This registration
is performed on a grayscale version of the color thumbnail. The
scaling and translation parameters are then used to specify the
cropping boundary for the full resolution image. Specifically, the
coordinates of the four corners of the initial cropped image f̂0(x, y)
are scaled and translated3 by (sx, sy) and (∆x,∆y), yielding the

desired rectangular cropping boundary f̂(x, y), Figure 3.5. This
boundary is parametrized by the horizontal and vertical margins
cl, cr, ct, and cb, specified as a percentage of the image dimensions,
Figure 3.5. When down-sampling f̂(x, y), the sampling rate in the
horizontal and vertical directions must be independently adjusted
so that the final dimensions match that of the thumbnail t(x, y).

Next, the pre-filter h1(·), post-filter h2(·), and contrast and bright-
ness terms α and β are estimated by minimizing the following error
function:

E1(h1, h2) =
∑

x,y

[

t(x, y) − α
(

D{f̂(x, y) ⋆ h1(x, y)} ⋆ h2(x, y)
)

− β
]2

. (3.23)

This error function is only specified in terms of the pre- and post-
filter, and not the contrast and brightness. Given a pair of filters,
the contrast and brightness are estimated by minimizing the fol-
lowing error function:

E2(α, β) =
∑

x,y

[

t(x, y) − (αt̂h(x, y) + β)
]2

, (3.24)

3Because the translation parameters (∆x, ∆y) are specified in thumbnail
coordinates, they must be scaled by the downsampling rate between f̂0(x, y)
and t̂0(x, y).

62

where t̂h(x, y) = D{f̂(x, y) ⋆ h1(x, y)} ⋆ h2(x, y). This error func-
tion is minimized using standard least-squares estimation. The
summation in E1(·) and E2(·) are performed over all three color
channels of the thumbnail. The error function E1(·) is minimized
using a brute-force search over the filter parameters, where on
each iteration of this search, the error function E2(·) is minimized
analytically to yield the best contrast and brightness terms for the
specified filters. These parameters are refined using an iterative
Nelder-Mead minimization, which is bootstrapped with the results
of the brute-force minimization.

In practice, we have found that the minimization of E1(·) is slightly
more effective when performed in the Fourier domain. Specifically,
we minimize:

E1(h1, h2) =
∑

ωx,ωy

W (ωx, ωy)
(

‖T (ωx, ωy)‖ − ‖T̂ (ωx, ωy)‖
)2

(3.25)

where T (·) is the Fourier transform of the actual thumbnail t(·),
T̂ (·) is the Fourier transform of our constructed thumbnail α(D{f̂ ⋆
h1}⋆h2)+β, and ‖ ·‖ denotes the magnitude of the Fourier trans-
form. This error function is frequency weighted with a highpass
filter, W (·), because after the initial alignment of Equation (3.22)
the low-frequencies are already well aligned.

Lastly, the thumbnail dimensions and 128 thumbnail compression
parameters are extracted directly from the JPEG header. Since
the original thumbnail t(·) was compressed with these parameters,
we must also compress our estimates of the thumbnail during the
parameter estimation stages described above. Specifically, t̂0(·) is
compressed prior to estimating the scaling and translation param-
eters, and t̂h(·) is compressed prior to estimating the contrast and
brightness terms.

Because the absolute value of the contrast and brightness terms
may depend on the underlying image content, these parameters
are combined into a single binary-valued parameter correspond-
ing to the presence or absence of contrast/brightness adjustment.
Specifically, a camera is said to apply a contrast/brightness adjust-
ment if the camera’s contrast deviates by more than 0.075 from
unity, or if the brightness deviates by more than 0.05 from zero
(assuming a luminance scale of [0, 1]).

In [1], 1, 514 images spanning 142 cameras of different make and
model were analyzed. Cameras of the same make and model some-
times vary their image and thumbnail size and quantization table
(variations in the thumbnail size and quantization table can, for

63

example, be due to differences in firmware). Because these varia-
tions affect the overall thumbnail parametrization, we partitioned
the 1, 514 images into 245 “camera classes” containing images from
the same make, model, thumbnail size and thumbnail quantization
table.

Two thumbnail models were considered to be equivalent if their
integer-valued parameters (contrast/brightness, size, quantization
table) were the same and if their real-valued parameters (crop
boundary, pre-filter, post-filter) were within the specified thresh-
olds described above. Cameras were then grouped into equivalence
classes of identical models. From these images, 40.8% of the cam-
eras are in an equivalence class of size one (i.e., are unique), 9.8%
are in an equivalence class of size two, 8.2% are in an equivalence
class of size three, and the largest equivalence class is of size 48,
with 19.6% of the cameras. There is only one class of size 48
and it contains 42 Canon Powershots and 6 Canon Digital Ixus of
varying models. And lastly, an image was saved with Photoshop
CS3 at each of 13 possible JPEG quality settings. The thumbnail
parameters were estimated for each image and compared to the
245 camera classes. None of the Photoshop thumbnail parameters
were shared by any of the camera classes. This implies that any
photo-editing with Photoshop can be exposed by simply examin-
ing an image’s thumbnail.

64

3.4 Problem Set

1. You will find five images on the course webpage. Determine
which of these images were up-sampled by a factor of 2.

www.cs.dartmouth.edu/farid/Hany Farid/Teaching/Teaching.html

65

3.5 Solutions

Example 3.1 α1 = −1/6, α2 = 2/3, α3 = 2/3, and α4 = −1/6.

Example 3.2 The least-squares system in t = (tx ty)T is:





















1 0
...

...
1 0
0 1
...

...
0 1





















(

tx
ty

)

=























p1
x − q1

x
...

pn
x − qn

x

p1
y − q1

y
...

pn
y − qn

y























Mt = b.

The least-squares solution is t = (MT M)−1MTb, where:

(MT M)−1MT =

















(

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

)

















1 0
...

...

1 0

0 1
...

...

0 1

































−1

(

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

)

=

(

N 0

0 N

)−1(

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

)

=

(

1/N 0

0 1/N

)(

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

)

=

(

1/N . . . 1/N 0 . . . 0

0 . . . 0 1/N . . . 1/N

)

,

from which:

t = (MT M)−1MT
b =

(

1/N . . . 1/N 0 . . . 0

0 . . . 0 1/N . . . 1/N

)



















p1
x − q1

x

...

pn
x − qn

x

p1
y − q1

y

...

pn
y − qn

y



















.

To yield the solution:

tx =
1

N

N
∑

i=1

pi
x − qi

x

ty =
1

N

N
∑

i=1

pi
y − qi

y

66

3.6 Readings

1. E. Kee and H. Farid. Digital image authentication from
thumbnails. In SPIE Symposium on Electronic Imaging, San
Jose, CA, 2010.

2. M. Kirchner and T. Gloe. On resampling detection in re-
compressed images. In IEEE Workshop on Information Foren-
sics and Security, pages 21-25, 2009.

3. X. Pan and S. Lyu. Region duplication detection using im-
age feature matching. IEEE Transactions on Information
Forensics and Security, 5(4):857-867, 2010.

4. A.C. Popescu and H. Farid. Exposing digital forgeries by de-
tecting traces of re-sampling. IEEE Transactions on Signal
Processing, 53(2):758-767, 2005.

67

4. Statistical-Based Forensics

4.1 PCA †

4.2 LDA †

4.3 CG or Photo?

4.4 CG or Photo:
Perception

4.5 Problem Set

4.6 Solutions

4.7 Readings

4.1 Principal Component Analysis (PCA) †

Principal component analysis (PCA) is the classic approach to re-
ducing the complexity of analyzing high-dimensional data by pro-
jection into a lower-dimensional linear subspace. PCA projects

Figure 4.1

Dimensionality

reduction from 2-D

(blue) to 1-D (red).

data onto axes of maximal data variance. In so doing, the dimen-
sionality of data is reduced while minimizing the loss of informa-
tion or distortion. Shown in the top panel of Figure 4.1 are data
in a 2-D space. Shown in the bottom panel is this data projected
onto a 1-D linear subspace (black line) as determined by PCA.

Denote column vectors xi ∈ Rn, i = 1, ..., N as the input data.
The overall mean is:

µ =
1

N

N
∑

i=1

xi (4.1)

The zero-meaned data is packed into a n × N matrix:

M = (x1 − µ x2 − µ . . . xN − µ) (4.2)

The n × n covariance matrix is computed as:

C = MMT . (4.3)

The principle components are the eigenvectors ej of the covariance
matrix (i.e., Cej = λjej), where the eigenvalue, λj is proportional
to the variance of the original data along the jth eigenvector. The
dimensionality of each xi is reduced from n to p by projecting (via
an inner product) each xi onto the top p eigenvalue-eigenvectors.
The resulting p-dimensional vector is the reduced-dimension rep-
resentation.

Example 4.1 If the dimensionality of n is larger than the number of data points

N , then the eigenvectors of the smaller covariance MT M can be computed.

Show that if ej is the eigenvector of MT M , then the desired eigenvectors of

the covariance matrix MMT is Mej .

Note that by formulating the problem of dimensionality reduction
in terms of maximizing projected variance, it is being implicitly

68

assumed that the original data is Gaussian distributed. Significant
deviations of data from this assumption can yield highly undesir-
able results in which significant distortions are introduced into the
projected data.

69

4.2 Linear Discriminant Analysis (LDA) †

Linear Discriminant Analysis (LDA) is the standard approach to
multi-class classification. LDA projects data onto a linear sub-
space so that the within-class scatter (specifically, the within-class
variance) is minimized and the across-class scatter is maximized.
Shown in Figure 4.2 are two classes of data in a 2-D space (red
and blue solid points), and their projection onto an axis that is
optimal for classification (red and blue open circles). Note that in

Figure 4.2 Two-class

LDA.

this 1-D space, the data are perfectly separated and can be clas-
sified with a simple threshold. Novel data are projected onto the
same axis and classified by comparing against a threshold.

For simplicity a two-class LDA is described – the extension to
multiple classes is straight-forward. Denote column vectors xi,
i = 1, ..., Nx and yj , j = 1, ..., Ny as training data from each of
two classes. The within-class means are defined as:

µx =
1

Nx

Nx
∑

i=1

xi, and µy =
1

Ny

Ny
∑

j=1

yj . (4.4)

The between-class mean is defined as:

µ =
1

Nx + Ny





Nx
∑

i=1

xi +

Ny
∑

j=1

yj



 . (4.5)

The within-class scatter matrix is defined as:

Sw = MxMT
x + MyM

T
y , (4.6)

where, the ith column of matrix Mx contains the zero-meaned ith

exemplar given by xi−µx. Similarly, the jth column of matrix My

contains yj − µy. The between-class scatter matrix is defined as:

Sb = Nx(µx − µ)(µx − µ)T + Ny(µy − µ)(µy − µ)T . (4.7)

Let e be the maximal generalized eigenvalue-eigenvector of Sb and
Sw (i.e., Sbe = λSwe). The training data xi and yj are projected
onto the one-dimensional linear subspace defined by e (i.e., xT

i e

and yT
j e). This projection simultaneously minimizes the within-

class scatter while maximizing the between-class scatter.

Once the LDA projection axis is determined from the training
set, a novel exemplar, z, from the testing set is classified by first
projecting onto the same subspace, zTe. In the simplest case, the
class to which this exemplar belongs is determined via a simple
threshold.

70

In the case of a two-class LDA, we are guaranteed to be able
to project onto a one-dimensional subspace (i.e., there will be at
most one non-zero eigenvalue). In the case of a N -class LDA, the
projection may be onto as high as a N − 1-dimensional subspace.

By formulating the optimization in terms of maximizing projected
variance, it is being implicitly assumed that the original data is
Gaussian distributed. Significant deviations of data from this as-
sumption can result in poor classification results.

Example 4.2 Sketch two data classes in 2-D that are completely separated,

but for which LDA completely fails to separate the data.

71

4.3 Computer Generated or Photographic?

Computer graphics rendering software is capable of generating
highly realistic images that can be difficult to differentiate from
photographic images. However, because computer generated (CG)
images are rendered under idealized models of geometry, lighting,
and camera optics and sensors, it is likely that their underlying
statistics will differ from those of photographic images. To this
end, we describe a method for differentiating between CG and
photographic images based on based on first- and higher-order
wavelet statistics.

ωx

ωy

HV D

HV D

2 2 2

1 1 1

Figure 4.3 Spatial fre-

quency decomposition of

QMF.

The decomposition of images using basis functions that are local-
ized in spatial position, orientation, and scale (e.g., wavelet) have
proven extremely useful in image compression, image coding, noise
removal, and texture synthesis. One reason is that such decompo-
sitions exhibit statistical regularities that can be exploited. The
image decomposition described here is based on separable quadra-
ture mirror filters (QMFs) [4] (a close relative to wavelets). As
illustrated in Figure 4.3, this decomposition splits the frequency
space into multiple scales, and orientations (a vertical, a horizon-
tal, and a diagonal subband). For a color (RGB) image, the de-
composition is applied independently to each color channel. The
resulting vertical, horizontal, and diagonal subbands for scale i
are denoted as V c

i (x, y), Hc
i (x, y), and Dc

i (x, y) respectively, where
c ∈ {r, g, b}.

The distribution of coefficients in each subband are characterized
by the first four order statistics (mean, variance, skewness, and
kurtosis) of the subband coefficient histograms at each orienta-
tion, scale, and color channel. These statistics form the first half
of the statistical model. While these statistics describe the basic
coefficient distributions, they are unlikely to capture the strong
correlations that exist across space, orientation, and scale. For ex-
ample, salient image features such as edges tend to orient spatially
in certain direction and extend across multiple scales. These im-
age features result in substantial local energy across many scales,
orientations, and spatial locations. As such, a strong coefficient in
a horizontal subband may indicate that its left and right spatial
neighbors in the same subband will also have a large value. Sim-
ilarly, if there is a coefficient with large magnitude at scale i, it
is also very likely that its “parent” at scale i + 1 will also have a
large magnitude.

72

In order to capture some of these higher-order statistical corre-
lations, a second set of statistics are collected that are based on
the errors in a linear predictor of coefficient magnitude. For the
purpose of illustration, consider first a vertical band of the green
channel at scale i, V g

i (x, y). A linear predictor for the magnitude
of these coefficients in a subset of all possible spatial, orientation,
scale, and color neighbors is given by:

|V g
i (x, y)| = w1|V g

i (x − 1, y)| + w2|V g
i (x + 1, y)|

+ w3|V g
i (x, y − 1)| + w4|V g

i (x, y + 1)|
+ w5|V g

i+1(x/2, y/2)| + w6|Dg
i (x, y)|

+ w7|Dg
i+1(x/2, y/2)| + w8|V r

i (x, y)|
+ w9|V b

i (x, y)|, (4.8)

where | · | denotes absolute value and wk are the scalar weights.
This linear relationship can be expressed more compactly in ma-
trix form as:

v = Qw, (4.9)

where v contains the coefficient magnitudes of V g
i (x, y) strung out

into a column vector (to reduce sensitivity to noise, only magni-
tudes greater than 1 are considered), the columns of the matrix
Q contain the neighboring coefficient magnitudes as specified in
Equation (4.8), and w = (w1 ... w9)

T . The weights w are deter-
mined by minimizing the following quadratic error function:

E(w) = ‖v − Qw‖2 (4.10)

using standard least-squares to yield:

w = (QT Q)−1QTv. (4.11)

Given the large number of constraints (one per pixel) in only nine
unknowns, it is generally safe to assume that the 9 × 9 matrix
QT Q will be invertible.

Given the linear predictor, the log error between the actual coef-
ficient and the predicted coefficient magnitudes is:

p = log(v) − log(|Qw|), (4.12)

where the log(·) is computed point-wise on each vector component.
As with the coefficient statistics, the mean, variance, skewness,
and kurtosis of this error distribution are collected. This process
is repeated for scales i = 1, ..., n− 1, and for the subbands V r

i and

73

V b
i , where the linear predictors for these subbands are of the form:

|V r
i (x, y)| = w1|V r

i (x − 1, y)| + w2|V r
i (x + 1, y)|

+ w3|V r
i (x, y − 1)| + w4|V r

i (x, y + 1)|
+ w5|V r

i+1(x/2, y/2)| + w6|Dr
i (x, y)|

+ w7|Dr
i+1(x/2, y/2)| + w8|V g

i (x, y)|
+ w9|V b

i (x, y)|, (4.13)

and

|V b
i (x, y)| = w1|V b

i (x − 1, y)| + w2|V b
i (x + 1, y)|

+ w3|V b
i (x, y − 1)| + w4|V b

i (x, y + 1)|
+ w5|V b

i+1(x/2, y/2)| + w6|Db
i (x, y)|

+ w7|Db
i+1(x/2, y/2)| + w8|V r

i (x, y)|
+ w9|V g

i (x, y)|. (4.14)

A similar process is repeated for the horizontal and diagonal sub-
bands. As an example, the predictor for the green channel takes
the form:

|Hg
i (x, y)| = w1|Hg

i (x − 1, y)| + w2|Hg
i (x + 1, y)|

+ w3|Hg
i (x, y − 1)| + w4|Hg

i (x, y + 1)|
+ w5|Hg

i+1(x/2, y/2)| + w6|Dg
i (x, y)|

+ w7|Dg
i+1(x/2, y/2)| + w8|Hr

i (x, y)|
+ w9|Hb

i (x, y)|, (4.15)

and

|Dg
i (x, y)| = w1|Dg

i (x − 1, y)| + w2|Dg
i (x + 1, y)|

+ w3|Dg
i (x, y − 1)| + w4|Dg

i (x, y + 1)|
+ w5|Dg

i+1(x/2, y/2)| + w6|Hg
i (x, y)|

+ w7|V g
i (x, y)| + w8|Dr

i (x, y)|
+ w9|Db

i (x, y)|. (4.16)

For the horizontal and diagonal subbands, the predictor for the red
and blue channels are determined in a similar way as was done for
the vertical subbands, Equations (4.13)-(4.14). For each oriented,
scale and color subband, a similar error metric, Equation (4.12),
and error statistics are computed.

For a multi-scale decomposition with scales i = 1, ..., n, the total
number of basic coefficient statistics is 36(n−1) (12(n−1) per color
channel), and the total number of error statistics is also 36(n−1),
yielding a grand total of 72(n−1) statistics. These statistics form

74

the feature vector to be used to discriminate between CG and
photographic images.

From the measured statistics of a training set of images labeled
as CG or photographic, our goal is to build a classifier that can
determine to which category a novel test image belongs. The most
basic approach is to employ a two-class linear discriminant analysis
(LDA), Section ??.

In [2] a database of 40, 000 photographic and 6, 000 CG images
were collected from a variety of on-line sources, from which the
coefficient and error statistics were extracted. To accommodate
different image sizes, only the central 256 × 256 region of each
image was considered. For each image region, a four-level three-
orientation QMF pyramid was constructed for each color channel,
from which a 216-dimensional feature vector (72 per color channel)
of coefficient and error statistics was collected.

From the 46, 000 feature vectors, 32, 000 photographic and 4, 800
CG feature vectors were used to train the LDA. The remaining
feature vectors were used to test the classifier. In the training
stage, the classifier correctly classified 58.7% and 99.4% of the
photographic and CG images In the testing stage, the classifier
correctly classified 54.6% and 99.2% of the photographic and CG
images. A non-linear support vector machine (SVM) had better
performance, correctly classifying 66.8% and 98.8% of the photo-
graphic images and CG images.

The asymmetry in the classification is by design because in a legal
setting, classifying a CG as photographic has more severe impli-
cations than mis-classifying a photographic image as CG [1]. The
relative classification accuracies can be controlled by adjusting the
LDA threshold or SVM parameters.

75

4.4 Computer Graphics or Photographic: Perception

The past few decades have seen tremendous advances in computer
graphics rendering software and hardware. These advances have
led to remarkable theatrical releases that blur the line between re-
ality and fantasy. At the same time, this technology has resulted in
challenging legal situations. Most notably, the 1996 Child Pornog-
raphy Prevention Act expanded the prohibition on child pornog-
raphy to include not only pornographic images of actual children
but also any computer generated (CG) images that simulate a
minor engaging in sexually explicit conduct. This ruling was sub-
sequently challenged, and in 2002 the U.S. Supreme Court found
that portions of the CPPA were overly broad and infringed on
the first amendment (Ashcroft v. Free Speech Coalition). This
new ruling classified computer generated child pornography, the
creation of which does not involve an actual child, as protected
speech. The ability to distinguish between protected (CG) and
illegal (photographic) material has, therefore, become essential.

When an image is not of sufficient quality or resolution to undergo
a statistical analysis, Section 4.3, we must rely on a visual exam-
ination. We describe a perceptual study that tests the ability of
the average user to distinguish CG from photographic images of
people [1].

Thirty CG images were downloaded from two popular computer
graphics websites. The people depicted in these images vary in
age, gender, race, pose, and lighting. As a control set, thirty
high-resolution photographic images were downloaded that closely
matched the CG images in terms of age, gender, race, and pose.
The background was manually deleted from each CG and photo-
graphic image so that observers could only use the rendered or
photographed person to make their judgments.

Because the sizes of the CG and photographic images varied sig-
nificantly, each image was cropped to a square aspect-ratio and
down-sampled so that the area of the person depicted was 122, 600
pixels (approximately 350 × 350 pixels). This down-sampling had
the added benefit of largely removing any JPEG artifacts in the
original JPEG image. The image was then saved as the highest
quality JPEG.

Each CG and photographic image was then color adjusted to
match the brightness (mean) and contrast (variance) of each lu-
minance and chrominance channel. This brightness and contrast

76

Figure 4.4 CG (left) and photographic (right) images.

77

matching ensured that observers could not classify images based
on systematic differences in simple low-level image statistic (as
they could if, for example, the CG images generally had a higher
contrast than their photographic counterparts).

The cropped, masked, down-sampled, and brightness and contrast
adjusted images are shown in Figure 4.4, where the paired CG and
photographic images are shown side-by-side.

In addition to testing the ability of human observers to classify
images as CG or photographic, the impact of resolution was also
tested. Shown in Figure 4.5 is a CG image at its original resolution,
and down-sized by a factor of 0.025, 0.050, 0.100, 0.250, and 0.500
along each dimension. Because the images were initially scaled to
match the area of the person depicted, the absolute size of these
images depends on content. Across all 60 CG and photographic
images, the average size in pixels are: 13 × 13, 27 × 27, 54 × 54,
109 × 109, 218 × 218, and 436 × 436.

Figure 4.5 A CG image

at six resolutions.

Four hundred and thirty six observers were recruited through
Amazon’s Mechanical Turk crowd sourcing utility and asked to
rank each of 30 images of varying resolution, quality, and color as
either CG or photographic.

Observer reliability is characterized as the probability that an im-
age is in fact photographic when an observer believes it to be
photographic. This measure is adopted because in a legal setting
it is the most critical measure in assessing a defendant’s guilt or
innocence. This measure can be expressed as the following con-
ditional probability, where R denotes the user response and I the
image category (both variables can take on the value of “CG” or
“photo”):

P (I = photo|R = photo). (4.17)

This conditional probability can be estimated directly from the
observer responses.

The reliability of photographic classification is, from smallest to
largest scale, 62.1%, 64.8%, 73.1%, 79.6%, 84.7%, and 79.5%. An
interesting and somewhat surprising result is that observers con-
sistently perform better at one-half resolution than the full reso-
lution. It is speculated that performance at the highest resolution
is lower because the fine details in computer generated images are
so accurate that observers take their presence as evidence of a
photographic image. At one-half resolution, however, these de-

78

tails are not visible, and so observers rely on other cues which,
interestingly, are more distinguishing.

In addition to the reliability of judging that an image is a photo-
graph, it is also useful to know the reliability of judging that an
image is CG. By replacing “photo” with “CG” in Equation (4.17),
the conditional probability that an image is CG if an observers
says it is CG is given by P (I = CG|R = CG). This reliability is,
from smallest to largest scale, 60.25%, 72.51%, 88.11%, 90.48%,
94.42%, and 92.28%. These results are valuable in interpreting
the reliability of photograph classification. If, for example, ob-
servers were highly conservative in classifying an image as photo,
then they would have a high reliability for photographs but low
reliability for CG. This is clearly not the case since observers have
similar reliability for judging photographs and CG.

It seems very likely that the accuracies reported here are a lower
bound on human performance. The observers were given no train-
ing and no incentive to perform well. Most decisions were made
within five seconds. Compared with the types of images encoun-
tered in forensic settings, the images were relatively impoverished,
containing only a single person depicted from the neck up against
a blank background. A full body figure interacting with the envi-
ronment or other people is far more difficult to render photoreal-
istically. But while observer performance can likely be improved,
there is little doubt that with time rendering technologies will also
improve.

79

4.5 Problem Set

1. Build a two-class LDA classifier that distinguishes between
the following two classes of images.

• Class 1: Generate 1000 grayscale random noise images
of size 128 × 128 using MatLab’s rand function.

• Class 2: Generate 1000 grayscale random noise images
of size 128×128 using MatLab’s rand function, and blur
each image with the following 1-D separable blur filter
(1 4 6 4 1) /16 (see MatLab’s conv function).

• As a statistical feature vector compute the mean and
variance of the result of convolving each image with the
following 1-D high-pass filter (1 −2 1) (after con-
volving and before computing the mean and variance,
eliminate a few pixel boundary along the image border
to avoid edge artifacts).

• Train a LDA on 750 images from class 1 and class 2,
and test on the remaining 250 images from each class.

• Report the training and testing accuracy.
• Display the 2-D feature vectors for the images in class

1 and 2 before and after projection onto the 1-D LDA
projection axis.

80

4.6 Solutions

Example 4.1 The eigenvectors ej of the covariance matrix MT M
satisfy MT Mej = λjej. Left-multiplying this equality by M
yields:

M(MT Mej) = λjMej

MMT (Mej) = λj(Mej).

That is, the vector Mej is an eigenvector of the desired covariance
matrix MMT , where ej is an eigenvector of MT M .

Example 4.2 There are many possible configurations of data for
which LDA will fail to separate the classes. Here is one example
where the red open circles and blue filled circles denote different
classes. Although these classes are perfectly separated in 2-D,
any 1-D linear projection through this 2-D space will completely
inter-mix data from the two classes.

81

4.7 Readings

1. H. Farid and M.J. Bravo. Perceptual Discrimination of Com-
puter Generated and Photographic Faces. Digital Investiga-
tion, 2011 (in press).

2. S. Lyu and H. Farid. How realistic is photorealistic? IEEE
Transactions on Signal Processing, 53(2):845850, 2005.

3. T-T Ng, S-F Chang, and M-P Tsui. Lessons learned from
online classification of photorealistic computer graphics and
photographs. In IEEE Workshop on Signal Processing Ap-
plications for Public Security and Forensics, 2007.

4. E.P. Simoncelli and E.H. Adelson. Subband image coding,
chapter Subband transforms, pages 143192. Kluwer Aca-
demic, 1990.

82

5. Geometric-Based Forensics

5.1 Camera
Model †

5.2 Calibration †

5.3 Lens
Distortion †

5.4 Rectification

5.5 Composite

5.6 Reflection

5.7 Shadow

5.8 Reflection
Perception

5.9 Shadow
Perception

5.10 Problem Set

5.11 Solutions

5.12 Readings

5.1 Camera Model †

Under an ideal pinhole camera model, the perspective projection
of arbitrary points P in 3-D world coordinates is given, in homo-
geneous coordinates, by:





x
y
s



 = λ





αf β c1

0 f c2

0 0 1







R | t













X
Y
Z
1









(5.1)

p = λKMP, (5.2)

where p is the 2-D projected point in homogeneous coordinates,
which in non-homogeneous coordinates is (x/s y/s), λ is a scale
factor, K is the intrinsic matrix, and M is the extrinsic matrix.
Within the extrinsic matrix, R is a 3 × 3 rotation matrix, and t

is a 3× 1 translation vector. Within the intrinsic matrix, f is the
focal length, α is the aspect ratio, (c1, c2) is the principle point
(the projection of the camera center onto the image plane), and β
is the skew.

For simplicity, it is typically assumed that the pixels are square
(α = 1, β = 0). This is a reasonable assumptions for most modern-
day cameras. With this assumption, the intrinsic matrix simplifies
to:

K =





f 0 c1

0 f c2

0 0 1



 . (5.3)

The camera model in Equation (5.2) specifies the perspective pro-
jection of arbitrary 3-D points from world to image coordinates.
In the special case when the world points are constrained to a
planar surface, the projection takes the form:





x
y
s



 = λ





f 0 c1

0 f c2

0 0 1







 r1 r2 t









X
Y
1



 (5.4)

p = λKMP (5.5)

p = HP, (5.6)

83

where p is the 2-D projected point in homogeneous coordinates,
and P, in the appropriate coordinate system, is specified by 2-D
coordinates in homogeneous coordinates. As before, λ is a scale
factor, K is the intrinsic matrix, M is a now 3×3 extrinsic matrix
in which r1, r2 and r1 × r2 are the columns of the 3 × 3 rotation
matrix that describes the transformation from world to camera
coordinates, and as before, t is a 3×1 translation vector. The 3×3
matrix H, referred to as a homography, embodies the projection
of a planar surface.

Example 5.1 Show that if Z is a constant in Equation (5.2), then this imaging

model is the same as the model in Equation (5.6).

84

5.2 Calibration†

Recall from the previous section that a planar homography H is
a scaled product of an intrinsic, K, and extrinsic, M , matrix:
H = λKM . It can be desirable to factor a homography into these
components in order to determine the intrinsic camera parameters.

It is straightforward to show that r1 = 1
λK−1h1 and r2 = 1

λK−1h2

where h1 and h2 are the first two columns of the matrix H. The
constraint that r1 and r2 are orthogonal (they are columns of a
rotation matrix) and have the same norm (unknown due to the
scale factor λ) yields two constraints on the unknown intrinsic
matrix K:

rT
1 r2 = 0

hT
1 (K−T K−1)h2 = 0, (5.7)

and

rT
1 r1 − rT

2 r2 = 0

hT
1 (K−T K−1)h1 − hT

2 (K−T K−1)h2 = 0. (5.8)

With only two constraints, it is possible to estimate the principal
point (c1, c2) or the focal length f , but not both. If, however, the
focal length is known, then it is possible to estimate the principal
point.

For notational simplicity we solve for the components of
Q = K−T K−1, which contain the desired coordinates of the prin-
cipal point and the assumed known focal length:

Q =
1

f2





1 0 −c1

0 1 −c2

−c1 −c2 c2
1 + c2

2 + f2



 . (5.9)

In terms of Q, the first constraint, Equation (5.7), takes the form:

h1h2 + h4h5 − (h2h7 + h1h8)c1 − (h5h7 + h4h8)c2

+h7h8(c
2
1 + c2

2 + f2) = 0, (5.10)

Note that this constraint is a second-order polynomial in the co-
ordinates of the principal point, which can be factored as follows:

(c1 − α1)
2 + (c2 − β1)

2 = γ2
1 , (5.11)

where:

α1 = (h2h7 + h1h8)/(2h7h8), (5.12)

β1 = (h5h7 + h4h8)/(2h7h8), (5.13)

γ2
1 = α2

1 + β2
1 − f2 − (h1h2 + h4h5)/(h7h8). (5.14)

85

Similarly, the second constraint, Equation (5.8), takes the form:

h2
1 + h2

4 + 2(h2h8 − h1h7)c1 + 2(h5h8 − h4h7)c2

−h2
2 − h2

5 + (h2
7 − h2

8)(c
2
1 + c2

2 + f2) = 0, (5.15)

or,

(c1 − α2)
2 + (c2 − β2)

2 = γ2
2 , (5.16)

where:

α2 = (h1h7 − h2h8)/(h
2
7 − h2

8), (5.17)

β2 = (h4h7 − h5h8)/(h
2
7 − h2

8), (5.18)

γ2
2 = α2

2 + β2
2 − (h2

1 + h2
4 − h2

2 − h2
5)/(h

2
7 − h2

8) − f2.(5.19)

Both constraints, Equations (5.11) and (5.16) are circles in the de-
sired coordinates of the principal point c1 and c2, and the solution
is the intersection of the two circles.

For certain homographies this solution can be numerically unsta-
ble. For example, if h7 ≈ 0 or h8 ≈ 0, the first constraint becomes
numerically unstable. Similarly, if h7 ≈ h8, the second constraint
becomes unstable. In order to avoid these instabilities, an error
function with a regularization term can be introduced. We start
with the following error function to be minimized:

E(c1, c2) = g1(c1, c2)
2 + g2(c1, c2)

2, (5.20)

where g1(c1, c2) and g2(c1, c2) are the constraints on the principal
point given in Equations (5.10) and (5.15), respectively. To avoid
numerical instabilities, a regularization term is added to penalize
deviations of the principal point from the image center (0, 0) (in
normalized coordinates). This augmented error function takes the
form:

E(c1, c2) = g1(c1, c2)
2 + g2(c1, c2)

2 + ∆(c2
1 + c2

2), (5.21)

where ∆ is a scalar weighting factor. This error function is a
nonlinear least-squares problem, which can be minimized using a
Levenberg-Marquardt iteration. The image center (0, 0) is used as
the initial condition for the iteration.

If, on the other hand, we assume that the principal point is the
image center (0, 0), then the focal length f can be estimated. In
this case, the intrinsic matrix simplifies to:

K =





f 0 0
0 f 0
0 0 1



 , (5.22)

86

to yield a homography of the form:

H = λ





f 0 0
0 f 0
0 0 1



 (r1 r2 t) . (5.23)

Left-multiplying by K−1 yields:







1
f 0 0

0 1
f 0

0 0 1






H = λ (r1 r2 t) (5.24)







1
f 0 0

0 1
f 0

0 0 1











h1 h2 h3

h4 h5 h6

h7 h8 h9



 = λ (r1 r2 t) (5.25)

As before, because r1 and r2 are the first two columns of a rotation
matrix, their inner product, rT

1 ·r2, is zero, leading to the following
constraint:

[(1
f

0 0

0 1
f

0

0 0 1

)(

h1

h4

h7

)]T

·
[(1

f
0 0

0 1
f

0

0 0 1

)(

h2

h5

h8

)]

= 0 (5.26)

(h1 h4 h7)







1
f2 0 0

0 1
f2 0

0 0 1











h2

h5

h8



 = 0. (5.27)

The focal length is estimated by solving the above linear system
for f :

f =

√

−h1h2 + h4h5

h7h8
. (5.28)

The additional constraint that r1 and r2 are each unit length,
rT
1 · r1 = rT

2 · r2, can also be used to estimate the focal length.

Example 5.2 The scale factor λ can be determined by exploiting the unit norm

constraint on the columns of the rotation matrix. Describe how to estimate

this scale factor.

If there is no relative rotation between the world and camera co-
ordinate systems, then there is an inherent ambiguity between the
world to camera translation in X and Y and the position of the
principal point, and between the translation in Z (depth) and the
focal length. As such, the factorization of the homography is not
unique in the case of a fronto-parallel view.

87

5.3 Lens Distortion†

The imaging model described in the previous two sections assumes
an idealized pinhole camera. In practice, however, cameras have
multiple lenses that can deviate substantially from this model.
Most significantly, lenses introduce geometric distortion whereby
straight lines in the world appear curved in the image.

Figure 5.1 Barrel

and pin cushion lens dis-

tortion.

Geometric lens distortions can be modeled with a one-parameter
radially symmetric model. Given an ideal undistorted image fu(x, y),
the distorted image is denoted as fd(x̃, ỹ), where the distorted spa-
tial parameters are given by:

x̃ = x + κxr2 and ỹ = y + κyr2, (5.29)

where r2 = x2+y2, and κ controls the amount of distortion. Shown
in Figure 5.1 are the results of distorting a rectilinear grid with
a negative (barrel distortion) and positive (pincushion distortion)
value of κ.

This model assumes that the center of the image coincides with
the principal axis of the lens. If, however, this is not the case,
then it is necessary to add additional parameters to the model
to account for a spatial offset of the distortion center. This new
model takes the form:

x̃ = x + κ(x − cx)r2 and ỹ = y + κ(y − cy)r
2, (5.30)

where r2 = (x − cx)2 + (y − cy)
2, and (cx, cy) corresponds to the

center of the distortion (i.e., the principal point).

Lens distortion should be removed when considering the geometric
techniques described in this chapter so that the image formation
more closely matches Equation (5.2). Lens distortion can be man-
ually estimated and removed by distorting an image according to
Equation (5.29) or (5.30) until lines that are known to be straight
in the world appear straight in the image. For the one-parameter
model, this is relatively easy to do. For the three-parameter model,
however, this manual calibration can be difficult and should be
automated. This can be done by specifying curved lines in the
image that are known to be straight in the world, and searching
the three model parameters until the curved lines are mapped to
straight lines.

88

5.4 Rectification

Note that, unlike the 3 × 4 projection matrix in Equation (5.2),
the 3× 3 planar homography in Equation (5.6) is invertible. This
implies that if the homography H can be estimated, then the
original world coordinates P can be determined from the projected
image coordinates p.

It is straight-forward to see that p × HP = 0, where × denotes
cross product. Specifically, the cross product is defined as:

a × b = n‖a‖‖b‖ sin(θ), (5.31)

where n is mutually orthogonal to a and b, and θ is the angle
between a and b. If a = b, then θ = 0 and a × b = 0. This
identity yields the following:

p× HP = 0 (5.32)




x
y
s



×




h1 h2 h3

h4 h5 h6

h7 h8 h9









X
Y
Z



 =





0
0
0



 (5.33)





x
y
s



×




h1X + h2Y + h3Z
h4X + h5Y + h6Z
h7X + h8Y + h9Z



 =





0
0
0



 , (5.34)

where it can be assumed that Z = 1 and s = 1 because the
homography will only be estimated to within an unknown scale
factor. Evaluating the cross product on the left-hand side yields:





y(h7X + h8Y + h9Z) − s(h4X + h5Y + h6Z)
s(h1X + h2Y + h3Z) − x(h7X + h8Y + h9Z)
x(h4X + h5Y + h6Z) − y(h1X + h2Y + h3Z)



 =





0
0
0



 .(5.35)

Re-ordering the terms yields a linear system Ah = 0, where the
matrix A is:
(

0 0 0 −sX −sY −sZ yX yY yZ

sX sY sZ 0 0 0 −xX −xY −xZ

−yX −yY −yZ xX xY xZ 0 0 0

)

, (5.36)

and:

h = (h1 h2 h3 h4 h5 h6 h7 h8 h9)T (5.37)

Given the known coordinates of a point, P, on a plane in the
world and its corresponding projected coordinates, x, the above
system seemingly provides three constraints in the nine unknowns
of h. Note, however, that the rows of the matrix A are not linearly

89

independent (the third row is a linear combination of the first two
rows). As such, this system provides only two constraints in the
nine unknowns. Because the homography can only be estimated to
within an unknown scale factor, the number of unknowns reduces
from nine to eight.

As such, in order to solve for the projective transformation ma-
trix H, four or more points with known coordinates P and p are
required. The coordinates of these points are placed into the rows
of matrix A to yield the following quadratic error function to be
minimized:

Figure 5.2 A an original

photo (top), a magnified

view of the license plate

(middle), and the pla-

nar rectified license plate

(bottom).

E(h) = ‖Ah‖2. (5.38)

Note that minimizing this function using least-squares will lead to
the degenerate solution h = 0. In order to avoid this degenerate
solution we constrain h to have unit sum ‖h‖2 = 1 (hence the scale
ambiguity in estimating the homography). This added constraint
yields a total least-squares optimization. The optimal unit vector
h is the minimal eigenvalue eigenvector of AT A.

With a known projective transformation matrix H, an image can
be warped according to H−1 to yield a rectified image, Figure 5.2.

Although the estimation of H is straight-forward, there are a few
implementation details that should be considered. For the sake of
numerical stability, it is recommended that the image coordinates
p and world coordinates P are transformed so that their respec-
tive centroids are at the origin and that their respective mean
distance from the origin is

√
2. In homogeneous coordinates, this

transformation matrix takes the form:

T =





α 0 −αc1

0 α −αc2

0 0 1



 , (5.39)

where α is the multiplicative scaling and c1 and c2 are the addi-
tive offsets. The homography H estimated using these normalized
coordinates is then transformed back to the original coordinates
as T−1

1 HT2, where T1 and T2 are the transformation matrices for
the image and world coordinates, respectively.

Example 5.3 Show that after the image and world coordinates are transformed

by T1 and T2, Equation (5.39), the estimated homography H should be trans-

formed by T−1
1 HT2.

90

5.5 Composite

When creating a photo composite it is often necessary to trans-
late, scale, rotate, etc. portions of an image. Such image-based
manipulations can change the effective intrinsic camera parame-
ters. Therefore, differences in these estimated parameters can be
used as evidence of tampering.

Figure 5.3 An authentic

and fake photo – the

white dots denote the es-

timated principal points

for each person.

For example, a translation in the image is equivalent to trans-
lating the camera’s principal point. In homogeneous coordinates,
translation is represented by multiplication with a matrix T . With
a horizontal and vertical translation in the image of (d1, d2), the
mapping of planar points in the world P to (translated) image
coordinates p is:

p = THP

= λTKMP

= λ





1 0 d1

0 1 d2

0 0 1









f 0 c1

0 f c2

0 0 1



MP

= λ





f 0 c1 + d1

0 f c2 + d2

0 0 1



MP. (5.40)

That is, translation in the image is equivalent to translating the
principal point. As such this transformation can be detected by
estimating the principal point for different parts of an image, from
which any inconsistencies can be used as evidence of tampering.

Shown in Figure 5.3 is an authentic (top) and fake (bottom) photo.
The plus sign denotes the center of the image, and the two small
white dots denote the estimated principal point for each person.
In the authentic photo, the principal points are similar and near
the image center, while in the fake photo, the principal point for
the man is significantly different than for the woman.

91

5.6 Reflection

Although planar reflecting surfaces do not appear with great fre-
quency in natural environments (aside from lakes and other still
bodies of water), many man-made environments feature mirrors,
windows, computer screens, tabletops, and other flat specular sur-
faces that create reflections. We next consider the nature of the
geometric inconsistencies that arise when fake reflections are in-
serted into a photo or when a photo containing reflections is ma-
nipulated.

Figure 5.4 Geometry of

reflections.

A ray from an observer, C, toward a point, R, in the observed
reflection will strike the reflecting surface at some point, B, and
a ray from that point to the point, P, on the reflected object
will be symmetric about the surface normal with the ray from the
observer, Figure 5.4. A ray between the reflected object and the
apparent location of its reflection must appear to be perpendicular
to the reflecting surface. To see why, consider that to the observer
it appears as if the ray toward the reflecting surface continues
through the surface and strikes a virtual object behind the mirror.
The isosceles triangle formed by the points R, P, and B is bisected
by the plane of the reflecting surface at B and therefore the line
containing R and P must be perpendicular to that plane.

Figure 5.5 Reflection

vanishing point.

The above reasoning applies for all points on reflected objects and
it implies that for a given planar reflecting surface, the set of
lines connecting points on objects to the corresponding points on
their reflections will all appear as if they were rays in the three-
dimensional scene that are perpendicular to the surface and there-
fore mutually parallel. Assuming that the image of the scene was
created by linear perspective projection, the image of these paral-
lel lines will form a bundle that converges to a common vanishing
point, v, Figure 5.5. In the special case where the reflecting sur-
face is parallel to the view-plane normal then the lines will remain
parallel in the image and the vanishing point for these parallel
lines will be at infinity in the direction defined by the lines.

Lines in the image between a point on an object and its reflection
in the surface must all converge to the same point. Further, this
vanishing point is the vanishing point for lines perpendicular to the
surface and any scene elements that are known to be perpendicular
to the reflecting surface must also be consistent with this vanishing
point.

92

Figure 5.6 An authentic

and fake photo with con-

sistent and inconsistent

vanishing points.

Shown in Figure 5.6 are an authentic and fake photo. All three
dinosaurs share a common vanishing point in the authentic photo.
The fake photo was created by combining individual photographs
where the mirror’s position was varied. As a result, each object
has a well-defined reflection vanishing point, but they are mutually
inconsistent. The reflections of the herbivorous dinosaurs corre-
spond to the pictured mirror location. The carnivorous dinosaurs
reflection corresponds to a mirror location that is more rotated
toward the viewer.

93

5.7 Shadow

Since light travels in a straight line, a point on a shadow, its
corresponding point on the object, and the light source all lie
on a single line. Therefore, the light source will always lie on a
line that connects every point on a shadow with its corresponding
point on an object, regardless of scene geometry. In an image, the
projection of these lines will always intersect at the 2-D projection
of the light position.

Figure 5.7

A consistent and an in-

consistent shadow.

Shown in Figure 5.7 is a photo in which seven lines connect points
on a shadow with their corresponding points on the object. All
of these lines intersect at a single point, which in this case can
clearly be seen to be the location of the sun. Also shown in this
figure is a clearly fake shadow where the line deviates significantly
from the intersection point computed from neighboring shadows.
Although all of the shadows in this example are cast onto a single
planar surface, this is not required to perform this simple shadow
analysis: cast shadows on any surface must all intersect at the
2-D projection of the light position. In addition, depending on
the orientation of the camera relative to the scene, the projected
light position can be below the ground plane.

In practice, there are some limitations to this geometric analy-
sis of light position. Care must be taken to select appropriately
matched points on the shadow and the object; this is best achieved
when the object has a distinct shape (e.g., the tip of a cone). If
the dominant light is the sun, then the lines may be nearly par-
allel, making the computation of their intersection vulnerable to
numerical instability.

94

5.8 Reflection Perception

It is natural to question if geometric and mathematical analyses
are required to detect inconsistencies in reflections. After all, the
visual system is remarkable, capable of hyperacuity, rapid scene
understanding, and robust face recognition. We will show, how-
ever, that the visual system can be quite inept at judging the
consistency and inconsistency of reflections.

Figure 5.8 Consistent

(a)-(b) and inconsistent

(c) reflections.

Shown in the Figure 5.8(a) is a rendered 3-D scene containing a red
cone and a mirror. Panel (b) of this figure is the same scene with
the cone displaced relative to the mirror. Panel (c) is a composite
created by replacing the correct reflection in panel (a) with that
from panel (b) to create a physically impossible scene.

Three-dimensional rendered scenes were generated such that the
reflection was either consistent or inconsistent with the scene ge-
ometry. The scenes were rendered with the viewer in one of three
locations relative to the reflective mirror, either 10◦ (nearly fronto-
parallel) or ±60◦ relative to the mirror. For each viewing direc-
tion, the object (red cone) was moved to one of three locations
along the ground plane. The inconsistent scenes were generated
by combining the reflection from one scene with the object from
another, always taken from scenes with the same viewing direc-
tion. Twenty observers were each presented with these scenes (14
consistent and 28 inconsistent) and given unlimited time to deter-
mine if the reflection in each was correct. The average accuracy
over all viewing conditions was only 55.7%, slightly better than
chance. The average response time was 7.6 seconds, indicating
that observers spent a reasonable amount of time inspecting each
scene. These experiments reveal that the visual system is quite
inept at judging the consistency of reflections.

95

5.9 Shadow Perception

It is also natural to question if geometric and mathematical anal-
yses are required to detect inconsistencies in shadows. We will
show that as with reflections, the visual system can be quite inept
at judging the consistency and inconsistency of shadows.

Figure 5.9 Consistent

(a)-(b) and inconsistent

(c) shadows.

Shown in Figure 5.9(a) is a rendered 3-D scene illuminated by a
single light that produces cast shadows on the ground plane and
back wall. Panel (b) of this figure is the same scene with the light
moved to a different location. Panel (c) is a composite created by
combining the back wall from panel (a) and the ground plane from
panel (b) to create a scene with shadows that are inconsistent with
a single light.

One hundred and forty rendered scenes were created such that the
cast shadows were either consistent or inconsistent with a single
light. For the consistent scenes, the light was positioned either
on the left or right side of the room and in one of nine different
locations that varied in distance from the ground plane and from
the back wall. For the inconsistent scenes, the back walls from
scenes with different lighting were interchanged. Twenty observers
were each given unlimited time to judge whether the original and
composite scenes were consistent with a single light. Their per-
formance was nearly perfect (95.5%) for inconsistent scenes that
were the combination of lights from opposites sides of the room
(i.e., the cast shadows ran in opposite directions). For all other
cases, however, observer accuracy was near chance (52.8%). The
average response time was 4.9 seconds, indicating that observers
spent a reasonable amount of time inspecting each scene. These
experiments reveal that the visual system is quite inept at judging
the consistency of cast shadows.

96

5.10 Problem Set

1. Write MatLab code that computes vanishing points from
three or more lines. Specifically, your code should:

• Display an image and allow the user to select any num-
ber of lines in the image.

• Each line can be specified by two user selected points.
• With three or more lines it is highly unlikely that they

will all intersect at a single vanishing point.
• Your code should, therefore, determine the vanishing

point by optimizing an objective function that mini-
mizes the deviation of all pairs of line intersections from
their center of mass, while minimizing the deviation of
the user selected points from their initial values.

• In other words, allow the user selected lines to wiggle a
little bit (but not too much) in order to obtain a well
defined vanishing point.

• You may use MatLab’s built-in optimization fminsearch.
• Compute the vanishing points for each of the images

found on the course webpage:

www.cs.dartmouth.edu/farid/Hany Farid/Teaching/Teaching.html

97

5.11 Solutions

Example 5.1 Without loss of generality, assume that the intrinisc
matrix K is the identity matrix, and that the overall scale factor
λ = 1. The perspective projection model of Equation (5.2), in
non-homogeneous coordinates, takes the form:

pi = RPi + T

pi = R





Xi

Yi

Zi



+ T.

If Z is a constant c then:

pi = R





Xi

Yi

0



+ R





0
0
c



+ T

=



 r1 r2 r3









Xi

Yi

0



+



 r1 r2 r3









0
0
c



+ T

=



 r1 r2 r3









Xi

Yi

0



+





Tx

Ty

Tz + c′





where c′ = r·3 (0 0 c). The third term of the world points Pi

are all zero, therefore the third column of the rotation matrix R
is irrelevant, yielding:

pi =



 r1 r2





(

Xi

Yi

)

+ T′,

where T′ = (Tx Ty Tz + c′)T . Rewriting in homogeneous equa-
tions yields:

pi =



 r1 r2 T′









Xi

Yi

1



 ,

which is the same imaging model as in Equation (5.6).

Example 5.2 Recall the relationship between the first column of
the rotation matrix r1 and the scale factor λ, the intrinsic matrix
K, and the first column of the homography h1:

1

λ
K−1h1 = r1.

98

Imposing the unit norm constraint on r1 yields:

1/λ‖K−1h1‖ = ‖r1‖
1/λ‖K−1h1‖ = 1

λ = ‖K−1h1‖.

Example 5.3 We seek to estimate the homography H that de-
scribes the transformation between image p and world P coordi-
nates:

p = HP.

The normalization of the image and world points, however, means
that we are estimating the following homography:

T1p = HT2P.

The desired homography is therefore simply:

p = (T−1
1 HT2)P.

99

5.12 Readings

1. H. Farid and M.J. Bravo. Image forensic analyses that elude
the human visual system. In SPIE Symposium on Electronic
Imaging, San Jose, CA, 2010.

2. R. Hartley. In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(6), 1997.

3. R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

4. M.K. Johnson and H. Farid. Detecting photographic com-
posites of people. In 6th International Workshop on Digital
Watermarking, Guangzhou, China, 2007.

100

6. Physics-Based Forensics

6.1 2-D Lighting

6.2 2-D Light
Environment

6.3 3-D Lighting

6.4 Lee Harvey
Oswald

6.5 Problem Set

6.6 Solutions

6.7 Readings

6.1 2-D Lighting

Consider the creation of a forgery showing two movie stars, ru-
mored to be romantically involved, walking down a sunset beach.
Such an image might be created by splicing together individual im-
ages of each movie star. In so doing, it is often difficult to exactly
match the lighting effects due to directional lighting (e.g., the sun
on a clear day). Differences in lighting can, therefore, be a telltale
sign of tampering. To the extent that the direction of the light
source can be estimated for different objects/people in an image,
inconsistencies in the lighting direction can be used as evidence of
tampering.

The standard approaches for estimating light source direction be-
gin by making some simplifying assumptions: (1) the surface of
interest is Lambertian (the surface reflects light isotropically); (2)
the surface has a constant reflectance value; (3) the surface is il-
luminated by a point light source infinitely far away; and (4) the
angle between the surface normal and the light direction is between
−90◦ and 90◦. Under these assumptions, the image intensity can
be expressed as:

I(x, y) = R(NT (x, y) · L) + A, (6.1)

where R is the constant reflectance value, L is a 3-vector pointing
in the direction of the light source, N(x, y) is a 3-vector repre-
senting the surface normal at the point (x, y), and A is a constant
ambient light term. The intuition behind the contribution of the
dot product between N and L is that the amount of light that
strikes a surface is proportional to the angle between the surface
normal and light direction.

If we are only interested in the direction of the light source, then
the reflectance term, R, can be considered to have unit-value, un-
derstanding that the estimation of L will only be within an un-
known scale factor. The resulting linear equation provides a single
constraint in four unknowns, the three components of L and the
ambient term A.

With at least four points with the same reflectance, R, and dis-
tinct surface normals, N, the light source direction and ambient

101

term can be solved for using standard least-squares estimation. To
begin, a quadratic error function, embodying the imaging model
of Equation (6.1), is given by:

E(L, A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M









Lx

Ly

Lz

A









−











I(x1, y1)
I(x2, y2)

...
I(xp, yp)











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(6.2)

= ||Mv − b||2 , (6.3)

where || · || denotes vector norm, Lx, Ly, and Lz denote the com-
ponents of the light source direction L, and

M =











Nx(x1, y1) Ny(x1, y1) Nz(x1, y1) 1
Nx(x2, y2) Ny(x2, y2) Nz(x2, y2) 1

...
...

...
...

Nx(xp, yp) Ny(xp, yp) Nz(xp, yp) 1











, (6.4)

where Nx(xi, yi), Ny(xi, yi), and Nz(xi, yi) denote the compo-
nents of the surface normal N at image coordinate (xi, yi). The
quadratic error function above is minimized by differentiating with
respect to the unknown, v, setting the result equal to zero, and
solving for v to yield the least-squares estimate:

v = (MT M)−1MT b. (6.5)

Note that this solution requires knowledge of 3-D surface normals
from at least four distinct points (p ≥ 4) on a surface with the
same reflectance. With only a single image and no objects of
known geometry in the scene, it is not immediately clear from
where these normals will be determined.

Under an assumption of orthographic projection, the z-component
of the surface normal is zero along the occluding contour of an
object, Nz = 0. In addition, the x- and y-components of the
surface normal, Nx and Ny, can be estimated directly from the
image. In this case, the error function of Equation (6.3) takes the
form:

E(L, A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M





Lx

Ly

A



−











I(x1, y1)
I(x2, y2)

...
I(xp, yp)











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(6.6)

= ||Mv − b||2 , (6.7)

102

where,

M =











Nx(x1, y1) Ny(x1, y1) 1
Nx(x2, y2) Ny(x2, y2) 1

...
...

...
Nx(xp, yp) Ny(xp, yp) 1











(6.8)

Figure 6.1 Light di-

rection (yellow arrow) is

inconsistent.

Figure 6.2 Light di-

rection (yellow arrow) is

consistent across Super-

men.

This error function is minimized, as before, using standard least-
squares to yield the same solution as in Equation (6.5), but with
the matrix M taking the form given in Equation (6.8). In this
case, the solution requires knowledge of 2-D surface normals from
at least three distinct points (p ≥ 3) on a surface with the same
reflectance.

Example 6.1 Consider a circle parametrized as c(θ) = (r cos(θ) r sin(θ)).

Give an expression for the 2-D surface normal at any point on the circle.

Shown in Figure 6.1 is a composite photo from which the 2-D
lighting direction was estimated for each person (yellow arrows).
The light direction for the man (Buster Keaton) is 120◦ and for
the woman (Tara Reid) is 62◦. Shown in Figure 6.2 is a photo of
Supermen in which the lighting is consistent, although the photo
is fake: inconsistent lighting is good evidence of fakery, but con-
sistent lighting does not necessarily imply authenticity.

103

6.2 2-D Light Environment

The lighting of a scene can be complex – any number of lights can
be placed in any number of positions, creating different lighting
environments.

Under the assumption of distant lighting, an arbitrary lighting
environment can be expressed as a non-negative function on the
sphere, L(V), where V is a unit vector in Cartesian coordinates
and the value of L(V) is the intensity of the incident light along
direction V. If the object being illuminated is convex, the irradi-
ance (light received) at any point on the surface is due to only the
lighting environment; i.e., there are no cast shadows or interreflec-
tions. As a result, the irradiance, E(N), can be parametrized by
the unit length surface normal N and written as a convolution of
the reflectance function of the surface, R(V,N), with the lighting
environment L(V):

E(N) =

∫

Ω
L(V)R(V,N) dΩ, (6.9)

where Ω represents the surface of the sphere and dΩ is an area dif-
ferential on the sphere. For a Lambertian surface, the reflectance
function is a clamped cosine:

R(V,N) = max (V ·N, 0) , (6.10)

which is either the cosine of the angle between vectors V and N,
or zero when the angle is greater than 90 degrees. This reflectance
function effectively limits the integration in Equation (6.9) to the
hemisphere about the surface normal N. In addition, while we
have assumed no cast shadows, Equation (6.10) explicitly models
attached shadows, i.e., shadows due to surface normals facing away
from the direction V.

The convolution in Equation (6.9) can be simplified by express-
ing both the lighting environment and the reflectance function in
terms of spherical harmonics. Spherical harmonics form an or-
thonormal basis for piecewise continuous functions on the sphere
and are analogous to the Fourier basis on the line or plane. The
first three orders of spherical harmonics are defined in terms of
the surface normal N = (x y z) of a sphere:

Y0,0(N) =
1√
4π

Y1,−1(N) =

√

3

4π
y

104

Y1,0(N) =

√

3

4π
z

Y1,1(N) =

√

3

4π
x

Y2,−2(N) = 3

√

5

12π
xy

Y2,−1(N) = 3

√

5

12π
yz

Y2,0(N) =
1

2

√

5

4π
(3z2 − 1)

Y2,1(N) = 3

√

5

12π
xz

Y2,2(N) =
3

2

√

5

12π
(x2 − y2).

Shown below are the first three orders of spherical harmonics: Y0,0

(row 1), Y1,∗ (row 2), and Y2,∗ (row 3).

The lighting environment expanded in terms of spherical harmon-
ics is:

L(V) =
∞
∑

n=0

n
∑

m=−n

ln,mYn,m(V), (6.11)

where Yn,m(·) is the mth spherical harmonic of order n, and ln,m

is the corresponding coefficient of the lighting environment. Sim-
ilarly, the reflectance function for Lambertian surfaces, R(V,N),
can be expanded in terms of spherical harmonics, and due to its
symmetry about the surface normal, only harmonics with m = 0
appear in the expansion:

R(V,N) =
∞
∑

n=0

rnYn,0

(

(0 0 V · N)T
)

. (6.12)

105

Note that for m = 0, the spherical harmonic Yn,0(·) depends only
on the z-component of its argument.

Convolutions of functions on the sphere become products when
represented in terms of spherical harmonics. As a result, the irra-
diance, Equation (6.9), takes the form:

E(N) =
∞
∑

n=0

n
∑

m=−n

r̂nln,mYn,m(N), (6.13)

where

r̂n =

√

4π

2n + 1
rn. (6.14)

A key observation is that the coefficients r̂n for a Lambertian
reflectance function decay rapidly, and thus the infinite sum in
Equation (6.13) can be well approximated by the first nine terms:

E(N) ≈
2
∑

n=0

n
∑

m=−n

r̂nln,mYn,m(N). (6.15)

Since the constants r̂n are known for a Lambertian reflectance
function, the irradiance of a convex Lambertian surface under ar-
bitrary distant lighting can be well modeled by the nine lighting
environment coefficients ln,m up to order two.

Irradiance describes the total amount of light reaching a point on
a surface. For a Lambertian surface, the reflected light, or ra-
diosity, is proportional to the irradiance by a reflectance term ρ.
In addition, Lambertian surfaces emit light uniformly in all direc-
tions, so the amount of light received by a viewer (i.e., camera) is
independent of the view direction.

A camera maps its received light to intensity through a camera
response function f(·). Assuming the reflectance term ρ is con-
stant across the surface, the measured intensity at a point x in the
image is given by:

I(x) = f(ρtE(N(x))). (6.16)

where E(·) is the irradiance, N(x) is the surface normal at point
x, and t is the exposure time. For simplicity, we assume a linear
camera response, and thus the intensity is related to the irradiance
by an unknown multiplicative factor, which is assumed to have
unit value—this assumption implies that the lighting coefficients
can only be estimated to within an unknown scale factor. Under

106

these assumptions, the relationship between image intensity and
irradiance is simply:

I(x) = E(N(x)). (6.17)

Since, under our assumptions, the intensity is equal to irradiance,
Equation (6.17) can be written in terms of spherical harmonics by
expanding Equation (6.15):

I(x) = l0,0πY0,0(N) + l1,−1
2π
3 Y1,−1(N) + l1,0

2π
3 Y1,0(N)

+ l1,1
2π
3 Y1,1(N) + l2,−2

π
4 Y2,−2(N) + l2,−1

π
4 Y2,−1(N)

+ l2,0
π
4 Y2,0(N) + l2,1

π
4 Y2,1(N) + l2,2

π
4 Y2,2(N). (6.18)

Note that this expression is linear in the nine lighting environ-
ment coefficients, l0,0 to l2,2. As such, given 3-D surface normals
at p ≥ 9 points on the surface of an object, the lighting environ-
ment coefficients can be estimated as the least-squares solution to
the system Mv = b, where the matrix M contains the sampled
spherical harmonics, v is the vector of unknown lighting environ-
ment coefficients, and b is the vector of intensities at p points:

v = (l0,0 l1,−1 . . . l2,2)T (6.19)

b = (I(x1) I(x2) . . . I(xp))T , (6.20)

and

M =









πY0,0(N(x1))
2π
3

Y1,−1(N(x1)) . . . π
4
Y2,2(N(x1))

πY0,0(N(x2))
2π
3

Y1,−1(N(x2)) . . . π
4
Y2,2(N(x2))

...
...

. . .
...

πY0,0(N(xp))
2π
3

Y1,−1(N(xp)) . . . π
4
Y2,2(N(xp))









. (6.21)

The least-squares solution to this system is:

v =
(

MT M
)−1

MT b. (6.22)

This solution requires 3-D surface normals from at least nine points
on the surface of an object. Without multiple images or known
geometry, however, this requirement may be difficult to satisfy
from an arbitrary image.

Under an assumption of orthographic projection, the z-component
of the surface normal is zero along the occluding contour of an
object, Nz = 0. Therefore, the intensity profile along an occluding
contour simplifies to:

I(x) = A + l1,−1
2π
3 Y1,−1(N) + l1,1

2π
3 Y1,1(N)

+ l2,−2
π
4 Y2,−2(N) + l2,2

π
4 Y2,2(N), (6.23)

107

where:

A = l0,0
π

2
√

π
− l2,0

π
16

√

5
π . (6.24)

Note that the functions Yi,j(·) depend only on the x and y com-
ponents of the surface normal N. That is, the five lighting co-
efficients can be estimated from only 2-D surface normals, which
are relatively simple to estimate from a single image. In addition,
Equation (6.23) is still linear in its now five lighting environment
coefficients, which can be estimated as the least-squares solution
to Mv = b, where:

Figure 6.3 Photo com-

posites with inconsistent

lighting.

v = (A l1,−1 l1,1 l2,−2 l2,2)T (6.25)

b = (I(x1) I(x2) . . . I(xp))T (6.26)

and where M is:









1 2π
3

Y1,−1(N(x1))
2π
3

Y1,1(N(x1))
π
4
Y2,−2(N(x1))

π
4
Y2,2(N(x1))

1 2π
3

Y1,−1(N(x2))
2π
3

Y1,1(N(x2))
π
4
Y2,−2(N(x2))

π
4
Y2,2(N(x2))

...
...

...
...

...

1 2π
3

Y1,−1(N(xp))
2π
3

Y1,1(N(xp))
π
4
Y2,−2(N(xp))

π
4
Y2,2(N(xp))









This solution only provides five of the nine lighting environment
coefficients.

Shown in Figure 6.3 are two composites into which the ducks (top)
and football coach (bottom) were inserted into a seemingly un-
likely setting. In each case, the 2-D lighting environment was esti-
mated from various people and ducks in the photo (dashed white
lines). The spheres shown in this same figure are rendered with
the estimated lighting environments, and reveal fairly significant
lighting differences.

108

6.3 3-D Lighting

The estimates of lighting described in the previous section con-
sist of only a subset of the complete lighting information. This
is because it was assumed that 3-D models were not available
and therefore only 2-D surface normals at an object’s occluding
boundary were used. We next describe how to estimate the full
3-D lighting environment in images of people. In order to extract
the required 3-D surface normals, 3-D models are fit to an image
of a person’s head and automatically aligned to an arbitrary head
pose. With such a model the full 3-D light position or lighting
environment can be estimated.

In [1], the authors describe a 3-D morphable model for the analysis
and synthesis of human faces. The model was derived by collecting
a set of 3-D laser scanned faces and projecting them into a lower-
dimensional linear subspace. New faces (geometry, texture/color,
and expressions) are modeled as linear combinations of the result-
ing linear basis.

Figure 6.4

Images (a-b) used to es-

timate the model (d-f).

The 3-D model parameters can be estimated from a paired frontal
and profile view or from only a single frontal view. This esti-
mation requires the manual selection of several fiducial points on
the face (11 on the frontal view and 9 on the profile view), from
which the 3-D model is then automatically estimated. Shown in
Figure 6.4 (a)-(b), for example, is a frontal and profile view with
the selected fiducial points. The estimated model is shown in Fig-
ure 6.4 (d)-(f), which can be seen to be in good agreement with
the original head poses shown in panels (a)-(c).

Once estimated, the 3-D model is registered to the face being
analyzed. This is done by maximizing an objective function over
the camera intrinsic and extrinsic parameters that aligns the 3-D
model to the image of the face. Specifically, we seek the rotation
matrix R, translation vector t, focal length f and camera center
(cx, cy) that maximizes the correlation between the image I(·) and
the rendered model Im(·):

E(R, t, f, cx, cy) = I(x, y) ∗ Im(x, y), (6.27)

where ∗ denotes correlation, the spatial coordinates of the rendered
model Im(·) (x = xs/s and y = ys/s) are given by:





xs

ys

s



 =





f 0 cx

0 f cy

0 0 1







R t













X
Y
Z
1









, (6.28)

109

and (X,Y,Z) are the 3-D coordinates of the face model.

Figure 6.5 Actual

(middle) and estimated

(right) 3-D lighting envi-

ronments.

The error function in Equation (6.27) is maximized as follows. The
3-D model is first manually rotated to approximately align it with
the image I(·). At least three corresponding points are selected
on the model and image (e.g., the center of each eye and base of
the nose), from which the optimal translation is estimated using
standard least-squares. With this initial alignment as a starting
configuration, a brute force search that maximizes Equation (6.27)
is performed over the three rotation parameters, focal length, and
camera center. On each iteration of this search, the translation
vector is estimated as described above. In order to reduce the
effects of lighting, a high-pass filter is applied to both the image
I(·) and rendered model Im(·) prior to computing the correlation
in Equation (6.27).

Once the model has been estimated and registered, 3-D surface
normals and corresponding intensities are used to estimate the
lighting environment as described in the previous sections.

Shown in Figure 6.5 are nine images from which the 3-D lighting
environment was estimated. Shown in the middle column is a
sphere rendered with the actual lighting environment and shown
in the last column is a sphere rendered with the estimated lighting
environment.

110

6.4 Lee Harvey Oswald (case study)

Figure 6.6

Lee Harvey Oswald in his

backyard and a magnified

view of his head.

United States President John F. Kennedy was assassinated on
November 22nd, 1963. Shortly afterwards, Lee Harvey Oswald was
arrested and charged with the crime. Because he was killed before
his trial many questions surrounding the assassination remained
unanswered. Since this time, numerous theories have circulated
suggesting that Oswald acted as part of a larger criminal conspir-
acy involving a variety of government, international, or criminal
groups. Many of these theories point to purported inconsisten-
cies in the events of November 22nd and in the evidence collected
against Oswald. One such example is a photograph of Oswald in
his backyard holstering a pistol and holding a rifle in one hand
and Marxist newspapers in the other, Figure 6.6. Oswald claimed
that this photo was fake. In addition, many have argued that the
photo is riddled with multiple inconsistencies, including inconsis-
tent lighting, shadows, geometry, and proportions.

It may appear that the shadow cast by Oswald’s body onto the
ground, and the shadow under his nose are inconsistent with a sin-
gle light source, Figure 6.6, and hence evidence of photo tamper-
ing. Specifically, the nose appears to be illuminated from above,
and the body seems to be illuminated from Oswald’s upper left.
By measuring the location of the light in this scene, and building
3-D models of Oswald’s face, body, and other parts of the scene,
we can determine if, in fact, these shadows are inconsistent.

In [1], the authors describe a 3-D morphable model for the analysis
and synthesis of human faces. The model was derived by collect-
ing a large set of 3-D laser scanned faces and projecting them into
a lower-dimensional linear subspace. New faces (geometry, tex-
ture/color, and expressions) are modeled as linear combinations
of the resulting low-parameter linear basis. The model parame-
ters can be estimated from a paired profile and frontal image or
from only a single frontal image.

Figure 6.7 A profile and

frontal view of Oswald

(top) used to construct a

3-D model (bottom).

We are fortunate to have access to contemporaneous profile and
frontal views of Oswald in the form of a mugshot taken shortly
after his arrest, Figure 6.7. These photographs provide the ideal
input for constructing a 3-D model from the commercially avail-
able FaceGen, (Singular Inversions). Two views of the resulting
3-D model show a good agreement with the original mugshot photo
in Figure 6.7.

This 3-D head model was combined with a generic articulated 3-D

111

body and rendered in the 3-D modeling software Maya (Autodesk).
The ground plane, fence, and post under the stairs were created
from simple 3-D primitives. The 3-D direction to a distant light
source (i.e., the sun) was estimated as described in the previous
section. The overall scene geometry and camera position were
manually positioned until they matched the original photo.

Shown below is, from left to right, the original photo, our 3-D
rendering, and a superposition of the original photo and the outline
of our rendering. This figure shows a good agreement between the
model and the original photo. Note that in this 3-D model both
the scene geometry and lighting position are estimated, allowing
for both a geometric and lighting analysis, as described next.

Figure 6.8 Oswald’s

head and the 3-D model.

With a 3-D model of the scene geometry and lighting, it is rel-
atively easy to compare the shadows in the original photo and
rendered scene. Shown in Figure 6.8 is a side-by-side comparison
of the shadows. Note that the shadows on the nose, eyes, lower
lip and neck are well matched, as are the shadow cast by the body
onto the ground plane, and the thin sliver of a shadow from the
vertical post onto the ground plane. These shadows, which at first
glance appeared inconsistent, are in fact perfectly consistent with
a single light source.

At first glance it may also appear that Oswald’s chin in the back-
yard photo is too wide to be consistent with his chin in other pho-
tos (e.g., his mugshot) and hence evidence of a photo composite.
Shown in the left column of Figure 6.9 is a photo of Oswald from
his mugshot (top) and from the backyard photo (bottom). The
yellow guidelines are drawn at the point in the top photo where

112

the chin meets the jaw line. Note that the chin appears to be
much wider in the backyard photo. Shown in the right column of
Figure 6.9 are the corresponding 3-D renderings with neutral front

Figure 6.9 Oswald un-

der neutral lighting and

in his backyard.

lighting (top) and lighting to match the backyard photo (bottom).
The yellow guidelines, of the same width as on the left, show the
same apparent widening of the chin. From these 3-D renderings,
it is clear that the apparent widening of the chin is due to the
shading along the chin and jaw, and not to photo manipulation.

113

6.5 Problem Set

1. Write MatLab code that estimates the x− and y− compo-
nents of light direction, as described in Section 5.1. Specifi-
cally, your code should:

• Assume that the object in the image is circular (in order
to simplify the user interface).

• Allow the user to select any number of points along the
contour of the object.

• Fit a circle to this contour.
• Extract analytic estimates of surface normals from which

the 2-D light estimate can be determined.
• Compute the light direction for each of the images found

on the course webpage:

www.cs.dartmouth.edu/farid/Hany Farid/Teaching/Teaching.html

114

6.6 Solutions

Example 6.1 With the circle parametrized as c(θ) = (r cos(θ) r sin(θ))T ,
the tangent along the circle is given by:

dc(θ)

dθ
=

(−r sin(θ)
r cos(θ)

)

.

The surface normal is orthogonal to the tangent, and is computed
by rotating the tangent by 90◦:

N =

(

0 1
−1 0

)(−r sin(θ)
r cos(θ)

)

=

(

r cos(θ)
r sin(θ)

)

.

Shown below is Matlab code for computing and visualizing surface
normals along a unit circle’s boundary.

t = [0 : 10 : 359];

x = cosd(t); % circle

y = sind(t); % circle

nx = cosd(t); % normal

ny = sind(t); % normal

plot(x, y, ’.’);

for k = 1 : length(t)

line([x(k) x(k)+nx(k)], [y(k) y(k)+ny(k)]);

end

axis square;

115

6.7 Readings

1. V. Blanz and T. Vetter. A morphable model for the syn-
thesis of 3D faces. In SIGGRAPH, Computer Graphics Pro-
ceedings, pages 187-194, Los Angeles, CA, 1999.

2. H. Farid. The Lee Harvey Oswald backyard photos: Real or
fake? Perception, 11(38):1731-1734, 2009.

3. M.K. Johnson and H. Farid. Exposing digital forgeries by
detecting inconsistencies in lighting. In ACM Multimedia
and Security Workshop, New York, NY, 2005.

4. M.K. Johnson and H. Farid. Exposing digital forgeries in
complex lighting environments. IEEE Transactions on In-
formation Forensics and Security, 3(2):450-461, 2007.

5. E. Kee and H. Farid. Exposing digital forgeries from 3-D
lighting environments. In IEEE International Workshop on
Information Forensics and Security, Seattle, WA, 2010.

116

7. Video Forensics

7.1 Motion †

7.2 Re-Projected

7.3 Projectile

7.4 Enhancement

7.5 Problem Set

7.6 Solutions

7.7 Readings

7.1 Motion †

Differential motion estimation has proven highly effective at com-
puting inter-frame motion. We model the motion between two se-
quential frames, or portion of frames, f(x, y, t) and f(x, y, t − 1),
with a 6-parameter affine transform:

f(x, y, t) = f(m1x + m2y + m5,m3x + m4y + m6, t − 1), (7.1)

where m1, m2, m3, m4 form the 2× 2 affine matrix A and m5 and
m6 the translation vector t given by:

A =

(

m1 m2

m3 m4

)

and t =

(

m5

m6

)

. (7.2)

With relatively few parameters, the affine model captures a rich
range of motions such as translation, scale, and rotation. The
basic framework described here can easily be extended to accom-
modate higher-order polynomial models that capture a richer set
of motions (or even a lower-order model that models the inter-
frame motion with only a translation). In order to estimate the
affine parameters, we define the following quadratic error function
to be minimized:

E(m) =
∑

x,y∈Ω

[f(x, y, t) − f(m1x + m2y + m5, m3x + m4y + m6, t − 1)]2 (7.3)

where mT = (m1 . . . m6) and where Ω denotes a user specified
region of interest (ROI). Since this error function is non-linear in
its unknowns, it cannot be minimized analytically. To simplify
the minimization, we approximate this error function using a first-
order truncated Taylor series expansion:

E(m) =
∑

x,y∈Ω

[ft − (m1x + m2y + m5 − x)fx − (m3x + m4y + m6 − y)fy]2

=
∑

x,y∈Ω

[

k − c
T
m
]2

(7.4)

where, for notational convenience, the spatial/temporal parame-
ters are dropped, and where the scalar k and vector c are given
as:

k = ft + xfx + yfy (7.5)

cT = (xfx yfx xfy yfy fx fy) . (7.6)

117

The quadratic error function is now linear in its unknowns, m,
and can therefore be minimized analytically by differentiating with
respect to m:

dE(m)

dm
=

∑

Ω

2c
[

k − cT m
]

, (7.7)

setting the result equal to zero, and solving for m to yield:

m =

[

∑

Ω

ccT

]−1 [
∑

Ω

ck

]

. (7.8)

This solution assumes that the first term, a 6×6 matrix, is invert-
ible. This can usually be guaranteed by integrating over a large
enough ROI (Ω) with sufficient image content.

Example 7.1 The Taylor series expansion of a 1-D function f(x) about a point
x = x0 is given by:

f(x) = f(x0) + f (1)(x0)(x − x0) +
f (2)(x − x0)

2

2!
+

f (3)(x − x0)
3

3!
+ . . . , (7.9)

where f (n) denotes the nth-order derivative. Consider modeling the motion

between a pair of 1-D signals with a simple translation ∆: f0(x) = f1(x + ∆).

Using a first-order truncated Taylor series expansion, provide a quadratic error

function that is linear in the unknown parameter ∆. [HINT: expand f1(x+∆)

by first performing a variable substitution y = x+∆ and then expanding about

the point y = x (i.e., ∆ = 0).]

Central to the above motion estimation are the calculation of the
spatial/temporal derivatives. Given a pair of frames f(x, y, t) and
f(x, y, t − 1), these derivatives are computed as follows:

fx(x, y, t) = (0.5f(x, y, t) + 0.5f(x, y, t − 1)) ⋆ d(x) ⋆ p(y) (7.10)

fy(x, y, t) = (0.5f(x, y, t) + 0.5f(x, y, t − 1)) ⋆ p(x) ⋆ d(y) (7.11)

ft(x, y, t) = (0.5f(x, y, t) − 0.5f(x, y, t − 1)) ⋆ p(x) ⋆ p(y), (7.12)

where ⋆ denotes the convolution operator, and d(·) and p(·) are
1-D separable filters:

d(x) = (0.5 −0.5) and p(x) = (0.5 0.5) , (7.13)

and where p(y) and d(y) are the same filters oriented vertically
instead of horizontally.

The required spatial/temporal derivatives have finite support thus
fundamentally limiting the amount of motion that can be esti-
mated. A coarse-to-fine scheme should be adopted in order to

118

contend with larger motions. A L-level Gaussian pyramid is built
for each frame, f(x, y, t) and f(x, y, t− 1). The motion estimated
at pyramid level l is used to warp the frame at the next higher
level l− 1, until the finest level of the pyramid is reached (the full
resolution frame at l = 1). In so doing, large motions are esti-
mated at the coarse levels, and are iteratively refined through the
pyramid levels.

The repeated warping through the pyramid levels can introduce
significant blurring and therefore adversely affect the motion es-
timation at the higher pyramid levels. This can be avoided by
always operating on the original frame. Specifically, if the esti-
mated motion at pyramid level l is m1, m2, m3, m4, m5, and m6,
then the original frame should be warped with the affine matrix
A and the translation vector t given by:

A =

(

m1 m2

m3 m4

)

and t =

(

2l−1m5

2l−1m6

)

. (7.14)

Working through each level of the pyramid requires that the orig-
inal frame will have to be repeatedly warped according to the
motion estimates at each pyramid level. These individual warps
can be accumulated so that the original frame need only undergo
one warp. Specifically, two affine matrices A1 and A2 and corre-
sponding translation vectors t1 and t2 are combined as follows:

A = A2A1 and t = A2t1 + t2, (7.15)

which is equivalent to applying A1 and t1 followed by A2 and
t2. The warped original frame is then decomposed into the next
required pyramid level, and the process repeated through all pyra-
mid levels.

Example 7.2 Show that the application of an affine matrix A1 and translation

t1 followed by another affine matrix A2 and translation t2, is equivalent to

applying the affine matrix and translation vector specified in Equation (7.15).

119

7.2 Re-Projected

Often only hours after their release, major motion pictures can
find their way onto the Internet. A simple and popular way to
create such bootleg video is to record a movie from the theater
screen. Although these video are certainly not of the same qual-
ity as their subsequent DVD releases, increasingly compact and
high resolution video recorders are affording better quality video
recordings.

We describe how to automatically detect a video that was recorded
from a screen. Shown below (right), for example, is a movie scene.

Also shown in this figure (left) is the same scene as viewed on
a theater screen. Note that due to the angle of the video camera
relative to the screen, a perspective distortion has been introduced
into this second recording. We show that this re-projection can
introduce a distortion into the intrinsic camera parameters

Consider the effect of first projecting arbitrary points in 3-D world
coordinates into 2-D image coordinates, and then projecting these
points a second time. The first projection is given by:

p1 = λ1K1M1P. (7.16)

The second planar projection is given by:

p2 = λ2K2M2p1 (7.17)

= λ2K2M2 (λ1K1M1P) (7.18)

= λ2λ1K2M2 (K1M1P) . (7.19)

We assume that the camera skew (the (1, 2) entry in the 3 × 3
intrinsic matrix) in both projection matrices are zero. It will be
shown that a re-projection can yield a non-zero skew in the final
effective intrinsic matrix. As such, significant deviations of the
skew from zero in the estimated intrinsic matrix can be used as
evidence that a video has been re-projected.

120

The final re-projection matrix K2M2K1M1 can be factored into a
product of a scale factor and intrinsic and extrinsic matrices:

K2M2K1M1 = λKM. (7.20)

Expressing each 3×4 extrinsic matrix M1 and M in terms of their
rotation and translation components yields:

K2M2K1(R1 | t1) = λK(R | t)

K2M2K1R1 = λKR. (7.21)

Reshuffling a few terms yields:

K−1K2M2K1R1 = λR

K−1K2M2K1 = λRRT
1 . (7.22)

Note that the right-hand side of this relationship is an orthogonal
matrix – this will be exploited later. On the left-hand side, the
left-most matrix is the inverse of the effective intrinsic matrix:

K−1 =







1
αf − s

αf2
scy−cxf

αf2

0 1
f − cy

f
0 0 1






. (7.23)

And the product of the next three matrices is:

K2M2K1 =





f2 0 0
0 f2 0
0 0 1









m11 m21 t1
m12 m22 t2
m13 m23 t3









f1 0 0
0 f1 0
0 0 1



 ,

=





f1f2m11 f1f2m21 f2t1
f1f2m12 f1f2m22 f2t2
f1m13 f1m23 t3





=





qT
1

qT
2

qT
3



 , (7.24)

where f2 and f1 are the focal lengths of the original projections.
The product of the four matrices on the left-hand side of Equa-
tion (7.22) is then:

K−1K2M2K1 =











(

1
αf q1 − s

αf2 q2 +
scy−cxf

αf2 q3

)T

(

1
f q2 − cy

f q3

)T

qT
3











. (7.25)

Recall that K−1K2M2K1 = λRRT
1 , Equation (7.22), and that

R and RT
1 are each orthonormal. Since the product of two or-

thonormal matrices is orthonormal, K−1K2M2K1 is orthogonal

121

(the rows/columns will not be unit length when λ 6= 1). This
orthogonality constrains the above matrix rows as follows:

q
T
3

(

1

f
q2 −

cy

f
q3

)

= 0 (7.26)

(

1

f
q2 −

cy

f
q3

)T (

1

αf
q1 −

s

αf2
q2 +

scy − cxf

αf2
q3

)

= 0. (7.27)

Solving Equation (7.26) for cy yields:

cy =
qT

3 q2

‖q3‖2
. (7.28)

Substituting for cy into Equation (7.27), followed by some simpli-
fications, yields:

s = f
qT

2 q1‖q3‖2 − (qT
3 q2)(q

T
3 q1)

‖q2‖2‖q3‖2 − (qT
3 q2)2

. (7.29)

Note that the skew, s, is expressed only in terms of the effective
focal length f , the pair of intrinsic matrices K1 and K2, and the
second transformation matrix M2. We can now see under what
conditions s = 0.

First, note that the denominator of Equation (7.29) cannot be
zero. If ‖q2‖2‖q3‖2 − (qT

3 q2)
2 = 0 then, q2 ∝ q3, in which case

K2M2K1 is singular, which it cannot be, since each matrix in this
product is full rank. And, since f 6= 0, the skew is zero only when
the numerator of Equation (7.29) is zero:

q
T
2 q1‖q3‖

2 − (qT
3 q2)(q

T
3 q1) = 0

f2
1 p31p32 − t1t2 + p2

33t1t2 + p31p32t
2
3 − p32p33t1t3 − p31p33t2t3 = 0,(7.30)

where p3i is the ith element of p3 = p1 × p2. There are a few
intuitive cases that can be seen from the above constraint. For
example, if the world to camera rotation is strictly about the z-
axis, then p31 = p32 = 0 and p33 = 1, and the skew s = 0. This
situation arises when the image plane of the second projection is
perfectly parallel to the screen being imaged. As another example,
if t = ±f1p3, then the skew s = 0. This situations arises when the
translation of the second projection is equal to the third column
of the rotation matrix scaled by focal length of the first projection
– a perhaps somewhat unlikely configuration.

Although there are clearly many situations under which s = 0,
simulations suggest that under realistic camera motions, this con-
dition is rarely satisfied. Specifically, we computed the skew,
Equation (7.29), from one million randomly generated camera con-
figurations. The relative position of the second camera to the pla-
nar projection screen was randomly selected with the rotation in

122

the range [−45, 45] degrees, X and Y translation in the range
[-1000,1000], Z translation in the range [4000, 6000], and focal
length in the range [25, 75]. The average skew was 0.295, and
only 48 of the 1, 000, 000 configurations had a skew less than 10−5

(in a similar simulation, the estimated skew for a single projection
is on the order of 10−12).

We next review how to estimate camera skew from a video se-
quence containing a known planar surface.

Let H describe the projection of a planar surface in the video.
Recall that a 3 × 3 planar homography H can be expressed as:

H = λKM = K (r1 r2 | t) . (7.31)

The orthonormality of r1 and r2, yields the following two con-
straints:

rT
1 r2 = 0 and rT

1 r1 = rT
2 r2, (7.32)

which in turn imposes the following constraints on H and K:

(

h11

h12

h13

)T

K−T K−1

(

h21

h22

h23

)

= 0 (7.33)

(

h11

h12

h13

)T

K−T K−1

(

h11

h12

h13

)

=

(

h21

h22

h23

)T

K−T K−1

(

h21

h22

h23

)

. (7.34)

For notational ease, denote B = K−T K−1, where B is a symmetric
matrix parametrized with three degrees of freedom:

B =





b11 b12 0
b12 b22 0
0 0 1



 . (7.35)

Notice that by parametrizing the intrinsic matrix in this way, we
have bundled all of the anomalies of a double projection into the es-
timate of the camera skew. Substituting the matrix B into the con-
straints of Equations (7.33)-(7.34) yields the following constraints:

(

h11h21 h12h21 + h11h22 h12h22

h2
11 − h2

21 2 (h11h12 − h21h22) h2
12 − h2

22

)

(

b11

b12

b22

)

= −

(

h13h23

h2
13 − h2

23

)

.(7.36)

Each image of a planar surface enforces two constraints on the
three unknowns bij. The matrix B = K−TK−1 can, therefore, be
estimated from two or more views of the same planar surface using

123

standard least-squares estimation. The desired skew can then be
determined from the estimated matrix B as:

s = −f
b12

b11
. (7.37)

A cameras skew can be estimated from two or more views of a
planar surface. This approach has the advantage that it affords
a closed-form linear solution, but has the disadvantage that it
only applies to frames that contain a known planar surface. As
described in [3], it is possible to estimate the camera skew without
having to assume a known planar geometry.

Shown below (left) are three frames of 42-frame movie segment.
Superimposed on each frame are 64 features tracked across all
frames. These features were then used to estimate the skew. The
estimated skew for the original movie was 0.029. This 42-frame
segment was then displayed on a 20-inch LCD computer monitor
with 1600 1200 pixel resolution, and recorded with a digital video
camera, three frames of which are shown below (right). A similar
set of features were tracked in this video segment, from which the
skew was estimated. The estimated skew was 0.25, an order of
magnitude larger than the skew from the authentic video.

124

7.3 Projectile

Increasingly sophisticated video editing and special effects soft-
ware has made it possible to create forged video sequences that ap-
pear to contain realistic dynamic motion. For example, video shar-
ing websites are littered with titles like “Seriously Amazing Best
Beer Pong Shots,” “Dude Perfect Amazing Basketball Shots,” and
“Epic Pool Jump.” These videos appear to show spectacular bas-
ketball shots, gravity-defying acrobatics, and the bone-crushing
results of daredevil leaps and jumps. Some of these videos are
real, but many are fake. We describe a forensic technique that
is tailored to determine if video of a purportedly ballistic motion,
such as a ball being thrown or a person jumping through the air, or
a motorcycle soaring off of a ramp, is consistent with the geometry
and physics of a free-falling projectile.

The center of mass of a projectile, in the absence of air resistance or
any other external forces, follows a ballistic trajectory that can be
described in three dimensions with a time-parametrized parabolic
curve:

pt = p0 + vt + 1
2at2, (7.38)

where t denotes time, p0 is the initial position, v is the initial
velocity, and a is the acceleration (due to gravity). In the absence
of any other external forces, the path of the projectile is planar.
Assuming linear perspective projection under a pinhole camera
model, the image of a projectile’s trajectory, in homogeneous co-
ordinates, is:

q̃t = Hpt, (7.39)

where H is a 3× 3 matrix embodying the planar perspective pro-
jection (a homography).

Consider the special case where the optical axis of the camera is
orthogonal to the plane of motion, the focal length is unit length,
and the principal point is the image center. In this case, the z-
component of the velocity is zero, and the x- and z-components
of the acceleration are zero. The trajectory, Equation (7.38), then
simplifies to:





px
t

py
t

pz
t



 =





px
0

py
0

pz
0



+





vx

vy

0



 t +
1

2





0
−g
0



 t2, (7.40)

where g is gravity and the world coordinate system is defined such
that the z-axis is the optical axis and the positive y-axis points

125

upward. In addition, the world to image transformation is simply
q̃t = pt (H = I). In non-homogeneous coordinates, this yields:

q̃x
t =

px
0 + vxt

pz
0

(7.41)

q̃y
t =

py
0 + vyt − 1

2gt2

pz
0

. (7.42)

Note that in this special case the projectile’s path maps to a
parabola in image coordinates, which can be seen more clearly
by rewriting the above equations as:

(

q̃x
t

q̃y
t

)

=





px
0

pz
0

py
0

pz
0



+

(vx

pz
0

vy

pz
0

)

t +
1

2

(

0
−g
pz
0

)

t2. (7.43)

Under an arbitrary homography, however, the image of a projectile
will not necessarily be a parabola. Specifically:

q̃t = Hpt =





h1 h2 h3

h4 h5 h6

h7 h8 h9



pt. (7.44)

In non-homogeneous image coordinates, the projectile takes the
form:

q̃x
t =

h1 · pt

h3 · pt
=

h1 · (p0 + vt + 1
2at2)

h3 · (p0 + vt + 1
2at2)

(7.45)

q̃y
t =

h2 · pt

h3 · pt
=

h2 · (p0 + vt + 1
2at2)

h3 · (p0 + vt + 1
2at2)

, (7.46)

where · is inner product and hi is the ith row of the homography H.
Note that these image coordinates follow a rational parabola de-
scribed by a ratio of second-order polynomials, and cannot be ex-
pressed as a single second-order polynomial as in Equation (7.43).

Figure 7.1 A ballistic

trajectory pt projects to

a rational parabola qt.

The motion of a projectile described above was specified in a
world coordinate system, Equation (7.38), and its projection was
specified in an image coordinate system, Equation (7.39). We
will now specify all coordinates with respect to a common three-
dimensional coordinate system in which the origin is the camera
center, the image plane is f units from the origin (the focal length),
and the optical axis is orthogonal to the image plane. With this
notation, a projectile is specified as pt in Equation (7.38), its pro-
jection is specified as a three-vector qt in which the z-component
qz
t = f , and the camera center, c, is the origin of the three-

dimensional coordinate system, Figure 7.1.

126

For each moment in time t = 1 . . . n, define a line from the camera
center, c, through the image of the projectile’s center of mass, qt,
as:

lt = c + st(qt − c), (7.47)

where st is a parametric variable for the line. If the projectile
pt follows a parabolic trajectory then there exists a value of the
parametric variable at each moment in time that satisfies:

pt = lt (7.48)

p0 + vt + 1
2at2 = c + st(qt − c), (7.49)

for some values of st. Expanding in terms of the individual com-
ponents yields:

px
0 + vxt + 1

2axt2 = cx + st(q
x
t − cx) (7.50)

py
0 + vyt + 1

2ayt2 = cy + st(q
y
t − cy) (7.51)

pz
0 + vzt + 1

2azt2 = cz + st(q
z
t − cz). (7.52)

This system of equations is linear in terms of both the nine un-
knowns that specify the object’s trajectory through space (p0, v,
and a) and the n unknowns that specify the object’s parametric
location along the line from the camera (st). With a sufficient
number of frames (n ≥ 5) where the projectile’s position can be
observed, it is possible to solve for these unknowns by performing
a least-squares fit to the data. However, in the absence of noise,
the linear system will always be rank deficient so that the least-
squares solution is not unique. This deficiency corresponds to a
scale ambiguity in the solution: any solution could be scaled about
the origin and still satisfy the constraints, Figure 7.1

Although the perspective projection of a parabola makes an ideal
model for representing the image of ballistic trajectory, the previ-
ously mentioned scale ambiguity can lead to bad behavior when
data are noisy or if the underlying motion is not actually ballis-
tic. In these cases, the solution may be skewed dramatically in the
otherwise unconstrained part of the solution space. This skew typ-
ically manifests as trajectories in planes that are nearly parallel to
the view lines with unreasonably high velocities and accelerations.

To prevent these degenerate solutions, an optional constraint can
be imposed based on the variation in size of a projectile over time.
With the assumption that the actual projectile is of constant size,
then its projected size in the image is inversely proportional to
the distance between the object and camera center as measured

127

orthogonal to the image plane. Accordingly, the additional con-
straints require that the trajectory’s distance to the image plane
vary based on measurements of the object’s size in the input im-
ages.

Consider a spherical projectile with diameter d at position (x1, y1, z1)
relative to the camera center with the z-axis being perpendicular
to the image plane. The projected size of this projectile will be
d̃1 = fd/z1, where f is the camera focal length. As the projec-
tile moves to another position (x2, y2, z2), the projected size is
d̃2 = fd/z2. The ratio of these projections is d̃2/d̃1 = z1/z2. Note
that this ratio does not depend on the focal length f or diameter
d.

This basic constraint takes the form:

lz1 − cz

lzk − cz
=

d̃k

d̃1

, (7.53)

where cz is the z-component of the camera center c, d̃1 and d̃k are
the measured sizes of the projectile in the image at times t = 1
and t = k, and lz1 and lzk are the z-components of l1 and lk as
defined in Equation (7.47). This constraint expands to:

s1

[

qz
1 − cz

qz
k − cz

]

− sk

[

d̃k

d̃1

]

= 0. (7.54)

Note that this constraint is linear in the unknown parametric vari-
ables s1 and sk. These linear constraints for all k = 2 . . . n can be
included when solving for the trajectory parameters.

All of the constraints can now be assembled into a linear system
of equations. This system can be over-constrained, either because
the data cannot be fit by a parabola or because of noise caused
by small measurement errors. This system can also be under-
constrained due to a scale ambiguity. The following least-squares
solution contends with all of these cases.

The unknown parameters, p0, v, a, and st (t = 1 . . . n), are gath-
ered into a length n + 9 vector:

u = [px
0 vx ax py

0 vy ay pz
0 vz az s1 · · · sn]

T
. (7.55)

The constraints, Equations (7.50)-(7.52), are assembled into a

128

linear system Mu = b where:

M=

















































1 t1
t21
2 0 0 0 0 0 0 cx − qx

1 0 . . . 0

0 0 0 1 t1
t21
2 0 0 0 cy − qy

1 0 . . . 0

0 0 0 0 0 0 1 t1
t21
2 cz − qz

1 0 . . . 0

1 t2
t22
2 0 0 0 0 0 0 0 cx − qx

2 . . . 0

0 0 0 1 t2
t22
2 0 0 0 0 cy − qy

2 . . . 0

0 0 0 0 0 0 1 t2
t22
2 0 cz − qz

2 . . . 0
...

. . .
...

1 tn
t2n
2 0 0 0 0 0 0 0 0 . . . cx − qx

n

0 0 0 1 tn
t2n
2 0 0 0 0 0 . . . cy − qy

n

0 0 0 0 0 0 1 tn
t2n
2 0 0 . . . cz − qz

n

















































(7.56)
and

b = [cx cy cz cx cy cz · · · cx cy cz]T . (7.57)

Figure 7.2 An authentic

video.

If the optional size constraints are used, then M is extended by
appending an additional n− 1 rows with a corresponding number
of zeros appended to b:















0 0 0 0 0 0 0 0 0
qz
1−cz

qz
2−cz − d̃2

d̃1
0 . . . 0

0 0 0 0 0 0 0 0 0
qz
1−cz

qz
3−cz 0 − d̃3

d̃1
. . . 0

...
. . .

...
0 0 0 0 0 0 0 0 0

qz
1−cz

qz
n−cz 0 0 . . . − d̃n

d̃1















. (7.58)

The least-squares solution to the system of constraints is given by
u = M+b, where M+ denotes pseudo-inverse computed as M+ =
VS−1UT, where M = USV is the singular-value decomposition
of M.

Due to the possible scale ambiguity, this solution may not be
unique. This occurs when the smallest-magnitude singular value in
S is zero. If there is no zero singular value then M+b is our final so-
lution. Otherwise the ambiguity is resolved by finding the solution
where ‖a‖ = 9.8m/s2. Let u∗ be the column of V corresponding
to the zero singular value. The final solution is u = M+b + αu∗

where α is selected by solving the quadratic equation:
∥

∥

∥[0 0 ax 0 0 ay 0 0 az 0 · · · 0]T · (M+b + αu∗)
∥

∥

∥

2
= 9.82. (7.59)

This quadratic constraint on the acceleration will give us the scal-
ing that corresponds to its size in the physical world. More im-
portantly it also avoids the trivial solution of u = 0 when b = 0.

129

The estimation of the projectile motion described above yields
two parametrizations of the projectile path. The first is the ini-
tial position, velocity and acceleration (p0, v, a) as specified in
Equation (7.38). The second is a non-parametric representation
specified by the variables st.

Figure 7.3 A fake video.

For authentic video of a ballistic projectile, these representations
should be in agreement, while an imperfectly faked projectile mo-
tion will yield inconsistencies in these representations. We quan-
tify the error in these representations as the average Euclidean
distance between the pair of representations of the projectile mo-
tion:

E =
1

n

n
∑

t=1

‖pt − lt‖ (7.60)

=
1

n

n
∑

t=1

‖(p0 + vt + 1
2
at2) − (c + st(qt − c))‖, (7.61)

where ‖ · ‖ denotes a vector 2-norm. Specifically, an error E above
a specified threshold is taken to be evidence of tampering.

This average error will be large when an overall path does not
correspond to a ballistic trajectory. For situations where only
small parts of an otherwise correct motion have been altered, the
maximum error may also be informative.

Although not described here, this basic formulation is applicable
to the case when the camera is moving, however it is necessary to
estimate the inter-frame camera motion so that the projectile can
be expressed over time in the same coordinate system.

Shown in Figure 7.2 are (from top to bottom) four sample video
frames. Shown in the next panel are two parametrizations of the
estimated trajectory: the parametric trajectory specified by p0,
v, a (filled yellow dots and solid line), and the non-parametric
trajectory specified by the variables st (open blue circles). The
small black dot corresponds to the camera center and the small
red dots correspond to the projection of the projectile in each video
frame. Note that the two parametrizations are in agreement, as
expected for an authentic video. Shown in bottom panel is the
estimated parametric trajectory projected into the image plane
(filled yellow dots) and the tracked position of the projectile (small
red dots). These locations are in agreement, as expected for an
authentic video. Shown in Figure 7.3 are the results for a fake
video. The two parametrizations are not in agreement, and the
estimated and tracked positions in the bottom panel are not in
agreement, revealing this video to be a fake.

130

7.4 Enhancement

The poor image quality of many video surveillance cameras effec-
tively renders them useless for the purposes of identifying a person,
a license plate, etc. Under certain conditions, however, it may be
possible to combine multiple video frames for such identification
tasks.

The goal of video stabilization is to create a new video sequence
where the motion between frames (or parts of a frame) has effec-
tively been removed.

Inter-frame motion between two frames can be estimated as de-
scribed in Section 6.1. For a full video sequence f(x, y, t), t ∈
[1, N], the inter-frame motion is computed between all pairs of
neighboring frames to yield motion estimates mt. With the ROI
(Ω in Equation (7.8)) specified on the first frame, the ROI must be
warped on each successive frame to account for the underlying mo-
tion between frames. The ROI at time t (t > 2) is therefore simply
warped according to the previous frame’s estimated motion. With
the motion estimated between all pairs of neighboring frames, each
frame is warped to align with the last frame of the sequence. Suc-
cessive warps are combined according to Equation (7.15).

Once stabilized, the video sequence is combined to yield a single
high quality image. We assume that the corrupting noise on each
video frame is identically and independently drawn (iid) from a
zero-mean distribution. Under this assumption a temporal mean
or median filter is the optimal approach to removing the noise
– the temporal mean minimizes the L2 norm and the temporal
median minimizes the L1 norm between the true and estimated
value at each pixel. Specifically, denote f(x, y, t), t ∈ [1, N] as
the original video sequence, and f̂(x, y, t) as the stabilized video.
The enhanced frame is estimated by computing a pixel-wise mean
or median across f̂(x, y, t). Although typically comparable, one
temporal filter may give better results than the other depending
on the specific noise characteristics.

Shown in the figure below is one frame of an original video, cor-
rupted video, and enhanced video. In these examples, the motion
estimation was applied to a grayscale version of each color frame,
and the stabilization and enhancement applied separately to each
color channel. The ROI was a rectangular region encompassing
the license plate and face.

131

132

7.5 Problem Set

1. Write MatLab code for computing motion between two video
frames as described in Equation (7.8). You need not imple-
ment the coarse-to-fine portion typically required by differ-
ential motion estimation techniques. Compute the motion
for the image sequences found on the course webpage:

www.cs.dartmouth.edu/farid/Hany Farid/Teaching/Teaching.html

133

7.6 Solutions

Example 7.1 Consider the estimation of the translation ∆ be-
tween a pair of 1-D signals:

f0(x) = f1(x + ∆).

We seek to linearize f1(x + ∆) in order to be able to estimate
∆ using least-squares estimation. We compute the Taylor series
expansion of f1(x + ∆). Let y = x + ∆, and then expand f1(y)
about the point y0 = x (i.e., ∆ = 0):

f1(y) = f1(y0) + f ′
1(y0)(y − y0).

A variable substitution then yields:

f1(x + ∆) = f1(x) + f ′
1(x)(x + ∆ − x)

= f1(x) + f ′
1(x)∆,

which is now linear in the unknown ∆. The quadratic error func-
tion then takes the form:

E(∆) = [f0(x) − (f1(x) + ∆f ′
1(x))]2.

Example 7.2 Consider the application of affine matrix A1 and
translation t1:

A1x + t1,

followed by the application of a second affine matrix A2 and trans-
lation t2:

A2(A1x + t1) + t2 = (A2A1)x + (A2t1 + t2),

which is the same as applying one affine matrix A2A1 and one
translation vector A2t1 + t2.

134

7.7 Readings

1. V. Conotter, J.F. O’Brien, and H. Farid. Exposing Digital
Forgeries in Ballistic Motion. IEEE Transactions on Infor-
mation Forensics and Security, 2011 (in review).

2. H. Farid and J.B. Woodward. Video stabilization and en-
hancement. Technical Report TR2007-605, Department of
Computer Science, Dartmouth College, 2007.

3. W. Wang and H. Farid. Detecting re-projected video. In
10th International Workshop on Information Hiding, Santa
Barbara, CA, 2008.

135

8. Printer Forensics

8.1 Clustering †

8.2 Banding

8.3 Profiling

8.4 Problem Set

8.5 Solutions

8.6 Readings

8.1 Clustering

Consider a weighted graph G = (V,E) with vertices V and edges
E. The weight between vertices u and v is denoted as w(u, v). A
graph can be partitioned into two disjoint groups A and B such
that A ∩ B = Ø and A ∪ B = V . The “cost” associated with
splitting the graph G into two subgraphs, A and B, is the sum
of the weights between all of the vertices in A and B, termed the
cut:

cut(A,B) =
∑

u∈A

∑

v∈B

w(u, v). (8.1)

The optimal bipartioning of a graph is that which minimizes the
cut. Shown in Figure 8.1, for example, is a graph with six vertices.
The weights between vertices colored with the same gray value are
large (solid line), while the other edges have a small weight (dashed
line). The optimal bipartioning, therefore, is one that partitions
the graph along the line labeled “cut”, which severs only low-cost
edges, leaving three vertices in each of A and B.

Figure 8.1 Clustering by

graph cut.

Computing the optimal cut is NP-complete, as there are an expo-
nential number of partitions to consider. There are, however, effi-
cient approximation algorithms. We describe one such technique,
normalized cuts. When minimizing the graph cut, Equation (8.1),
there is a natural tendency to simply cut a small number of low-
cost edges. The normalized cut was introduced to remove this bias
and is defined as:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
, (8.2)

where,

assoc(A,V) =
∑

u∈A

∑

v∈V

w(u, v) (8.3)

and

assoc(B,V) =
∑

u∈B

∑

v∈V

w(u, v). (8.4)

This metric normalizes the cut by the total cost of all edges in
the entire graph, V . As a result, small partitions are penalized.

136

Solving for the optimal normalized cut is still NP-complete. For-
mulation as a real-valued problem, however, yields an efficient and
approximate discrete-valued solution.

Let G = (V,E) be a weighted graph with n vertices, and define
W to be a n × n weighting matrix such that Wi,j = w(i, j) is the
weight between vertices i and j. Define D to be a n × n diagonal
matrix whose ith element on the diagonal is di =

∑

j w(i, j). Solve
the generalized eigenvector problem (D − W)e = λDe, for the
eigenvector e with the second smallest eigenvalue λ. Let the sign
of each component of e (corresponding to each vertex of G) define
the membership of that vertex into one of two sets, A or B –
for example, vertices with corresponding negative components are
assigned to A and vertices with corresponding positive components
are assigned to B.

Example 8.1 Consider the following simple 3-node graph with edge weights 1,
1, and 2.

What is the normalized cut, Equation (8.2), for each of the three cuts (denoted

with a dashed line)?

In a forensic setting it is likely that one will have to contend with
partitioning a graph with as many vertices as pixels in an im-
age. Contending with even a modest-sized image of 256 × 256
pixels is computationally prohibitive, as it requires the solution
to a 65, 536-D eigenvector problem. Note that most of this com-
putation is unnecessary, as only the second smallest eigenvalue
eigenvector is required to partition a graph. To this end Lanczos
method can be employed for estimating large, sparse and symmet-
ric eigenproblems. This technique is particularly efficient when
only a few of the extremal (maximum or minimum) eigenvalue
eigenvectors are needed, as in our case.

137

8.2 Banding

The printer forensic technique described here works by modeling
the intensity variations in a printed grayscale or color image [1].
These banding artifacts are a result of intrinsic printer imperfec-
tions. Because these imperfections are distinct, they can be used
to link a printed image to a specific printer.

Figure 8.2 Banding ar-

tifacts.

Shown in Figure 8.2, for example, is a uniform gray image printed
on a standard laser printer. Also shown in this figure is the result
of vertically averaging the intensity to yield a 1-D plot of the
intensity variation as a function of horizontal position on the page.
The significant deviations from a constant value are the result of
banding artifacts. Because these artifacts tend to be periodic,
their form can be quantified in the Fourier domain. Shown in
the bottom panel of Figure 8.2 is the power spectrum of the 1-D
vertical average of intensity variation. The peaks correspond to
the periodicity in the banding pattern.

8.3 Profiling

The printer forensic technique described here works by modeling
the geometric degradation on a per-character basis [3]. Instead
of explicitly modeling this usually complex degradation, a data
driven approach is taken in which a linear basis is generated from
a set of degraded characters (e.g., the letter e). This basis rep-
resentation embodies the printer degradation and can be used to
determine if parts of a printed document are consistent with a
single printer.

In this first stage, multiple copies of the same character are lo-
cated in a scanned document. A single character is then selected
as the reference character. Each character is brought into spa-
tial alignment with this reference character using a coarse-to-fine
differential registration technique as described in Section 7.1.

With all of the characters properly aligned, a profile is constructed
that embodies the degradation introduced by the printer. Specif-
ically, a principal components analysis (PCA) is applied, Sec-
tion 4.1.,to the aligned characters to create a new linear basis
that embodies the printer degradation. Although this approach is
limited to a linear basis, this degradation model is easy to com-
pute and is able to capture fairly complex degradations that are
not easily embodied by a low-dimensional parametric model.

138

The final profile consists of both the mean character, µ, (sub-
tracted off prior to the PCA) and the top p eigenvalue eigenvec-
tors ei, i ∈ [1, p]. Note that this printer profile is constructed on a
per character basis, e.g., for the letter e of the same font and size.
Shown in Figure 8.3, for example, are the printer profiles (µ and
e1) for three printers (HP LasertJet 4300, Xerox Phaser 5500DN,
and Xerox Phaser 8550DP).

Figure 8.3 Printer pro-

file for three printers.

In a forensics setting, we are interested in determining if part of a
document has been manipulated by, for example, splicing in por-
tions from a different document, or digitally editing a previously
printed and scanned document and then printing the result. To
this end, a printed and scanned document is processed to con-
struct a printer profile P = {µ, e1, ..., ep}. Each character cj is
then projected onto each basis vector:

αji = (cj − µ)Tei, (8.5)

where a character cj is a 2-D grayscale image reshaped into vector
form. The basis weights for each character cj are denoted as αj =
(αj1 αj2 . . . αjp). With the assumption that tampering will
disturb the basis representation αj , the weights αj are subjected
to a normalized graph cut partitioning, Section 8.1, to determine
if they form distinct clusters.

Specifically, a weighted undirected graph G = (V,E) is constructed
with vertices V and edges E. Each vertex corresponds to a char-
acter cj with j ∈ [1,m], and the weight on each edge connecting
vertices k and l is given by:

w(k, l) = exp

(

−d2
α(αk, αl)

σ2
α

)

· exp

(

−d2
c(k, l)

σ2
c

)

, (8.6)

where dα(·) is the Mahalanobis distance defined as:

dα(x,y) =
√

(x− y)Σ−1(x − y), (8.7)

and where Σ is the covariance matrix. The second term in the
weighting function, dc(·), is the distance between two characters,
defined as the linear distance in scan line order (i.e., in the order
in which the text is read, left to right, top to bottom). This addi-
tional term makes it more likely for characters in close proximity
to be grouped together.

Shown in Figure 8.4 is a page from The Tale of Two Cities, where
the top half was printed on a HP LaserJet 4350 and the bottom
half was printed on a Xerox Phaser 5500DN. These documents

139

were scanned and combined and printed on an HP LaserJet 4300
printer. A printer profile was created from 200 copies of the let-
ter a. Shown in Figure 8.4 are the classification results, which
correctly classify the top and bottom halves of the document as
originating from different printers. The cost of this clustering was
0.05 which is an order of magnitude smaller than that which occurs
in the authentic document.

Figure 8.4 Each small square region denotes a single letter ’a’, and the color

coding (gray/black) denotes the cluster assignment.

140

8.4 Problem Set

1. Generate a 50 × 50 sized grayscale image of the letter ’e’.
Generate 25 versions of the ’e’ by adding small amounts of
noise. Generate another 25 versions of the ’e’ by slightly
blurring and adding small amounts of noise. Build a printer
profile (µ and e1) from these 50 characters. Subject the
printer profile representation to normalized cut clustering.

141

8.5 Solutions

Example 8.1 The normalized cut (Ncut) for cut1 is:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
,

where V = {α, β, γ}, A = {α}, B = {β, γ}, and where:

cut(A,B) = 1 + 2 = 3

assoc(A,V) = 1 + 2 = 3

assoc(B,V) = 3 + 2 = 5,

to yield an Ncut of 3/3+3/5 = 1.6. The Ncut for cut2 is the same
as cut1 because the same valued edges are cut. The Ncut for cut3
is:

cut(A,B) = 1 + 1 = 2

assoc(A,V) = 1 + 1 = 2

assoc(B,V) = 3 + 3 = 6,

to yield the minimum Ncut of 2/2 + 2/6 = 1.3.

142

8.6 Readings

1. G.N. Ali, P.-J. Chiang, A.K. Mikkilineni, J.P. Allebach, G.T.-
C. Chiu, and E.J. Delp. Intrinsic and extrinsic signatures
for information hiding and secure printing with electropho-
tographic devices. In International Conference on Digital
Printing Technologies, pages 511515, 2003.

2. O. Bulan, J. Mao, and G. Sharma. Geometric distortion
signatures for printer identification. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages
14011404, 2009.

3. E. Kee and H. Farid. Printer profiling for forensics and bal-
listics. In ACM Multimedia and Security Workshop, pages
310, 2008.

143

9. MatLab Code

9.1 JPEG Ghost

9.1 CFA

9.2 CA

9.3 Noise

9.4 LDA

9.5 Lens
Distortion

9.6 Rectification

9.7 Enhancement

9.8 Clustering

9.1 JPEG Ghost

This code generates a seamless forgery in which a central portion
(size sz x sz) of an image is compressed at a quality of q2 and
inserted into an image of quality q1 (where q2 < q1). This forgery
is then compressed at qualities specified by qrng. Shown below
is a sample output where the ghost can clearly be seen at quality
60 (and neighboring qualities). The differences are shown on a
normalized scale of 0 (blue) to 1 (red). This code assumes that
the altered region remains on the original JPEG sampling lattice.

144

clear;

b = 16; % block size

q1 = 90; % JPEG quality for first image

q2 = 60; % JPEG quality for second image (q2 < q1)

qrng = [15 : 5 : 90]; % range of qualities to test against

sz = 200; % size of altered region (in pixels)

%%% LOAD ORIGINAL

im1 = imread(’*** YOUR IMAGE ***’);

[ydim,xdim,zdim] = size(im1);

%%% SAVE WITH DIFFERENT JPEG QUALITIES

imwrite(im1, ’tmp1.jpg’, ’quality’, q1);

imwrite(im1, ’tmp2.jpg’, ’quality’, q2);

%%% MAKE NEW IMAGE AS COMBINATION OF im1 AND im2

im1 = imread(’tmp1.jpg’);

im2 = imread(’tmp2.jpg’);

xrng = round([xdim/2-sz/2 : xdim/2+sz/2-1]); % altered region

yrng = round([ydim/2-sz/2 : ydim/2+sz/2-1]); % altered region

im1(yrng,xrng,:) = im2(yrng,xrng,:); % splice

imwrite(im1, ’tmp3.jpg’, ’quality’, q1); % re-save

%%% LOAD ALTERED IMAGE

im3 = imread(’tmp3.jpg’);

[ydim,xdim,zdim] = size(im3);

%%% COMPUTE DIFFERENCE BETWEEN im3 AND JPEG COMPRESSED VERSIONS OF im3

nQ = length(qrng);

map = zeros(ydim, xdim, length(qrng));

c = 1;

for q = qrng

imwrite(uint8(im3), ’tmp4.jpg’, ’quality’, q) ;

im4 = double(imread(’tmp4.jpg’));

for z = 1 : zdim % compute difference: average over RGB

map(:,:,c) = map(:,:,c) + (double(im3(:,:,z)) - im4(:,:,z)).^2;

end

map(:,:,c) = map(:,:,c) / zdim;

c = c + 1;

end

%%% COMPUTE DIFFERENCE (PER bxb BLOCK)

blkE = zeros(floor((ydim-b)/b), floor((xdim-b)/b), nQ);

for c = 1 : nQ

cy = 1;

for y = 1 : b : ydim-b

cx = 1;

for x = 1 : b : xdim-b

bE = map(y:y+b-1,x:x+b-1,c);

blkE(cy,cx,c) = mean(bE(:));

cx = cx + 1;

145

end

cy = cy + 1;

end

end

%%% NORMALIZE DIFFERENCE INTO [0,1]

minval = min(blkE, [], 3);

maxval = max(blkE, [], 3);

for c = 1 : nQ

blkE(:,:,c) = blkE(:,:,c) - minval;

blkE(:,:,c) = blkE(:,:,c) ./ (maxval-minval);

end

%%% DISPLAY RESULTS

sp = ceil(sqrt(nQ));

for c = 1 : nQ

subplot(sp,sp,c);

imagesc(blkE(:,:,c), [0 1]);

axis image off;

title(sprintf(’%d’, qrng(c)));

drawnow;

end

146

9.2 Color Filter Array (CFA)

This code generates a synthetic signal where every fourth sample
is correlated to their neighbors (g(x) = 0.5g(x− 1) + 0.5g(x + 1)).
The EM algorithm is initialized randomly with the correlations
(alpha) and then iteratively computes the probability that each
sample is correlated to its neighbors (w), and re-estimates the cor-
relations (alpha). On each iteration, the probability is plotted in
the upper panel, and the magnitude of the Fourier transform of
the probability is plotted in the lower panel. Spikes in the Fourier
domain denote periodic correlations.

Shown below is a sample output where EM correctly finds the
correlations.

And shown below is a sample output where EM fails to correctly
find the correlations (this is typically the result of starting condi-
tions that deviate significantly from the actual correlation).

147

clear;

%%% MAKE SIGNAL

N = 128;

f = rand(1,N);

f = f - min(f);

f = f / max(f);

g = f;

%%% ADD CORRELATION

for k = 2 : 4 : N

g(k) = 0.5*f(k-1) + 0.5*f(k+1);

end

%%% EM

alpha = rand(2,1); % INITIAL COEFFICIENTS

sigma = 0.005; % VARIANCE ON GAUSSIAN

delta = 10; % UNIFORM

while(1)

%%% E-STEP

for k = 2 : N-1

r(k) = g(k) - (alpha(1)*g(k-1) + alpha(2)*g(k+1)); % RESIDUAL

w(k) = exp(-r(k)^2/sigma) / (exp(-r(k)^2/sigma) + 1/delta); % PROBABILITY

end

%%% PLOT

subplot(211);

stem(w);

set(gca, ’Xtick’, [2:4:N], ’Ytick’, [0 0.5 1]);

title(sprintf(’[%.2f %.2f]’, alpha(1), alpha(2)));

axis([0 N 0 1.1]);

grid on;

subplot(212);

plot(fftshift(abs(fft(w))));

axis([0 N 0 50]);

drawnow; pause(0.25);

%%% M-STEP

M = [g(1:N-2)’ g(3:N)’];

b = g(2:N-1)’;

r = r(2:end); % remove edge point;

w = w(2:end); % remove edge point

W = diag(w);

alpha_new = inv(M’*W*M)*M’*W*b; % WLS

if(norm(alpha - alpha_new) < 0.01)

break; % STOPPING CONDITION

end

alpha = alpha_new;

%%% UPDATE SIGMA

sigma = sum(w.*(r.^2)) /sum(w);

end

148

9.3 Chromatic Aberration (CA)

This code estimates chromatic aberration for a one-parameter dis-
tortion model (the center of the chromatic distortion is assumed
to be the image center). The main function (ca) takes as input a
color image (filename) and the amount of red (aR) and blue (aB)
chromatic aberration to be synthetically introduced into the im-
age. This value of the chromatic aberration should be in the range
0.8 to 1.2. A brute-force search is then performed over this pa-
rameter space to maximize the correlation between the red/green
and blue/green channels. The output figure shown below consists
of the original image, the image with chromatic aberration, and
this image after the estimated chromatic aberration is removed.
The estimated red and blue chromatic aberration can be found in
the image title. If the estimation is correct, then the first and last
panel should be the same (except for possible edge artifacts). This
code assumes that the center of the chromatic aberration is the
image center.

function[] = ca(filename, aR, aB)

%%% LOAD IMAGE AND ADD CHROMATIC ABERRATION TO RED/BLUE CHANNELS

im = double(imread(filename));

[ydim,xdim,zdim] = size(im);

imCA = im;

imCA(:,:,1) = scaleim(imCA(:,:,1), aR);

imCA(:,:,3) = scaleim(imCA(:,:,3), aB);

%%% ESTIMATE CHROMATIC ABERRATION FOR RED/BLUE CHANNELS BY ALIGNING

%%% TO GREEN CHANNEL

k = 1;

green = imCA(:,:,2);

for alpha = [0.80 : 0.02 : 1.20] % alpha search range

red = scaleim(imCA(:,:,1), 1/alpha);

ind = find(red > 0);

C(k,1) = corr2(red(ind), green(ind));

blue = scaleim(imCA(:,:,3), 1/alpha);

149

ind = find(blue > 0);

C(k,2) = corr2(blue, green);

C(k,3) = alpha;

k = k + 1;

end

%%% REMOVE ESTIMATED CHROMATIC ABERRATIONS

[maxval,maxindR] = max(C(:,1));

[maxval,maxindG] = max(C(:,2));

alphaR = C(maxindR,3);

alphaG = C(maxindG,3);

imCORRECT = imCA;

imCORRECT(:,:,1) = scaleim(imCA(:,:,1), 1/alphaR);

imCORRECT(:,:,3) = scaleim(imCA(:,:,3), 1/alphaG);

imagesc(uint8([im imCA imCORRECT])); axis image off;

title(sprintf(’Original - CA - CA removed (%0.2f %0.2f)\n’, ...

alphaR, alphaG));

%%% SCALE IMAGE BY A FACTOR OF ALPHA

function[im2] = scaleim(im, alpha)

[ydim,xdim,zdim] = size(im);

if(alpha > 1) % central crop to match size(im)

im2 = imresize(im, alpha);

[ydim2,xdim2,zdim2] = size(im2);

cy = floor((ydim2-ydim)/2);

cx = floor((xdim2-xdim)/2);

im2 = im2(cy+1:ydim2-cy, cx+1:xdim2-cx, :); % crop

im2 = imresize(im2, [ydim xdim]); % deal with off-by-one sizes

else % pad with zeros to match size(im)

im2 = imresize(im, alpha);

[ydim2,xdim2,zdim2] = size(im2);

im3 = zeros(ydim, xdim, zdim);

cy = floor((ydim-ydim2)/2);

cx = floor((xdim-xdim2)/2);

im3([1:ydim2]+cy, [1:xdim2]+cx, :) = im2;

im2 = im3;

end

150

9.4 Sensor Noise

This code generates (n) synthetic fractal images images, adds a
sensor noise pattern (K), and then estimates this noise pattern
(Kest). This estimated noise pattern is then compared against 50
images with the same and with different noise patterns.

Shown below is a sample output of the code where the blue dots
correspond to the correlation for 50 images with the noise pattern
(K) and the red dots correspond to the correlation for 50 images
with a different noise pattern.

function[] = prnu()

%%% NOISE AND IMAGE PARAMETERS

dim = 512; % size of image (dim x dim)

n = 10; % number of images for estimating PRNU

N = rand(dim,dim,n); % noise (additive)

K = rand(dim,dim); % PRNU (multiplicative)

L = 0.01*rand+0.01; % multiplicative factor on PRNU

%%% NOISE-CORRUPTED IMAGES

I = zeros(dim,dim,n);

for j = 1 : n

I0 = mkFract([dim dim]); % noise-free images

I0 = I0 - min(I0(:));

I0 = 255 * I0/max(I0(:));

151

I(:,:,j) = I0 + L*(I0.*K) + N(:,:,j);

end

%%% DENOISE

for j = 1 : n

W(:,:,j) = I(:,:,j) - wiener2(I(:,:,j),[5 5]);

end

%%% ESTIMATE PRNU

Kest = sum(W.*I, 3) ./ sum(I.*I, 3);

%%% CORRELATE Kest AGAINST IMAGES WITH SAME PRNU

cla;

axis([1 50 0 0.25]); xlabel(’image’); ylabel(’correlation’); box on;

hold on;

for j = 1 : 50

N = rand(dim,dim);

I0 = mkFract([dim dim]);

I0 = I0 - min(I0(:));

I0 = 255 * I0/max(I0(:));

Itest = I0 + L*(I0.*K) + N; % test image (use L and K from above)

c1(j) = corr2(Itest.*Kest, Itest-wiener2(Itest)); % correlation

plot(j,c1(j),’bo’);

drawnow;

end

%%% CORRELATE Kest AGAINST IMAGES WITH DIFFERENT PRNU

for j = 1 : 50

N = rand(dim,dim);

K = rand(dim,dim);

L = 0.01*rand+0.01;

I0 = mkFract([dim dim]);

I0 = I0 - min(I0(:));

I0 = 255 * I0/max(I0(:));

Itest = I0 + L*(I0.*K) + N; % test image

c2(j) = corr2(Itest.*Kest, Itest-wiener2(Itest)); % correlation

plot(j,c2(j),’ro’);

drawnow;

end

hold off;

% Make a matrix of dimensions SIZE (a [Y X] 2-vector, or a scalar)

% containing fractal (pink) noise with power spectral density of the

% form: 1/f^(5-2*FRACT_DIM). Image variance is normalized to 1.0.

% FRACT_DIM defaults to 1.0 (from E. Simoncelli’s matlabPyrTools)

function [res] = mkFract(dims, fract_dim)

if (exist(’fract_dim’) ~= 1)

fract_dim = 1.0;

end

res = randn(dims);

152

fres = fft2(res);

sz = size(res);

ctr = ceil((sz+1)./2);

shape = ifftshift(mkR(sz, -(2.5-fract_dim), ctr));

shape(1,1) = 1; %%DC term

fres = shape .* fres;

fres = ifft2(fres);

if (max(max(abs(imag(fres)))) > 1e-10)

error(’Symmetry error in creating fractal’);

else

res = real(fres);

res = res / sqrt(var2(res));

end

% ---

% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)

% containing samples of a radial ramp function, raised to power EXPT

% (default = 1), with given ORIGIN (default = (size+1)/2, [1 1] =

% upper left). All but the first argument are optional. (from E.

% Simoncelli’s matlabPyrTools)

function [res] = mkR(sz, expt, origin)

sz = sz(:);

if (size(sz,1) == 1)

sz = [sz,sz];

end

if (exist(’expt’) ~= 1)

expt = 1;

end

if (exist(’origin’) ~= 1)

origin = (sz+1)/2;

end

[xramp,yramp] = meshgrid([1:sz(2)]-origin(2), [1:sz(1)]-origin(1));

res = (xramp.^2 + yramp.^2).^(expt/2);

% ---

% Sample variance of a matrix. Passing MEAN (optional) makes the

% calculation faster. (from E. Simoncelli’s matlabPyrTools)

function [res] = var2(mtx, mn)

if (exist(’mn’) ~= 1)

mn = mean2(mtx);

end

if (isreal(mtx))

res = sum(sum(abs(mtx-mn).^2)) / max((prod(size(mtx)) - 1),1);

153

else

res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2));

res = res / max((prod(size(mtx)) - 1),1);

end

154

9.5 Linear Discriminant Analysis (LDA)

This code generates two synthetic classes of data in a 2-D space
and computes the 1-D linear subspace onto which the data are
projected in order to perform classification.

Shown in the left panel below is a sample output of the code where
the red and blue dots on the left denote the original 2-D data, and
the 1-D linear subspace (black line) as computed by LDA. Shown
in the right panel are distributions of the data after projection
onto the 1-D linear subspace. Note that the data are perfectly
separated on either side of the origin.

This code (except for the display part) generalizes to multi-class
LDA. For example, for a third class C, add C to the overall mean,
compute the mean for class C, and compute the between Sb and
within Sw class matrices as follows:

mu = mean([A ; B ; C]); % OVERALL MEAN

muC = mean(C); % CLASS MEAN

Sb = size(A,1)*((muA-mu)’*(muA-mu)) + size(B,1)*((muB-mu)’*(muB-mu)) + ...

size(C,1)*((muC-mu)’*(muB-mu));

Sw = M1 * M1’ + M2 * M2’ + M3 * M3’; % where M3(k,:) = C(:,k)’ - muC(k);

For three classes, the LDA returns two linear subspaces specified
by the largest and second largest generalized eigenvector.

155

clear;

%%% DATA

n = 100; % NUMBER OF DATA POINTS IN EACH CLASS

N = 2; % DIMENSIONALITY OF DATA (MUST BE 2 FOR DISPLAY TO WORK)

A = rand(n,N); % CLASS 1

B = -rand(n,N); % CLASS 2

%%% BETWEEN (Sb) and WITHIN (Sw) CLASS SCATTER MATRICES

mu = mean([A ; B]); % OVERALL MEAN

muA = mean(A); % CLASS MEAN

muB = mean(B); % CLASS MEAN

Sb = size(A,1)*((muA-mu)’*(muA-mu)) + size(B,1)*((muB-mu)’*(muB-mu)); % BETWEEN CLASS

for k = 1 : N

M1(k,:) = A(:,k)’ - muA(k);

M2(k,:) = B(:,k)’ - muB(k);

end

Sw = M1 * M1’ + M2 * M2’; % WITHIN CLASS

%%% LDA

[vec,val] = eig(Sb, Sw);

[maxval,ind] = max(diag(real(val)));

e = real(vec(:,ind)); % LINEAR DISCRIMINANT AXIS

%%% PROJECT TRAINING ONTO MAXIMAL EIGENVALUE-EIGENVECTOR

projA = (A * e)’;

projB = (B * e)’;

%%% DISPLAY

subplot(121); cla; hold on;

h = plot(A(:,1), A(:,2), ’b.’); set(h,’MarkerSize’,14);

h = plot(B(:,1), B(:,2), ’r.’); set(h,’MarkerSize’,14);

h = line([-10*e(1) 10*e(1)], [-10*e(2) 10*e(2)]); set(h, ’Color’, ’k’);

axis([-1.1 1.1 -1.1 1.1]); axis square; box on;

hold off;

subplot(122); cla; hold on;

[N,X] = hist(projA, 40); h = bar(X,N); set(h,’FaceColor’,’b’,’EdgeColor’,’b’);

[N,X] = hist(projB, 40); h = bar(X,N); set(h,’FaceColor’,’r’,’EdgeColor’,’r’);

axis square; box on;

hold off;

156

9.6 Lens Distortion

This code removes lens distortion from an image assuming that
the principal point is the image center. The slider in the lower left
is used to specify the amount of distortion (K), and the numeric
value is displayed in the image title. The original image is shown
on the left and the corrected image is shown on the right.

157

function[imK] = lensdistort(filename)

if(isempty(get(gcf, ’UserData’)))

h = uicontrol; % GUI to control amount of lens distortion

set(h, ’Style’, ’slider’);

set(h, ’Position’, [20 20 200 20]);

set(h, ’Value’, 0, ’Min’, -1, ’Max’, 1);

set(h, ’SliderStep’, [0.001 0.01]);

set(h, ’Callback’, sprintf(’lensdistort(’’%s’’);’, filename));

set(gcf, ’UserData’, h);

end

h = get(gcf, ’UserData’);

K = get(h, ’Value’); % lens distortion

im = double(imread(filename));

[ydim,xdim,zdim] = size(im);

impad = zeros(ydim+100, xdim+100, zdim); % pad with zeros

impad(51:ydim+50,51:xdim+50,:) = im; % pad with zeros

im = impad; % pad with zeros

[ydim,xdim,zdim] = size(im);

[xramp,yramp] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2); % image lattice

xramp = xramp / (xdim/2); % normalize into [0,1]

yramp = yramp / (ydim/2); % normalize into [0,1]

rad = sqrt(xramp.^2 + yramp.^2);

xrampK = xramp .* (1 + K*rad.^2); % new image lattice

yrampK = yramp .* (1 + K*rad.^2); % new image lattice

imK = zeros(ydim, xdim, zdim); % initialize new image

for z = 1 : zdim % remove lens distortion

imK(:,:,z) = interp2(xramp, yramp, im(:,:,z), xrampK, yrampK, ’cubic’);

end

imshow(uint8([im imK]));

title(K);

158

9.7 Rectification

This code estimates a planar homography of a license plate and
warps the image according to the inverse homography. Shown
below is the point selection of four points on the image of a license
plate (left to right, top to bottom).

And shown below is a magnified and contrast enhanced version of
the planar rectified license plate.

159

function[] = rectify()

%%% WORLD

x1(:,1) = [0 0 1]’;

x1(:,2) = [200 0 1]’;

x1(:,3) = [200 100 1]’;

x1(:,4) = [0 100 1]’;

%%% IMAGE

%%% license.jpg available at: www.cs.dartmouth.edu/farid/teaching/trento11/license.jpg

im = imread(’license.jpg’);

imshow(im);

x2 = zeros(size(x1));

for k = 1 : 4

p = ginput(1);

plot(p(1), p(2), ’yo’);

x2(1:2,k) = p’;

x2(3,k) = 1;

end

%%% HOMOGRAPHY

H = homography(x1, x2);

H = H / H(9);

%%% RECTIFY

T1 = maketform(’projective’, inv(H)’);

im2 = imtransform(im, T1);

imshow(im2);

set(gca, ’Ydir’, ’normal’);

%%% --------------------------------------

function[H] = homography(x1,x2)

[x1, T1] = normalise(x1); % WORLD COORDINATES

[x2, T2] = normalise(x2); % IMAGE COORDINATES

N = length(x1);

A = zeros(3*N,9);

O = [0 0 0];

for n = 1 : N

X = x1(:,n)’;

x = x2(1,n);

y = x2(2,n);

s = x2(3,n);

A(3*n-2,:) = [O -s*X y*X];

A(3*n-1,:) = [s*X O -x*X];

A(3*n ,:) = [-y*X x*X O];

end

[U,D,V] = svd(A,0); % TOTAL LEAST-SQUARES

H = reshape(V(:,9),3,3)’;

H = inv(T2)*H*T1;

160

%%% --------------------------------------

function[P2,T] = normalise(P)

P(1,:) = P(1,:)./P(3,:);

P(2,:) = P(2,:)./P(3,:);

P(3,:) = 1;

c = mean(P(1:2,:)’)’; % TRANSLATE

P1(1,:) = P(1,:) - c(1);

P1(2,:) = P(2,:) - c(2);

dist = sqrt(P1(1,:).^2 + P1(2,:).^2); % SCALE

scale = sqrt(2)/mean(dist);

T = [scale 0 -scale*c(1)

0 scale -scale*c(2)

0 0 1];

P2 = T*P; % NORMALIZE POINTS

161

9.8 Enhancement

This code is for video stabilization and enhancement. The function
videostabilize takes as input: (1) a data structure frames with
field im that contains the original video sequence; (2) the number
of Gaussian pyramid levels L; and (3) a binary image roi that
specifies the region of interest, with value of 1 for those pixels to
be considered in the motion estimation, and 0 otherwise. It is
assumed that each frame is a grayscale image. The output of this
function is a data structure stable with field im that contains
the stabilized video sequence, and a data structure motion with
fields A and T that contain the estimated affine and translation
parameters.

The function videoenhance takes as input a data structure stable
with field im that contains a stabilized video sequence (the output
of videostabilize). The outputs of this function are two images
tempmean and tempmedian that contain the results of temporally
filtering the stabilized video.

%%% STABILIZE VIDEO

function[motion, stable] = videostabilize(frames, roi, L)

N = length(frames);

roiorig = roi;

%%% ESTIMATE PAIRWISE MOTION

Acum = [1 0 ; 0 1];

Tcum = [0 ; 0];

stable(1).roi = roiorig;

for k = 1 : N-1

[A,T] = opticalflow(frames(k+1).im, frames(k).im, roi, L);

motion(k).A = A;

motion(k).T = T;

[Acum,Tcum] = accumulatewarp(Acum, Tcum, A, T);

roi = warp(roiorig, Acum, Tcum);

end

%%% STABILIZE TO LAST FRAME

stable(N).im = frames(N).im;

Acum = [1 0 ; 0 1];

Tcum = [0 ; 0];

for k = N-1 : -1 : 1

[Acum,Tcum] = accumulatewarp(Acum, Tcum, motion(k).A, motion(k).T);

stable(k).im = warp(frames(k).im, Acum, Tcum);

end

% ---

162

%%% ALIGN TWO FRAMES (f2 to f1)

function[Acum, Tcum] = opticalflow(f1, f2, roi, L)

f2orig = f2;

Acum = [1 0 ; 0 1];

Tcum = [0 ; 0];

for k = L : -1 : 0

%%% DOWN-SAMPLE

f1d = down(f1, k);

f2d = down(f2, k);

ROI = down(roi, k);

%%% COMPUTE MOTION

[Fx,Fy,Ft] = spacetimederiv(f1d, f2d);

[A,T] = computemotion(Fx, Fy, Ft, ROI);

T = (2^k) * T;

[Acum,Tcum] = accumulatewarp(Acum, Tcum, A, T);

%%% WARP ACCORDING TO ESTIMATED MOTION

f2 = warp(f2orig, Acum, Tcum);

end

% ---

%%% COMPUTE MOTION

function[A, T] = computemotion(fx, fy, ft, roi)

[ydim,xdim] = size(fx);

[x,y] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2);

%%% TRIM EDGES

fx = fx(3:end-2, 3:end-2);

fy = fy(3:end-2, 3:end-2);

ft = ft(3:end-2, 3:end-2);

roi = roi(3:end-2, 3:end-2);

x = x(3:end-2, 3:end-2);

y = y(3:end-2, 3:end-2);

ind = find(roi > 0);

x = x(ind); y = y(ind);

fx = fx(ind); fy = fy(ind); ft = ft(ind);

xfx = x.*fx; xfy = x.*fy; yfx = y.*fx; yfy = y.*fy;

M(1,1) = sum(xfx .* xfx); M(1,2) = sum(xfx .* yfx); M(1,3) = sum(xfx .* xfy);

M(1,4) = sum(xfx .* yfy); M(1,5) = sum(xfx .* fx); M(1,6) = sum(xfx .* fy);

M(2,1) = M(1,2); M(2,2) = sum(yfx .* yfx); M(2,3) = sum(yfx .* xfy);

M(2,4) = sum(yfx .* yfy); M(2,5) = sum(yfx .* fx); M(2,6) = sum(yfx .* fy);

M(3,1) = M(1,3); M(3,2) = M(2,3); M(3,3) = sum(xfy .* xfy);

M(3,4) = sum(xfy .* yfy); M(3,5) = sum(xfy .* fx); M(3,6) = sum(xfy .* fy);

M(4,1) = M(1,4); M(4,2) = M(2,4); M(4,3) = M(3,4);

M(4,4) = sum(yfy .* yfy); M(4,5) = sum(yfy .* fx); M(4,6) = sum(yfy .* fy);

163

M(5,1) = M(1,5); M(5,2) = M(2,5); M(5,3) = M(3,5);

M(5,4) = M(4,5); M(5,5) = sum(fx .* fx); M(5,6) = sum(fx .* fy);

M(6,1) = M(1,6); M(6,2) = M(2,6); M(6,3) = M(3,6);

M(6,4) = M(4,6); M(6,5) = M(5,6); M(6,6) = sum(fy .* fy);

k = ft + xfx + yfy;

b(1) = sum(k .* xfx); b(2) = sum(k .* yfx);

b(3) = sum(k .* xfy); b(4) = sum(k .* yfy);

b(5) = sum(k .* fx); b(6) = sum(k .* fy);

v = inv(M) * b’;

A = [v(1) v(2) ; v(3) v(4)];

T = [v(5) ; v(6)];

% ---

%%% WARP IMAGE

function[f2] = warp(f, A, T)

[ydim,xdim] = size(f);

[xramp,yramp] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2);

P = [xramp(:)’ ; yramp(:)’];

P = A * P;

xramp2 = reshape(P(1,:), ydim, xdim) + T(1);

yramp2 = reshape(P(2,:), ydim, xdim) + T(2);

f2 = interp2(xramp, yramp, f, xramp2, yramp2, ’bicubic’); % warp

ind = find(isnan(f2));

f2(ind) = 0;

% ---

%%% BLUR AND DOWNSAMPLE (L times)

function[f] = down(f, L);

blur = [1 2 1]/4;

for k = 1 : L

f = conv2(conv2(f, blur, ’same’), blur’, ’same’);

f = f(1:2:end,1:2:end);

end

% ---

%%% SPACE/TIME DERIVATIVES

function[fx, fy, ft] = spacetimederiv(f1, f2)

%%% DERIVATIVE FILTERS

pre = [0.5 0.5];

deriv = [0.5 -0.5];

%%% SPACE/TIME DERIVATIVES

fpt = pre(1)*f1 + pre(2)*f2; % pre-filter in time

164

fdt = deriv(1)*f1 + deriv(2)*f2; % differentiate in time

fx = conv2(conv2(fpt, pre’, ’same’), deriv, ’same’);

fy = conv2(conv2(fpt, pre, ’same’), deriv’, ’same’);

ft = conv2(conv2(fdt, pre’, ’same’), pre, ’same’);

% ---

%%% ACCUMULATE WARPS

function[A2, T2] = accumulatewarp(Acum, Tcum, A, T)

A2 = A * Acum;

T2 = A*Tcum + T;

% ---

%%% ENHANCE STABILIZED VIDEO

function[tempmean, tempmedian] = videoenhance(stable)

N = length(stable);

[ydim,xdim] = size(stable(1).im);

%%% BUILD A 3-D IMAGE STACK FROM THE INPUT SEQUENCE

stack = zeros(ydim, xdim, N)

for k = 1 : N

stack(:,:,k) = stable(k).im;

end

%%% FILTER

tempmean = mean(stack, 3);

tempmedian = median(stack, 3);

165

9.9 Clustering

This code implements clustering based on normalized cuts. The
code generates a N x N grayscale image whose left side is, on av-
erage, darker than the right side. The weighting matrix W is based
on the difference in intensity between each pixel. Shown below is
a sample input (left) and output (right). The output is a binary
image where white corresponds to one cluster and black to another
(one pixel on the far right is mis-classified because its intensity is
more similar to the left side of the image).

clear;

N = 10; % image dimensions (NxN)

I1 = 0.5*rand(N,N/2); % left half of image

I2 = 0.5*rand(N,N/2) + 0.5; % right half of image

I = [I1 I2]; % image

W = zeros(N^2,N^2); % weighting matrix

D = zeros(N^2,N^2);

for j = 1 : N^2

for k = 1 : N^2

W(j,k) = exp(-(I(j)-I(k)).^2/1);

end

end

for j = 1 : N^2

D(j,j) = sum(W(j,:));

end

[eigvec,eigval] = eig(D-W, D); % generalized eigenvector

[val,ind] = sort(diag(eigval)); % sort eigenvalues

cluster = sign(eigvec(:,ind(2))); % 2nd smallest eigenvector

cluster = reshape(cluster, N, N);

subplot(121); imagesc(I); axis image; colormap gray;

subplot(122); imagesc(cluster); axis image; colormap gray;

166

Bibliography

[1] Donald Adjeroh, Deng Cao, Marco Piccirilli, and Arun Ross. Pre-
dictability and correlation in human metrology. In Workshop on In-
formation Forensics and Security, 2010.

[2] Yoshinori Akao, Kazuhiko Kobayashi, Shigeru Sugawara, and Yoko Seki.
Discrimination of inkjet-printed counterfeits by spur marks and feature
extraction by spatial frequency analysis. In SPIE Conference on Opti-
cal Security and Counterfeit Deterrence Techniques IV, pages 129–137,
2002.

[3] Gazi N. Ali, Pei-Ju Chiang, Aravind K. Mikkilineni, Jan P. Allebach,
George T.-C. Chiu, and Edward J. Delp. Intrinsic and extrinsic sig-
natures for information hiding and secure printing with electrophoto-
graphic devices. In International Conference on Digital Printing Tech-
nologies, pages 511–515, 2003.

[4] Gazi N. Ali, Pei-Ju Chiang, Aravind K. Mikkilineni, George T.-C. Chiu,
Edward J. Delp, and Jan P. Allebach. Application of principal compo-
nents analysis and gaussian mixture models to printer identification. In
International Conference on Digital Printing Technologies, pages 301–
305, 2004.

[5] Erwin J. Alles, Zeno J. Geradts, and Cor. J. Veenman. Source camera
identification for low resolution heavily compressed images. In Inter-
national Conference on Computational Sciences and Its Applications,
pages 557–567, 2008.

[6] Erwin J. Alles, Zeno J. Geradts, and Cor. J. Veenman. Source camera
identification for heavily JPEG compressed low resolution still images.
Journal of Forensic Sciences, 54(3):628–638, 2009.

[7] Paul Alvarez. Using extended file information (exif) file headers in digital
evidence analysis. International Journal of Digital Evidence, 2(3):1–5,
2004.

[8] Irene Amerini, Lamberto Ballan, Roberto Caldelli, Alberto Del Bimbo,
and Giuseppe Serra. Geometric tampering estimation by means of a
sift-based forensic analysis. In International Conference on Acoustics,
Speech, and Signal Processing, pages 1702–1705, 2010.

[9] Irene Amerini, Lamberto Ballan, Roberto Caldelli, Alberto Del Bimbo,
and Giuseppe Serra. A sift-based forensic method for copymove attack
detection and transformation recovery. IEEE Transactions on Informa-
tion Forensics and Security, 6(3):1099–1110, 2011.

[10] Irene Amerini, Roberto Caldelli, Vito Cappellini, Francesco Picchioni,
and Alessandro Piva. Analysis of denoising filters for photo response non
uniformity noise extraction in source camera identification. In Interna-
tional Conference on Digital Signal Processing, pages 511–517, 2009.

167

[11] Irene Amerini, Roberto Caldelli, Vito Cappellini, Francesco Picchioni,
and Alessandro Piva. Estimate of prnu noise based on different noise
models for source camera identification. International Journal of Digital
Crime and Forensics, 2(2):21–33, 2010.

[12] Fernanda A. Andalo, Gabriel Taubin, and Siome Goldenstein. Detect-
ing vanishing points by segment clustering on the projective plane for
single-view photogrammetry. In Workshop on Information Forensics
and Security, 2010.

[13] Edoardo Ardizzone, Alessandro Bruno, and Giuseppe Mazzola. Detect-
ing multiple copies in tampered images. In International Conference on
Image Processing, 2010.

[14] Edoardo Ardizzone and Giuseppe Mazzola. Detection of duplicated re-
gions in tampered digital images by bit-plane analysis. In Image Analysis
and Processing, pages 893–901, 2009.

[15] Osman Arslan, Roy M. Kumontoy, Pei-Ju Chiang, Aravind K. Mikkili-
neni, Jan P. Allebach, George T.-C. Chiu, and Edward J. Delp. Iden-
tification of inkjet printers for forensic applications. In International
Conference on Digital Printing Technologies, pages 235–238, 2005.

[16] Ismail Avcibas, Sevinc Bayram, Nasir Memon, Mahalingam Ramkumar,
and Bulent Sankur. A classifier design for detecting image manipula-
tions. In IEEE International Conference on Image Processing, pages
2645–2648, 2004.

[17] Mauro Barni, Andrea Costanzo, and Lara Sabatini. Identification of
cut & paste tampering by means of double-JPEG detection and image
segmentation. In International Symposium on Circuits and Systems,
2010.

[18] Md. Khayrul Bashar, Keiji Noda, Noboru Ohnishi, Hiroaki Kudo, Tet-
suya Matsumoto, and Yoshinori Takeuchi. Wavelet-based multiresolu-
tion features for detecting duplications in images. In Machine Vision
Application, pages 264–267, 2007.

[19] Philip Bateman, Anthony T. S. Ho, and Alan Woodward. Image foren-
sics of digital cameras by analysing image variations using statistical
process control. In International Conference on Information, Commu-
nications and Signal Processing, 2009.

[20] Philip Bateman, Anthony T. S. Ho, and Alan Woodward. Accurate
detection of out-of-control variations from digital camera devices. In
IEEE International Symposium on Circuits and Systems, 2010.

[21] Sebastiano Battiato and Giuseppe Messina. Digital forgery estimation
into DCT domain: A critical analysis. In ACM Multimedia and Security
Workshop, pages 37–42, 2009.

[22] Federica Battisti, Marco Carli, and Alessandro Neri. Image forgery de-
tection by means of no-reference quality metrics. In SPIE Conference
on Media Waternarking, Security, and Forensics, pages 8303–17, 2012.

[23] Sevinc Bayram, Ismail Avcibas, Bulent Sankur, and Nasir Memon. Im-
age manipulation detection with binary similarity measures. In European
Signal Processing Conference, pages 752–755, 2005.

[24] Sevinc Bayram, Ismail Avcibas, Bulent Sankur, and Nasir Memon.
Image manipulation detection. Journal of Electronic Imaging,
15(4):041102, 2006.

[25] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. Improvements
on source camera model identification based on cfa interpolation. In
International Conference on Digital Forensics, 2006.

168

[26] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. Classification of
digital camera-models based on demosaicing artifacts. Digital Investi-
gation, 5:46–59, 2008.

[27] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. A survey of copy-
move forgery detection techniques. In IEEE Western New York Image
Processing Workshop, 2008.

[28] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. Video copy detec-
tion based on source device characteristics: A complementary approach
to content-based methods. In ACM International Conference on Multi-
media Information Retrieval, pages 435–442, 2008.

[29] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. An efficient and
robust method for detecting copy-move forgery. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages 1053–
1056, 2009.

[30] Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. Efficient
techniques for sensor fingerprint matching in large image and video
databases. In SPIE Conference on Media Forensics and Security, 2010.

[31] Sevinc Bayram, Husrev T. Sencar, Nasir Memon, and Ismail Avcibas.
Source camera identification based on cfa interpolation. In IEEE Inter-
national Conference on Image Processing, 2005.

[32] Tiziano Bianchi and Alessandro Piva. Analysis of non-aligned double
JPEG artifacts for the localization of image forgeries. In Workshop on
Information Forensics and Security, 2011.

[33] Tiziano Bianchi and Alessandro Piva. Detection of non-aligned double
JPEG compression with estimation of primary compression parameters.
In International Conference on Image Processing, 2011.

[34] Tiziano Bianchi, Alessia De Rosa, and Alessandro Piva. Improved DCT
coefficient analysis for forgery localization in JPEG images. In Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2011.

[35] Jurrien Bijhold, Arnout Ruifrok, Michael Jessen, Zeno J. Geradts,
Sabine Ehrhardt, and Ivo Alberink. Forensic audio and visual evidence.
In International Forensic Science Symposium, pages 372–413, 2007.

[36] Greg J. Bloy. Blind camera fingerprinting and image clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(3):532–
535, 2008.

[37] Rainer Böhme, Felix Freiling, Thomas Gloe, and Matthias Kirchner.
Multimedia forensics is not computer forensics. In Zeno J. Geradts,
Katrin Y. Franke, and Cor. J. Veenman, editors, Third International
Workshop on Computational Forensics, pages 90–103, 2009.

[38] Sergio Bravo-Solorio and Asoke K. Nandi. Passive method for detect-
ing duplicated regions affected by reflection, rotation and scaling. In
European Signal Processing Conference, pages 824–828, 2009.

[39] Sergio Bravo-Solorio and Asoke K. Nandi. Automated detection and
localisation of duplicated regions affected by reflection, rotation and
scaling in image forensics. Signal Processing, 91(8):1759–1770, 2011.

[40] Eddy B. Brixen. Further investigation into the enf criterion for forensic
authentication. In 123rd AES Convention, 2007.

[41] Eddy B. Brixen. Techniques for the authentication of digital audio
recordings. In 123rd AES Convention, 2007.

[42] Eddy B. Brixen. Enf; quantification of the magnetic field. In 32nd
International Conference on Audio Engineering, 2008.

169

[43] Eddy B. Brixen. How to extract the enf from digital audio recordings.
In ACFEI National Conference, 2008.

[44] Dino A. Brugioni. Photo Fakery: The History and Techniques of Pho-
tographic Deception and Manipulation. Brassey’s, 1999.

[45] Robert Buchholz, Christian Krätzer, and Jana Dittmann. Microphone
classification using fourier coefficients. In Stefan Katzenbeisser and
Ahmad-Reza Sadeghi, editors, International Workshop on Information
Hiding, pages 235–246, 2009.

[46] Orhan Bulan, Junwen Mao, and Gaurav Sharma. Geometric distortion
signatures for printer identification. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages 1401–1404, 2009.

[47] Roberto Caldelli, Irene Amerini, and Francesco Picchioni. Distinguish-
ing between camera and scanned images by means of frequency analy-
sis. In Matthew Sorell, editor, International Conference on Forensics in
Telecommunications, Information and Multimedia, 2009.

[48] Roberto Caldelli, Irene Amerini, and Francesco Picchioni. A dft-based
analysis to discern between camera and scanned images. International
Journal of Digital Crime and Forensics, 2(1):21–29, 2010.

[49] Roberto Caldelli, Irene Amerini, Francesco Picchioni, and Matteo Inno-
centi. Fast image clustering of unknown source images. In Workshop on
Information Forensics and Security, 2010.

[50] Roberto Caldelli, Irene Amerini, Francesco Picchioni, Alessia De Rosa,
and Vito Cappellini. Multimedia forensics: Technologies for imagery
investigation. In Electronic Information, the Visual Arts and Beyond,
pages 87–92, 2009.

[51] Roberto Caldelli, Irene Amerini, Francesco Picchioni, Alessia De Rosa,
and Francesca Uccheddu. Handbook of Research on Computational
Forensics, Digital Crime and Investigation: Methods and Solutions,
chapter Multimedia Forensic Techniques for Acquisition Device Identi-
fication and Digital Image Authentication, pages 130–154. Information
Science Reference, 2009.

[52] Gang Cao, Yao Zhao, and Rongrong Ni. Image composition detection
using object-based color consistency. In IEEE International Conference
on Signal Processing, pages 1186–1189, 2008.

[53] Gang Cao, Yao Zhao, and Rongrong Ni. Detection of image sharpening
based on histogram aberration and ringing artifacts. In IEEE Interna-
tional Conference on Multimedia and Expo, pages 1026–1029, 2009.

[54] Gang Cao, Yao Zhao, and Rongrong Ni. Edge-based blur metric for
tamper detection. Journal of Information Hiding and Multimedia Signal
Processing, 1(1):20–27, 2010.

[55] Gang Cao, Yao Zhao, and Rongrong Ni. Forensic estimation of gamma
correction in digital images. In International Conference on Image Pro-
cessing, 2010.

[56] Gang Cao, Yao Zhao, and Rongrong Ni. Forensic identification of re-
sampling operators: A semi non-intrusive approach. Forensic Science
International, 2011.

[57] Gang Cao, Yao Zhao, Rongrong Ni, and Alex C. Kot. Unsharp mask-
ing sharpening detection via overshoot artifacts analysis. IEEE Signal
Processing Letters, 18(10):603–606, 2011.

[58] Gang Cao, Yao Zhao, Rongrong Ni, and Huawei Tian. Anti-forensics
of contrast enhancement in digital images. In ACM Multimedia and
Security Workshop, pages 25–34, 2010.

170

[59] Gang Cao, Yao Zhao, Rongrong Ni, Lifang Yu, and Huawei Tian. Foren-
sic detection of median filtering in digital images. In IEEE International
Conference on Multimedia and Expo, 2010.

[60] Hong Cao and Alex C. Kot. A generalized model for detection of demo-
saicing characteristics. In IEEE International Conference on Multimedia
and Expo, pages 1513–1516, 2008.

[61] Hong Cao and Alex C. Kot. Accurate detection of demosaicing regularity
for digital image forensics. IEEE Transactions on Information Forensics
and Security, 4(4):899–910, 2009.

[62] Hong Cao and Alex C. Kot. Raw tool identification through detected
demosaicing regularity. In IEEE International Conference on Image
Processing, pages 2885–2888, 2009.

[63] Hong Cao and Alex C. Kot. Detection of tampering inconsistencies on
mobile photos. In International Workshop on Digital Watermarking,
pages 105–119, 2010.

[64] Hong Cao and Alex C. Kot. Identification of recaptured photographs
on lcd screens. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, pages 1790–1793, 2010.

[65] Hong Cao and Alex C. Kot. Mobile camera identification using demo-
saicing features. In International Symposium on Circuits and Systems,
2010.

[66] Hong Cao and Alex C. Kot. Similar dslr processor identification us-
ing compact model templates. In Asia Pacific Signal and Information
Processing Association, 2011.

[67] Oya Celiktutan, Ismail Avcibas, and Bulent Sankur. Blind identification
of cellular phone cameras. In Edward J. Delp and Ping Wah Wong, ed-
itors, SPIE Conference on Security, Steganography, and Watermarking
of Multimedia Contents, volume 6505, 2007.

[68] Oya Celiktutan, Ismail Avcibas, Bulent Sankur, and Nasir Memon.
Source cell-phone identification. IEEE Signal Processing and Commu-
nications Applications, pages 1–3, April 2006.

[69] Oya Celiktutan, Bulent Sankur, and Ismail Avcibas. Blind identification
of source cell-phone model. IEEE Transactions on Information Forensics
and Security, 3(3):553–566, 2008.

[70] Shih-Fu Chang. Blind passive media forensics: Motivation and oppor-
tunity. In Multimedia Content Analysis and Mining, pages 57–59, 2007.

[71] Dongmei Chen, Jianhua Li, Shilin Wang, and Shenghong Li. Identifying
computer generated and digital camera images using fractional lower
order moments. In IEEE Conference on Industrial Electronics and Ap-
plications, pages 230–235, 2009.

[72] Mo Chen, Jessica Fridrich, and Miroslav Goljan. Digital imaging sensor
identification (further study). In Edward J. Delp and Ping Wah Wong,
editors, SPIE Conference on Security, Steganography, and Watermark-
ing of Multimedia Contents, volume 6505, 2007.

[73] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukas. Source digi-
tal camcorder identification using sensor photo-response non-uniformity.
In Edward J. Delp and Ping Wah Wong, editors, SPIE Conference on Se-
curity, Steganography, and Watermarking of Multimedia Contents, vol-
ume 6505, 2007.

[74] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukas. Determining
image origin and integrity using sensor noise. IEEE Transactions on
Information Forensics and Security, 3(1):74–90, 2008.

171

[75] Sz-Han Chen and Chiou-Ting Hsu. Source camera identification based
on camera gain histogram. In IEEE International Conference on Image
Processing, volume 4, pages IV–429–IV–432, 2007.

[76] Wen Chen and Yun Qing Shi. Detection of double mpeg video compres-
sion using first digits statistics. In International Workshop on Digital
Watermarking, 2008.

[77] Wen Chen, Yun Qing Shi, and Wei Su. Image splicing detection using
2-d phase congruency and statistical moments of characteristic func-
tion. In Edward J. Delp and Ping Wah Wong, editors, SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents,
volume 6505, 2007.

[78] Wen Chen, Yun Qing Shi, and Guo Rong Xuan. Identifying computer
graphics using hsv color model and statistical moments of characteristic
functions. In IEEE International Conference on Multimedia and Expo,
2007.

[79] Wen Chen, Yun Qing Shi, Guo Rong Xuan, and Wei Su. Computer
graphics identification using genetic algorithm. In IEEE International
Conference on Pattern Recognition, 2008.

[80] Yi-Lei Chen and Chiou-Ting Hsu. Image tampering detection by block-
ing periodicity analysis in JPEG compressed images. In IEEE Workshop
on Multimedia Signal Processing, pages 803–808, 2008.

[81] Yi-Lei Chen and Chiou-Ting Hsu. Detecting doubly compressed images
based on quantization noise model and image restoration. In IEEE
Workshop on Multimedia Signal Processing, 2009.

[82] Yi-Lei Chen and Chiou-Ting Hsu. Detecting recompression of JPEG
images via periodicity analysis of compression artifacts for tampering
detection. IEEE Transactions on Information Forensics and Security,
6(2):396–406, 2011.

[83] H. R. Chennamma and Lalitha Rangarajan. Image splicing detection
using inherent lens radial distortion. International Journal of Computer
Science Issues, 7(6):149–158, 2010.

[84] H. R. Chennamma and Lalitha Rangarajan. Source camera identification
based on sensor readout noise. International Journal of Digital Crime
and Forensics, 2(3):28–42, 2010.

[85] H. R. Chennamma, Lalitha Rangarajan, and M. S. Rao. Robust near du-
plicate image matching for digital image forensics. International Journal
of Digital Crime and Forensics, 1(3):62–79, 2009.

[86] H. R. Chennamma, Lalitha Rangarajan, and M. S. Rao. New Technolo-
gies for Digital Crime and Forensics: Devices, Applications and Soft-
ware, chapter Efficient Image Matching using Local Invariant Features
for Copy Detection. IGI Global Publisher, 2010.

[87] Girija Chetty and Monica Singh. Nonintrusive image tamper detection
based on fuzzy fusion. International Journal of Computer Science and
Network Security, 10(9):86–90, 2010.

[88] Pei-Ju Chiang, Nitin Khanna, Aravind K. Mikkilineni, Maria V. Ortiz
Segovia, Sungjoo Suh, Jan P. Allebach, George T.-C. Chiu, and Ed-
ward J. Delp. Printer and scanner forensics. IEEE Signal Processing
Magazine, 26(2):72–83, 2009.

[89] Chang-Hee Choi, Min-Jeong Lee, and Heung-Kyu Lee. Scanner identi-
fication using spectral noise in the frequency domain. In International
Conference on Image Processing, 2010.

172

[90] Jung-Ho Choi, Dong-Hyuck Im, Hae-Yeoun Lee, Jun-Taek Oh, Jin-Ho
Ryu, and Heung-Kyu Lee. Color laser printer identification by analyzing
statistical features on discrete wavelet transform. In IEEE International
Conference on Image Processing, pages 1505–1508, 2009.

[91] Jung-Ho Choi, Hae-Yeoun Lee, and Heung-Kyu Lee. Color laser printer
forensics with noise texture analysis. In ACM Workshop on Multimedia
and Security, pages 19–24, 2010.

[92] Kai San Choi, Edmund Y. Lam, and Kenneth K. Y. Wong. Automatic
source camera identification using intrinsic lens radial distortion. Optics
Express, 14(24):11551–11565, 2006.

[93] Kai San Choi, Edmund Y. Lam, and Kenneth K. Y. Wong. Feature
selection in source camera identification. In IEEE International Confer-
ence on Systems, Man and Cybernetics, pages 3176–3180, 2006.

[94] Kai San Choi, Edmund Y. Lam, and Kenneth K. Y. Wong. Source
camera identification by JPEG compression statistics for image forensics.
In IEEE Region 10 Conference (TENCON 2006), 2006.

[95] Kai San Choi, Edmund Y. Lam, and Kenneth K. Y. Wong. Source cam-
era identification using footprints from lens aberration. In Nitin Sampat,
Jeffrey M. DiCarlo, and Russel A. Martin, editors, SPIE Conference on
Digital Photography, volume 6069, 2006.

[96] Vincent Christlein, Christian Riess, and Elli Angelopoulou. On rotation
invariance in copy-move forgery detection. In Workshop on Information
Forensics and Security, 2010.

[97] Vincent Christlein, Christian Riess, and Elli Angelopoulou. A study on
features for the detection of copy-move forgeries. In Information Security
Solutions Europe, 2010.

[98] Wei-Hong Chuang, Hui Su, and Min Wu. Exploring compression effects
for improved source camera identification using strongly compressed
video. In International Conference on Image Processing, 2011.

[99] Wei-Hong Chuang, Ashwin Swaminathan, and Min Wu. Tampering
identification using empirical frequency response. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages 1517–
1520, apr 2009.

[100] Wei-Hong Chuang and Min Wu. Semi non-intrusive training for cell-
phone camera model linkage. In Workshop on Information Forensics
and Security, 2010.

[101] Chen Chunhua, Yun Qing Shi, and Su Wei. A machine learning based
scheme for double JPEG compression detection. In International Con-
ference on Pattern Recognition, pages 1–4, 2008.

[102] Valentina Conotter, Giulia Boato, and Hany Farid. Detecting photo
manipulation on signs and billboards. In International Conference on
Image Processing, 2010.

[103] Valentina Conotter and Lorenzo Cordin. Detecting photographic and
computer generated composites. In SPIE Conference on Media Forensics
and Security, 2011.

[104] Andrea Cortiana, Valentina Conotter, Giulia Boato, and Francesco G.
B. De Natale. Performance comparison of denoising filters for source
camera identification. In SPIE Conference on Media Watermarking,
Security, and Forensics, 2011.

[105] Brian D’Alessandro and Yun Qing Shi. MP3 bit rate quality detection
through frequency spectrum analysis. In ACM Multimedia and Security
Workshop, pages 57–62, 2009.

173

[106] Nahuel Dalgaard, Carlos Mosquera, and Fernando Perez-Gonzalez. On
the role of differentiation for resampling detection. In International
Conference on Image Processing, 2010.

[107] Sintayehu Dehnie, Husrev T. Sencar, and Nasir Memon. Digital image
forensics for identifying computer generated and digital camera images.
In IEEE International Conference on Image Processing, pages 2313–
2316, 2006.

[108] Wei Deng, Qinghu Chen, Feng Yuan, and Yuchen Yan. Printer iden-
tification based on distance transform. In International Conference on
Intelligent Networks and Intelligent Systems, pages 565–568, 2008.

[109] Zanoni Dias, Anderson Rocha, and Siome Goldenstein. First steps to-
ward image phylogeny. In Workshop on Information Forensics and Se-
curity, 2010.

[110] Ahmet Emir Dirik, Sevinc Bayram, Husrev T. Sencar, and Nasir Memon.
New features to identify computer generated images. In IEEE Interna-
tional Conference on Image Processing, volume 4, pages IV–433–IV–436,
2007.

[111] Ahmet Emir Dirik and Nasir Memon. Image tamper detection based
on demosaicing artifacts. In IEEE International Conference on Image
Processing, pages 1509–1512, 2009.

[112] Ahmet Emir Dirik, Husrev T. Sencar, and Nasir Memon. Source camera
identification based on sensor dust characteristics. In IEEE Workshop on
Signal Processing Applications for Public Security and Forensics, pages
1–6, 2007.

[113] Ahmet Emir Dirik, Husrev T. Sencar, and Nasir Memon. Digital single
lens reflex camera identification from traces of sensor dust. IEEE Trans-
actions on Information Forensics and Security, 3(3):539–552, 2008.

[114] Ahmet Emir Dirik, Husrev T. Sencar, and Nasir Memon. Flatbed scan-
ner identification based on dust and scratches over scanner platen. In
IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 1385–1388, 2009.

[115] Jing Dong, Wei Wang, Tieniu Tan, and Yun Qing Shi. Run-length and
edge statistics based approach for image splicing detection. In Interna-
tional Workshop on Digital Watermarking, pages 76–87, 2008.

[116] Brandon Dybala, Brian Jennings, and David Letscher. Detecting filtered
cloning in digital images. In ACM Multimedia and Security Workshop,
pages 43–50, 2007.

[117] Jiayuan Fan, Alex C. Kot, Hong Cao, and Farook Sattar. Modeling the
exif-image correlation for image manipulation detection. In International
Conference on Image Processing, 2011.

[118] Na Fan, Cheng Jin, and Yizhen Huang. A pixel-based digital photo
authentication framework via demosaicking inter-pixel correlation. In
ACM Multimedia and Security Workshop, pages 125–130, 2009.

[119] Zhigang Fan and Ricardo de Queiroz. Identification of bitmap compres-
sion history: JPEG detection and quantizer estimation. IEEE Transac-
tions on Image Processing, 12(2):230–235, 2003.

[120] Yanmei Fang, Ahmet Emir Dirik, Xiaoxi Sun, and Nasir Memon. Source
class identification for dslr and compact cameras. In IEEE Workshop
on Multimedia Signal Processing, 2009.

[121] Yanmei Fang and Jing Yin. Digital image forensics for photographic
copying. In SPIE Conference on Media Waternarking, Security, and
Forensics, pages 8303–12, 2012.

174

[122] Zhen Fang, Shuozhong Wang, and Xinpeng Zhang. Image splicing detec-
tion using camera characteristic inconsistency. In International Confer-
ence on Multimedia Information Networking and Security, pages 20–24,
2009.

[123] Hany Farid. Detecting digital forgeries using bispectral analysis. Tech-
nical Report AIM-1657, AI Lab, Massachusetts Institute of Technology,
1999.

[124] Hany Farid. Creating and detecting doctored and virtual images: Im-
plications to the child pornography prevention act. Technical Report
TR2004-518, Department of Computer Science, Dartmouth College,
2004.

[125] Hany Farid. Digital doctoring: How to tell the real from the fake. Sig-
nificance, 3(4):162–166, 2006.

[126] Hany Farid. Digital image ballistics from JPEG quantization. Techni-
cal Report TR2006-583, Department of Computer Science, Dartmouth
College, 2006.

[127] Hany Farid. Exposing digital forgeries in scientific images. In ACM
Multimedia and Security Workshop, pages 29–36, 2006.

[128] Hany Farid. Digital image ballistics from JPEG quantization: A fol-
lowup study. Technical Report TR2008-638, Department of Computer
Science, Dartmouth College, 2008.

[129] Hany Farid. Digital image forensics. Scientific American, 6(298):66–71,
2008.

[130] Hany Farid. Advances in Computers, volume 77, chapter Photo Fakery
and Forensics, pages 1–55. Elsevier, 2009.

[131] Hany Farid. Deception: Methods, Motives, Contexts and Consequences,
chapter Digital Doctoring: can we trust photographs?, pages 95–108.
Stanford University Press, 2009.

[132] Hany Farid. Exposing digital forgeries from JPEG ghosts. IEEE Trans-
actions on Information Forensics and Security, 1(4):154–160, 2009.

[133] Hany Farid. The lee harvey oswald backyard photos: Real or fake?
Perception, 11(38):1731–1734, 2009.

[134] Hany Farid. Seeing is not believing. IEEE Spectrum, 8(46):44–48, 2009.

[135] Hany Farid. A survey of image forgery detection. IEEE Signal Processing
Magazine, 2(26):16–25, 2009.

[136] Hany Farid. A 3-d lighting and shadow analysis of the jfk zapruder film
(frame 317). Technical Report TR2010-677, Department of Computer
Science, Dartmouth College, 2010.

[137] Hany Farid. A 3-d photo forensic analysis of the lee harvey oswald back-
yard photo. Technical Report TR2010-669, Department of Computer
Science, Dartmouth College, 2010.

[138] Hany Farid and Mary J. Bravo. Photorealistic rendering: How realistic
is it? In Vision Sciences, 2007.

[139] Hany Farid and Mary J. Bravo. Image forensic analyses that elude
the human visual system. In SPIE Conference on Media Forensics and
Security, 2010.

[140] Hany Farid and Siwei Lyu. Higher-order wavelet statistics and their ap-
plication to digital forensics. In IEEE Workshop on Statistical Analysis
in Computer Vision (in conjunction with CVPR), 2003.

175

[141] Hany Farid and Jeffrey B. Woodward. Video stabilization and enhance-
ment. Technical Report TR2007-605, Department of Computer Science,
Dartmouth College, 2007.

[142] Xiaoying Feng. Fld-based detection of re-compressed speech signals. In
ACM Workshop on Multimedia and Security, pages 43–48, 2010.

[143] Xiaoying Feng and Gwenael Doerr. JPEG recompression detection. In
SPIE Conference on Media Forensics and Security, 2010.

[144] Tomas Filler, Jessica Fridrich, and Miroslav Goljan. Using sensor pattern
noise for camera model identification. In IEEE International Conference
on Image Processing, pages 1296–1299, 2008.

[145] Claude S. Fillion and Gaurav Sharma. Detecting content adaptive scal-
ing of images for forensic applications. In SPIE Conference on Media
Forensics and Security, 2010.

[146] Marco Fontani, Tiziano Bianchi, Alessia De Rosa, Alessandro Piva, and
Mauro Barni. A dempster-shafer framework for decision fusion in image
forensics. In Workshop on Information Forensics and Security, 2011.

[147] Marco Fontani, Andrea Costanzo, Mauro Barni, Tiziano Bianchi,
Alessia De Rosa, and Alessandro Piva. Two decision fusion frameworks
for image forensics. In Annual GTTI Meeting, 2011.

[148] Jessica Fridrich. Digital image forensic using sensor noise. IEEE Signal
Processing Magazine, 26(2):26–37, 2009.

[149] Jessica Fridrich, Mo Chen, and Miroslav Goljan. Imaging sensor noise
as digital x-ray for revealing forgeries. In International Workshop on
Information Hiding, pages 342–358, 2007.

[150] Jessica Fridrich, David Soukal, and Jan Lukas. Detection of copy move
forgery in digital images. In Digital Forensic Research Workshop, August
2003.

[151] Dongdong Fu, Yun Qing Shi, and Wei Su. Detection of image splicing
based on hilbert-huang transform and moments of characteristic func-
tions with wavelet decomposition. In Byeungwoo Jeon, editor, Interna-
tional Workshop on Digital Watermarking, pages 177–187, 2006.

[152] Dongdong Fu, Yun Qing Shi, and Wei Su. A generalized benford’s law
for JPEG coefficients and its applications in image forensics. In Ed-
ward J. Delp and Ping Wah Wong, editors, SPIE Conference on Secu-
rity, Steganography, and Watermarking of Multimedia Contents, volume
6505, 2007.

[153] Andrew C. Gallagher. Detection of linear and cubic interpolation in
JPEG compressed images. In Second Canadian Conference on Computer
and Robot Vision, pages 65–72, 2005.

[154] Andrew C. Gallagher and Tsu-Han Chen. Image authentication by de-
tecting traces of demosaicing. In IEEE Workshop on Vision of the Un-
seen (in conjunction with CVPR), pages 1–8, 2008.

[155] Xinting Gao, Tian-Tsong Ng, Bo Qiu, and Shih-Fu Chang. Single-view
recaptured image detection based on physics-based features. In IEEE
International Conference on Multimedia and Expo, 2010.

[156] Xinting Gao, Bo Qiu, JingJing Shen, Tian-Tsong Ng, and Yun Qing
Shi. A smart phone image database for single image recapture. In
International Workshop on Digital Watermarking, pages 90–104, 2010.

[157] Daniel Garcia-Romero and Carol Espy-Wilson. Automatic acquisition
device identification from speech recordings. In International Conference
on Acoustics, Speech, and Signal Processing, pages 1806–1809, 2010.

176

[158] Ravi Garg, Avinash L. Varna, and Min Wu. ”seeing” enf: Natural time
stamp for digital video via optical sensing and signal processing. In ACM
Multimedia, 2011.

[159] Matthew D. Gaubatz and Steven J. Simske. Printer-scanner identifica-
tion via analysis of structured security deterrents. In IEEE Workshop on
Information Forensics and Security, pages 151–155, London, UK, 2009.

[160] Matthew D. Gaubatz, Robert Ulichney, and David Rouse. A low-
complexity reduced-reference print identification algorithm. In IEEE
International Conference on Image Processing, pages 1281–1284, 2009.

[161] Zeno J. Geradts, Jurrien Bijhold, Martijn Kieft, Kenji Kurosawa, Kenro
Kuroki, and Naoki Saitoh. Methods for identification of images acquired
with digital cameras. In Simon K. Bramble, Edward M. Carapezza, and
Lenny I. Rudin, editors, SPIE Conference on Enabling Technologies for
Law Enforcement and Security, volume 4232, pages 505–512, 2001.

[162] Zeno J. Geradts, Jurrien Bijhold, Martijn Kieft, Kenji Kurosawa, Kenro
Kuroki, and Naoki Saitoh. Digital camera identification. Journal of
Forensic Identification, 52(5):621–631, 2002.

[163] Sandeep Gholap and P. K. Bora. Illuminant colour based image forensics.
In IEEE Region 10 Conference (TENCON 2008), 2008.

[164] Thomas Gloe and Rainer Böhme. The ’dresden image database’ for
benchmarking digital image forensics. In ACM Symposium on Applied
Computing, volume 2, pages 1584–1590, 2010.

[165] Thomas Gloe, Karsten Borowka, and Antje Winkler. Feature-based cam-
era model identification works in practice: Results of a comprehensive
evaluation study. In Stefan Katzenbeisser and Ahmad-Reza Sadeghi,
editors, International Workshop on Information Hiding, pages 262–276,
2009.

[166] Thomas Gloe, Elke Franz, and Antje Winkler. Forensics for flatbed scan-
ners. In Edward J. Delp and Ping Wah Wong, editors, SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents,
volume 6505, 2007.

[167] Thomas Gloe, Matthias Kirchner, Antje Winkler, and Rainer Böhme.
Can we trust digital image forensics? In International Conference on
Multimedia, pages 78–86, 2007.

[168] Thomas Gloe, Antje Winkler, and Karsten Borowka. Efficient estima-
tion and large-scale evaluation of lateral chromatic aberration for digital
image forensics. In SPIE Conference on Media Forensics and Security,
2010.

[169] Siome Goldenstein and Anderson Rocha. High-profile forensic analysis
of images. In International Conference on Imaging for Crime Detection
and Prevention, pages 1–6, 2009.

[170] Miroslav Goljan. Digital camera identification from images – estimat-
ing false acceptance probability. In International Workshop on Digital
Watermarking, pages 454–468, 2008.

[171] Miroslav Goljan, Mo Chen, and Jessica Fridrich. Identifying common
source digital camera from image pairs. In IEEE International Confer-
ence on Image Processing, 2007.

[172] Miroslav Goljan and Jessica Fridrich. Camera identification from scaled
and cropped images. In Edward J. Delp and Ping Wah Wong, edi-
tors, SPIE Conference on Security, Forensics, Steganography, and Wa-
termarking of Multimedia Contents, volume 6819, 2008.

177

[173] Miroslav Goljan and Jessica Fridrich. Determining approximate age
of digital images using sensor defects. In SPIE Conference on Media
Watermarking, Security, and Forensics, 2011.

[174] Miroslav Goljan, Jessica Fridrich, and Mo Chen. Sensor noise camera
identification: Countering counter-forensics. In SPIE Conference on
Media Forensics and Security, 2010.

[175] Miroslav Goljan, Jessica Fridrich, and Mo Chen. Defending against
fingerprint-copy attack in sensor-based camera identification. IEEE
Transactions on Information Forensics and Security, 6(1):227–236, 2011.

[176] Miroslav Goljan, Jessica Fridrich, and Tomas Filler. Large scale test of
sensor fingerprint camera identification. In SPIE Conference on Media
Forensics and Security, 2009.

[177] Miroslav Goljan, Jessica Fridrich, and Tomas Filler. Managing a large
database of camera fingerprints. In SPIE Conference on Media Forensics
and Security, 2010.

[178] Miroslav Goljan, Jessica Fridrich, and Jan Lukas. Camera identifica-
tion from printed images. In Edward J. Delp, Ping Wah Wong, Jana
Dittmann, and Nasir Memon, editors, SPIE Conference on Security,
Forensics, Steganography, and Watermarking of Multimedia Contents,
volume 6819, 2008.

[179] E. S. Gopi. Digital image forgery detection using artificial neural net-
work and independent component analysis. Applied Mathematics and
Computation, 194(2):540–543, 2007.

[180] E. S. Gopi, Lakshmanan Nataraj, T. Gokul, S. KumaraGanesh, and
Prerak. R. Shah. Digital image forgery detection using artificial neural
network and auto regressive coefficients. In Canadian Conference on
Electrical and Computer Engineering, 2006.

[181] Hongmei Gou, Ashwin Swaminathan, and Min Wu. Noise features for
image tampering detection and steganalysis. In IEEE International Con-
ference on Image Processing, 2007.

[182] Hongmei Gou, Ashwin Swaminathan, and Min Wu. Robust scanner
identification based on noise features. In SPIE Conference on Security,
Steganography, and Watermarking of Multimedia Contents, February
2007.

[183] Hongmei Gou, Ashwin Swaminathan, and Min Wu. Intrinsic sensor noise
features for forensic analysis on scanners and scanned images. IEEE
Transactions on Information Forensics and Security, 4(3):476–491, sep
2009.

[184] Catalin Grigoras. Digital audio recording analysis: the electric network
frequency (enf) criterion. Speech, Language and the Law, 12(1):63–76,
2005.

[185] Catalin Grigoras. Applications of enf analysis method in forensic authen-
tication of digital audio and video recordings. In 123rd AES Convention,
2007.

[186] Catalin Grigoras. Applications of enf criterion in forensic audio, video,
computer and telecommunication analysis. Forensic Science Interna-
tional, 167(2-3):136–145, 2007.

[187] Catalin Grigoras, Alan Cooper, and Marcin Michalek. Forensic speech
and audio analysis working group - best practice guidelines for enf anal-
ysis in forensic authentication of digital evidence, 2009.

178

[188] Jiri Grim, Petr Somol, and Pavel Pudil. Digital image forgery detection
by local statistical models. In International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, pages 579–582,
2010.

[189] Gökhan Gül and Ismail Avcibas. Source cell phone camera identification
based on singular value decomposition. In IEEE Workshop on Informa-
tion Forensics and Security, pages 171–175, London, UK, 2009.

[190] Gökhan Gül, Ismail Avcibas, and Fatih Kurugollu. SVD based image
manipulation detection. In International Conference on Image Process-
ing, 2010.

[191] Gaurav Gupta, Sanjoy Kumar Saha, Shayok Chakraborty, and Chandan
Mazumdar. Document frauds: Identification and linking fake document
to scanners and printers. In International Conference on Theory and
Applications, pages 497–501, 2007.

[192] Junfeng He, Zhouchen Lin, Lifeng Wang, and Xiaoou Tang. Detect-
ing doctored JPEG images via DCT coefficient analysis. In European
Conference on Computer Vision, 2006.

[193] John Ho, Oscar C. Au, and Jiantao Zhou. Inter-channel demosaicking
traces for digital image forensics. In IEEE International Conference on
Multimedia and Expo, 2010.

[194] Dun-Yu Hsiao and Soo-Chang Pei. Detecting digital tampering by blur
estimation. In International Workshop on Systematic Approaches to
Digital Forensic Engineering, pages 264–278, 2005.

[195] Pei-Lun Hsieh, Yu-Ming Liang, and Hong-Yuan Mark Liao. Recognition
of blurred license plate images. In Workshop on Information Forensics
and Security, 2010.

[196] Chih-Chung Hsu, Tzu-Yi Hung, Chia-Wen Lin, and Chiou-Ting Hsu.
Video forgery detection using correlation of noise residue. In IEEE
Workshop on Multimedia Signal Processing, pages 170–174, 2008.

[197] Yu-Feng Hsu and Shih-Fu Chang. Detecting image splicing using geom-
etry invariants and camera characteristics consistency. In IEEE Inter-
national Conference on Multimedia and Expo, 2006.

[198] Yu-Feng Hsu and Shih-Fu Chang. Image splicing detection using camera
response function consistency and automatic segmentation. In IEEE
International Conference on Multimedia and Expo, 2007.

[199] Yu-Feng Hsu and Shih-Fu Chang. Statistical fusion of multiple cues for
image tampering detection. In Asilomar Conference on Signals, Sys-
tems, and Computers, 2008.

[200] Yu-Feng Hsu and Shih-Fu Chang. Camera response functions for image
forensics: An automatic algorithm for splicing detection. IEEE Trans-
actions on Information Forensics and Security, 5(4):816–825, 2010.

[201] Fangjun Huang, Jiwu Huang, and Yun Qing Shi. Detecting double JPEG
compression with the same quantization matrix. IEEE Transactions on
Information Forensics and Security, 5(4):848–856, 2010.

[202] Hailing Huang, Weiqiang Guo, and Yu Zhang. Detection of copy-move
forgery in digital images using sift algorithm. In Pacific-Asia Workshop
on Computational Intelligence and Industrial Application, pages 272–
276, 2008.

[203] Yanping Huang, Wei Lu, Wei Sun, and Dongyang Long. Improved DCT-
based detection of copy-move forgery in images. Forensic Science Inter-
national, 206(1):178–184, 2011.

179

[204] Yizhen Huang. Can digital image forgery detection be unevadable? a
case study: Color filter array interpolation statistical feature recovery.
In Shipeng Li, Fernando Pereira, Heung-Yeung Shum, and Andrew G.
Tescher, editors, SPIE Conference on Visual Communications and Im-
age Processing, volume 5960, 2005.

[205] Yizhen Huang and Na Fan. Learning from interpolated images using
neural networks for digital forensics. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 177–182, 2010.

[206] Yizhen Huang and Yangjing Long. Demosaicking recognition with ap-
plications in digital photo authentication based on a quadratic pixel
correlation model. In Computer Vision and Pattern Recognition, pages
1–8, 2008.

[207] Maarten Huijbregtse and Zeno J. Geradts. Using the enf criterion for
determining the time of recording of short digital audio recordings. In
Zeno J. Geradts, Katrin Y. Franke, and Cor. J. Veenman, editors, Inter-
national Workshop on Computational Forensics, pages 116–124, 2009.

[208] Dai-Kyung Hyun, Seung-Jin Ryu, Min-Jeong Lee, Jun-Hee Lee, Hae-
Yeoun Lee, and Heung-Kyu Lee. Source camcorder identification with
cropped and scaled videos. In SPIE Conference on Media Waternarking,
Security, and Forensics, pages 8303–11, 2012.

[209] Alain Jaubert. Le commissariat aux archives (French Edition). Barrault,
1992.

[210] Arshad Jhumka, Chris Levett, and Sarabjot Anand. Towards event
ordering in digital forensics. In ACM Workshop on Multimedia and
Security, 2010.

[211] Micah Kimo Johnson. Lighting and Optical Tools for Image Foren-
sics. PhD thesis, Department of Computer Science, Dartmouth College,
Hanover, NH, 2007.

[212] Micah Kimo Johnson and Hany Farid. Exposing digital forgeries by
detecting inconsistencies in lighting. In ACM Multimedia and Security
Workshop, pages 1–10, 2005.

[213] Micah Kimo Johnson and Hany Farid. Exposing digital forgeries through
chromatic aberration. In ACM Multimedia and Security Workshop,
pages 48–55, 2006.

[214] Micah Kimo Johnson and Hany Farid. Metric measurements on a plane
from a single image. Technical Report TR2006-579, Department of Com-
puter Science, Dartmouth College, 2006.

[215] Micah Kimo Johnson and Hany Farid. Detecting photographic com-
posites of people. In International Workshop on Digital Watermarking,
pages 19–33, 2007.

[216] Micah Kimo Johnson and Hany Farid. Exposing digital forgeries in com-
plex lighting environments. IEEE Transactions on Information Foren-
sics and Security, 3(2):450–461, 2007.

[217] Micah Kimo Johnson and Hany Farid. Exposing digital forgeries through
specular highlights on the eye. In International Workshop on Informa-
tion Hiding, pages 311–325, 2007.

[218] Mateusz Kajstura, Agata Trawinska, and Jacek Hebenstreit. Applica-
tion of the electrical network frequency (enf) criterion: A case of a digital
recording. Forensic Science International, 155(2-3):165–171, 2005.

[219] Pravin Kakar, Sudha Natarajan, and Wee Ser. Detecting digital im-
age forgeries through inconsistent motion blur. In IEEE International
Conference on Multimedia and Expo, 2010.

180

[220] Pravin Kakar, Sudha Natarajan, and Wee Ser. Image authentication
by motion blur consistency verification. In IEEE Region 10 Conference
(TENCON 2010), pages 188–193, 2010.

[221] Pravin Kakar, Sudha Natarajan, and Wee Ser. Exposing digital image
forgeries by detecting discrepancies in motion blur. IEEE Transactions
on Multimedia, 13(3):443–452, 2011.

[222] Xiangui Kang, Yinxiang Li, Zhenhua Qu, and Jiwu Huang. Enhancing
roc performance of trustworthy camera source identification. In SPIE
Conference on Media Watermarking, Security, and Forensics, 2011.

[223] Xiao-Bing Kang and Sheng-Min Wei. Identifying tampered regions using
singular value decomposition in digital image forensics. In International
Conference on Computer Science and Software Engineering, pages 926–
930, 2008.

[224] Yan Ke, Rahul Sukthankar, and Larry Huston. Efficient near-duplicate
detection and sub-image retrieval. In ACM International Conference on
Multimedia, pages 869–876, 2004.

[225] Eric Kee and Hany Farid. Printer profiling for forensics and ballistics.
In ACM Multimedia and Security Workshop, pages 3–10, 2008.

[226] Eric Kee and Hany Farid. Detecting photographic composites of fa-
mous people. Technical Report TR2009-656, Department of Computer
Science, Dartmouth College, 2009.

[227] Eric Kee and Hany Farid. Digital image authentication from thumbnails.
In SPIE Conference on Media Forensics and Security, 2010.

[228] Eric Kee and Hany Farid. Exposing digital forgeries from 3-d light-
ing environments. In Workshop on Information Forensics and Security,
2010.

[229] Eric Kee and Hany Farid. A perceptual metric for photo retouching.
Proceedings of the National Academy of Sciences, 108(50):19907–19912,
2011.

[230] Eric Kee, Micah K. Johnson, and Hany Farid. Digital image authentica-
tion from JPEG headers. IEEE Transactions on Information Forensics
and Security, 6(3):1066–1075, 2011.

[231] Saiqa Khan and Arun Kulkarni. An efficient method for detection of
copy-move forgery using discrete wavelet transform. International Jour-
nal on Computer Science and Engineering, 2(5):1801–1806, 2010.

[232] Nitin Khanna, George T.-C. Chiu, Jan P. Allebach, and Edward J. Delp.
Forensic technqiues for classifying scanner, computer generated and dig-
ital camera images. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 1653–1656, 2008.

[233] Nitin Khanna, George T.-C. Chiu, Jan P. Allebach, and Edward J. Delp.
Scanner identification with extension to forgery detection. In SPIE
Conference on Security, Forensics, Steganography, and Watermarking
of Multimedia Contents, 2008.

[234] Nitin Khanna and Edward J. Delp. Source scanner identification for
scanned documents. In IEEE Workshop on Information Forensics and
Security, pages 166–170, London, UK, 2009.

[235] Nitin Khanna and Edward J. Delp. Intrinsic signatures for scanned
documents forensics : Effect of font shape and size. In International
Symposium on Circuits and Systems, 2010.

[236] Nitin Khanna, Aravind K. Mikkilineni, Pei-Ju Chiang, Maria V. Ortiz,
Vivek Shah, Sungjoo Suh, George T.-C. Chiu, Jan P. Allebach, and
Edward J. Delp. Printer and sensor forensics. In IEEE Workshop on
Signal Processing Applications for Public Security and Forensics, 2007.

181

[237] Nitin Khanna, Aravind K. Mikkilineni, Pei-Ju Chiang, Maria V. Ortiz,
Sungjoo Suh, George T.-C. Chiu, Jan P. Allebach, and Edward J. Delp.
Sensor forensics: Printers, cameras and scanners, they never lie. In IEEE
International Conference on Multimedia and Expo, pages 20–23, 2007.

[238] Nitin Khanna, Aravind K. Mikkilineni, George T.-C. Chiu, Jan P. Alle-
bach, and Edward J. Delp. Forensic classification of imaging sensor
types. In Edward J. Delp and Ping Wah Wong, editors, SPIE Con-
ference on Security, Steganography, and Watermarking of Multimedia
Contents, volume 6505, 2007.

[239] Nitin Khanna, Aravind K. Mikkilineni, George T.-C. Chiu, Jan P. Alle-
bach, and Edward J. Delp. Scanner identification using sensor pattern
noise. In Edward J. Delp and Ping Wah Wong, editors, SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents,
volume 6505, 2007.

[240] Nitin Khanna, Aravind K. Mikkilineni, George T.-C. Chiu, Jan P. Alle-
bach, and Edward J. Delp. Survey of scanner and printer forensics at
purdue university. In International Workshop on Computational Foren-
sics, pages 22–34, 2008.

[241] Nitin Khanna, Aravind K. Mikkilineni, and Edward J. Delp. Foren-
sic camera classification: Verification of sensor pattern noise approach.
Forensic Science Communications, 11(1), 2009.

[242] Nitin Khanna, Aravind K. Mikkilineni, and Edward J. Delp. Scanner
identification using feature-based processing and analysis. IEEE Trans-
actions on Information Forensics and Security, 4(1):123–139, 2009.

[243] Nitin Khanna, Aravind K. Mikkilineni, and Edward J. Delp. Texture
based attacks on intrinsic signature based printer identification. In SPIE
Conference on Media Forensics and Security, 2010.

[244] Nitin Khanna, Aravind K. Mikkilineni, Anthony F. Martone, Gazi N.
Ali, George T.-C. Chiu, Jan P. Allebach, and Edward J. Delp. A sur-
vey of forensic characterization methods for physical devices. Digital
Investigation, 3(Supplement 1):17–28, 2006.

[245] Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon. Blind source
camera identification. In IEEE International Conference on Image Pro-
cessing, pages 709–712, 2004.

[246] Stefan Kiltz, Mario Hildebrandt, Robert Altschaffel, and Jana
Dittmann. A transparent bridge for forensic sound network traffic data
acquisition. In Sicherheit - Schutz und Zuverlässigkeit, pages 93–104,
2010.

[247] Stefan Kiltz, Tobias Hoppe, and Jana Dittmann. A new forensic model
and its application to the collection, extraction and long term storage
of screen content off a memory dump. In International Conference on
Digital Signal Processing, pages 1135–1140, 2009.

[248] Stefan Kiltz, Tobias Hoppe, Jana Dittmann, and Claus Vielhauer. Video
surveillance: A new forensic model for the forensically sound retrival of
picture content off a memory dump. In Stefan Fischer, Erik Maehle,
and Ruediger Reischuk, editors, Informatik2009 - Digitale Multimedia-
Forensik, pages 1619–1633, 2009.

[249] Hyoung J. Kim, Soomin Lim, Jongsub Moon, Boram Kim, and Eui S.
Jung. A photographic forensic case study: Myths, principles and tech-
niques. Mathematical and Computer Modelling, 55(1-2):3–11, 2012.

[250] Matthias Kirchner. Fast and reliable resampling detection by spectral
analysis of fixed linear predictor residue. In ACM Multimedia and Se-
curity Workshop, pages 11–20, 2008.

182

[251] Matthias Kirchner. On the detectability of local resampling in digital
images. In Edward J. Delp, Ping Wah Wong, Jana Dittmann, and Nasir
Memon, editors, SPIE Conference on Security, Forensics, Steganogra-
phy, and Watermarking of Multimedia Contents, volume 6819, 2008.

[252] Matthias Kirchner. Efficient estimation of cfa pattern configuration in
digital camera images. In SPIE Conference on Media Forensics and
Security, 2010.

[253] Matthias Kirchner. Linear row and column predictors for the analysis of
resized images. In ACM Workshop on Multimedia and Security, pages
13–18, 2010.

[254] Matthias Kirchner and Rainer Böhme. Tamper hiding: Defeating image
forensics. In Teddy Furon, Francois Cayre, Gwenael Doerr, and Patrick
Bas, editors, International Workshop on Information Hiding, pages 326–
341, 2007.

[255] Matthias Kirchner and Rainer Böhme. Hiding traces of resampling in
digital images. IEEE Transactions on Information Forensics and Secu-
rity, 3(4):582–592, 2008.

[256] Matthias Kirchner and Rainer Böhme. Synthesis of color filter array pat-
tern in digital images. In Edward J. Delp, Jana Dittmann, Nasir Memon,
and Ping Wah Wong, editors, SPIE Conference on Media Forensics and
Security, 2009.

[257] Matthias Kirchner and Jessica Fridrich. On detection of median filtering
in digital images. In SPIE Conference on Media Forensics and Security,
2010.

[258] Matthias Kirchner and Thomas Gloe. On resampling detection in re-
compressed images. In IEEE Workshop on Information Forensics and
Security, pages 21–25, 2009.

[259] Simon Knight, Simon Moschou, and Matthew Sorell. Analysis of sen-
sor photo response non-uniformity in raw images. In Matthew Sorell,
editor, International Conference on Forensics in Telecommunications,
Information and Multimedia, pages 130–141, 2009.

[260] Michihiro Kobayashi, Takahiro Okabe, and Yoichi Sato. Detecting video
forgeries based on noise characteristics. In Toshikazu Wada, Fay Huang,
and Stephen Lin, editors, Advances in Image and Video Technology,
Third Pacific Rim Symposium, pages 306–317, 2009.

[261] Michihiro Kobayashi, Takahiro Okabe, and Yoichi Sato. Detecting
forgery from static-scene video based on inconsistency in noise level
functions. IEEE Transactions on Information Forensics and Security,
5(4):883–892, 2010.

[262] Jesse D. Kornblum. Using JPEG quantization tables to identify imagery
processed by software. Digital Investigation, 5(Supplement 1):S21–S25,
2008.

[263] Christian Krätzer and Jana Dittmann. Der einfluss gleichgewichteter
fusion in der mikrofonforensik unter beispielhafter nutzung von zwei
klassifikatoren. In GI Jahrestagung, pages 1604–1618, 2009.

[264] Christian Krätzer, Andrea Oermann, Jana Dittmann, and Andreas
Lang. Digital audio forensics: A first practical evaluation on micro-
phone and environment classification. In ACM Multimedia and Security
Workshop, pages 63–74, 2007.

[265] Christian Krätzer, Kun Qian, Maik Schott, and Jana Dittmann. A con-
text model for microphone forensics and its application in evaluations.
In SPIE Conference on Media Watermarking, Security, and Forensics,
2011.

183

[266] Christian Krätzer, Maik Schott, and Jana Dittmann. Unweighted fusion
in microphone forensics using a decision tree and linear logistic regression
models. In ACM Multimedia and Security Workshop, pages 49–56, 2009.

[267] Kenro Kuroki, Kenji Kurosawa, and Naoki Saitoh. An approach to
individual video camera identification. Journal of Forensic Sciences,
47(1):97–102, 2002.

[268] Kenji Kurosawa, Kenro Kuroki, and Naoki Saitoh. Ccd fingerprint
method - identification of a video camera from videotaped images. In
IEEE International Conference on Image Processing, volume 3, pages
537–540, 1999.

[269] Kenji Kurosawa and Naoki Saitoh. Fundamental study on identification
of cmos cameras. In SPIE Conference on Visual Information Processing
XII, pages 202–209, 2003.

[270] Cheng-Liang Lai and Yu-Shiang Chen. The application of intelligent sys-
tem to digital image forensics. In International Conference on Machine
Learning and Cybernetics, volume 5, pages 2991–2998, 2009.

[271] Aaron Langille and Minglun Gong. An efficient match-based duplication
detection algorithm. In Canadian Conference on Computer and Robot
Vision, 2006.

[272] Tran Van Lanh, Kai-Sen Chong, Sabu Emmanuel, and Mohan S.
Kankanhalli. A survey on digital camera image forensic methods. In
IEEE International Conference on Multimedia and Expo, pages 16–19,
2007.

[273] Ji-Won Lee, Min-Jeong Lee, Tae-Woo Oh, Seung-Jin Ryu, and Heung-
Kyu Lee. Screenshot identification using combing artifact from inter-
laced video. In ACM Workshop on Multimedia and Security, pages 49–
54, 2010.

[274] Sangwon Lee, David A. Shamma, and Bruce Gooch. Detecting false
captioning using common sense reasoning. Digital Investigation, 3(Sup-
plement 1):65–70, 2006.

[275] Frederic Lefebvre, Bertrand Chupeau, Ayoub Massoudi, and Eric Diehl.
Image and video fingerprinting: Forensic applications. In SPIE Confer-
ence on Media Forensics and Security, 2009.

[276] Bin Li, Yun Qing Shi, and Jiwu Huang. Detecting doubly compressed
JPEG images by using mode based first digit features. In IEEE Work-
shop on Multimedia Signal Processing, pages 730–735, 2008.

[277] Chang-Tsun Li. Detection of block artifacts for digital forensic analy-
sis. In Matthew Sorell, editor, International Conference on Forensics in
Telecommunications, Information and Multimedia, pages 173–178, 2009.

[278] Chang-Tsun Li. Source camera identification using enhanced sensor
pattern noise. In IEEE International Conference on Image Processing,
2009.

[279] Chang-Tsun Li. Source camera linking using enhanced sensor pattern
noise extracted from images. In International Conference on Imaging
for Crime Detection and Prevention, 2009.

[280] Chang-Tsun Li. Source camera identification using enhanced sensor pat-
tern noise. IEEE Transactions on Information Forensics and Security,
5(2):280–287, 2010.

[281] Chang-Tsun Li. Unsupervised classification of digital images using en-
hanced sensor pattern noise. In IEEE International Symposium on Cir-
cuits and Systems, 2010.

184

[282] Chang-Tsun Li, Chih-Yuan Chang, and Yue Li. On the repudiability of
device identification and image integrity verification using sensor pattern
noise. In International Conference on Information Security and Digital
Forensics, pages 19–25, 2009.

[283] Chang-Tsun Li and Yue Li. Digital camera identification using colour-
decoupled photo response non-uniformity noise pattern. In International
Symposium on Circuits and Systems, 2010.

[284] Guo-Hui Li, Qiong Wu, Dan Tu, and Shao-Jie Sun. A sorted neighbor-
hood approach for detecting duplicated regions in image forgeries based
on DWT and SVD. In IEEE International Conference on Multimedia
and Expo, pages 1750–1753, 2007.

[285] Weihai Li and Nenghai Yu. Rotation robust detection of copy-move
forgery. In International Conference on Image Processing, 2010.

[286] Weihai Li, Nenghai Yu, and Yuan Yuan. Doctored JPEG image detec-
tion. In IEEE International Conference on Multimedia and Expo, pages
253–256, 2008.

[287] Weihai Li, Yuan Yuan, and Nenghai Yu. Detecting copy-paste forgery of
JPEG image via block artifact grid extraction. In International Work-
shop on Local and Non-Local Approximation in Image Processing, 2008.

[288] Weihai Li, Yuan Yuan, and Nenghai Yu. Passive detection of doctored
JPEG image via block artifact grid extraction. IEEE Transactions on
Signal Processing, 89(9):1821–1829, 2009.

[289] Wenxiang Li, Tao Zhang, Xi-Jian Ping, and Ergong Zheng. Identifying
photorealistic computer graphics using second-order difference statistics.
In International Conference on Fuzzy Systems and Knowledge Discovery,
pages 2316–2319, 2010.

[290] Yue Li and Chang-Tsun Li. Decomposed photo response non-uniformity
for digital forensic analysis. In Matthew Sorell, editor, International
Conference on Forensics in Telecommunications, Information and Mul-
timedia, pages 166–172, 2009.

[291] Zhe Li and Jiangbin Zheng. Blind detection of digital forgery image
based on the local entropy of the gradient. In International Workshop
on Digital Watermarking, pages 161–169, 2008.

[292] Dandan Liao, Rui Yang, Hongmei Liu, Jian Li, and Jiwu Huang. Double
h.264/avc compression detection using quantized nonzero ac coefficients.
In SPIE Conference on Media Watermarking, Security, and Forensics,
2011.

[293] Cheng-Chang Lien, Cheng-Lun Shih, and Chih-Hsun Chou. Fast forgery
detection with the intrinsic resampling properties. In International Con-
ference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing, pages 232–235, 2010.

[294] Hwei-Jen Lin, Chun-Wei Wang, and Yang-Ta Kao. Fast copy-move
forgery detection. WSEAS Transactions on Signal Processing, 5(5):188–
197, 2009.

[295] W. Sabrina Lin, Steven Tjoa, H. Vicky Zhao, and K. J. Ray Liu. Image
source coding forensics via intrinsic fingerprints. In IEEE International
Conference on Multimedia and Expo, pages 1127–1130, 2007.

[296] W. Sabrina Lin, Steven Tjoa, H. Vicky Zhao, and K. J. Ray Liu. Digital
image source coder forensics via intrinsic fingerprints. IEEE Transac-
tions on Information Forensics and Security, 4(3):460–475, 2009.

[297] Zhouchen Lin, Junfeng He, Xiaoou Tang, and Chi-Keung Tang. Fast,
automatic and fine-grained tampered JPEG image detection via DCT
coefficient analysis. Pattern Recognition, 42(11):2492–2501, 2009.

185

[298] Zhouchen Lin, Rongrong Wang, Xiaoou Tang, and Heung-Yeung Shum.
Detecting doctored images using camera response normality and consis-
tency. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2005.

[299] Bei-Bei Liu, Yongjian Hu, and Heung-Kyu Lee. Source camera identifi-
cation from significant noise residual regions. In International Confer-
ence on Image Processing, 2010.

[300] Bei-Bei Liu, Heung-Kyu Lee, Yongjian Hu, and Chang-Hee Choi. On
classification of source cameras: A graph based approach. In Workshop
on Information Forensics and Security, 2010.

[301] Ming Liu, Nenghai Yu, and Weihai Li. Camera model identification
for JPEG images via tensor analysis. In International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, pages
462–465, 2010.

[302] Qiguang Liu, Xiaochun Cao, Chao Deng, and Xiaojie Guo. Identifying
image composites through shadow matte consistency. IEEE Transac-
tions on Information Forensics and Security, 6(3):1111–1122, 2011.

[303] Qingzhong Liu and Andrew H. Sung. A new approach for JPEG resize
and image splicing detection. In ACM Multimedia and Security Work-
shop, pages 43–48, 2009.

[304] Yangjing Long and Yizhen Huang. Image based source camera identi-
fication using demosaicking. In IEEE Workshop on Multimedia Signal
Processing, pages 419–424, 2006.

[305] Wei Lu, Fu-Lai Chung, and Hong-Tao Lu. Blind fake image detec-
tion scheme using SVD. IEICE Transactions on Communications, E89-
B(5):1726–1728, 2006.

[306] Wei Lu, Wei Sun, Fu-Lai Chung, and Hong-Tao Lu. Revealing digital
fakery using multiresolution decomposition and higher order statistics.
Engineering Applications of Artificial Intelligence, 24(4):666–672, 2011.

[307] Wei Lu, Wei Sun, Jiwu Huang, and Hong-Tao Lu. Digital image foren-
sics using statistical features and neural network classifier. In Interna-
tional Conference on Machine Learning and Cybernetics, pages 2831–
2834, 2008.

[308] Jan Lukas. Digital image authentication using image filtering techniques.
In Conference on Scientific Computing, 2000.

[309] Jan Lukas and Jessica Fridrich. Estimation of primary quantization
matrix in double compressed JPEG images. In Digital Forensic Research
Workshop, August 2003.

[310] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital bullet scratches
for images. In IEEE International Conference on Image Processing,
volume 3, pages 65–68, 2005.

[311] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Detecting digital
image forgeries using sensor pattern noise. In Edward J. Delp and
Ping Wah Wong, editors, SPIE Conference on Security, Steganography,
and Watermarking of Multimedia Contents, volume 6072, 2006.

[312] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital camera identi-
fication from sensor noise. IEEE Transactions on Information Forensics
and Security, 1(2):205–214, 2006.

[313] Weiqi Luo, Jiwu Huang, and Guoping Qiu. Robust detection of region-
duplication forgery in digital images. In International Conference on
Pattern Recognition, pages 746–749, 2006.

186

[314] Weiqi Luo, Jiwu Huang, and Guoping Qiu. A novel method for block size
forensics based on morphological operations. In International Workshop
on Digital Watermarking, pages 229–239, 2008.

[315] Weiqi Luo, Jiwu Huang, and Guoping Qiu. JPEG error analysis and its
applications to digital image forensics. IEEE Transactions on Informa-
tion Forensics and Security, 5(3):480–491, 2010.

[316] Weiqi Luo, Zhenhua Qu, Jiwu Huang, and Guoping Qiu. A novel method
for detecting cropped and recompressed image block. In IEEE Confer-
ence on Acoustics, Speech and Signal Processing, pages 217–220, 2007.

[317] Weiqi Luo, Min Wu, and Jiwu Huang. Mpeg recompression detec-
tion based on block artifacts. In SPIE Conference on Security, Foren-
sics, Steganography, and Watermarking of Multimedia Contents, Jan-
uary 2008.

[318] Siwei Lyu. Natural Image Statistics for Digital Image Forensics. PhD
thesis, Department of Computer Science, Dartmouth College, Hanover,
NH, 2005.

[319] Siwei Lyu. Estimating vignetting function from a single image for image
authentication. In ACM Workshop on Multimedia and Security, pages
3–12, 2010.

[320] Siwei Lyu and Hany Farid. How realistic is photorealistic? IEEE Trans-
actions on Signal Processing, 53(2):845–850, 2005.

[321] Babak Mahdian and Stanislav Saic. Detection of copy move forgery
using a method based on blur moment invariants. Forensic Science
International, 171:180–189, 2007.

[322] Babak Mahdian and Stanislav Saic. On periodic properties of interpola-
tion and their application to image authentication. In International Sym-
posium on Information Assurance and Security, pages 439–446, 2007.

[323] Babak Mahdian and Stanislav Saic. Blind authentication using periodic
properties of interpolation. IEEE Transactions on Information Forensics
and Security, 3(3):529–538, 2008.

[324] Babak Mahdian and Stanislav Saic. Blind methods for detecting image
fakery. In 42nd Annual IEEE International Carnahan Conference on
Security Technology, pages 280–286, 2008.

[325] Babak Mahdian and Stanislav Saic. Detection of resampling supple-
mented with noise inconsistencies analysis for image forensics. In In-
ternational Conference on Computational Sciences and Its Applications,
pages 546–556, 2008.

[326] Babak Mahdian and Stanislav Saic. A cyclostationarity analysis applied
to image forensics. In IEEE Workshop on Applications of Computer
Vision, pages 389–399, 2009.

[327] Babak Mahdian and Stanislav Saic. Detecting double compressed JPEG
images. In International Conference on Imaging for Crime Detection and
Prevention, 2009.

[328] Babak Mahdian and Stanislav Saic. Detection and description of geomet-
rically transformed digital images. In Edward J. Delp, Jana Dittmann,
Nasir Memon, and Ping Wah Wong, editors, SPIE Conference on Media
Forensics and Security, 2009.

[329] Babak Mahdian and Stanislav Saic. Using noise inconsistencies for blind
image authentication. Image and Vision Computing, 27(10):1497–1503,
2009.

187

[330] Babak Mahdian and Stanislav Saic. A bibliography on blind methods
for identifying image forgery. Signal Processing: Image Communication,
25(6):389–399, 2010.

[331] Babak Mahdian and Stanislav Saic. Blind methods for detecting image
fakery. IEEE Aerospace and Electronic Systems Magazine, 25(4):18–24,
2010.

[332] Babak Mahdian and Stanislav Saic. Identifying image forgeries using
change point detection. In SPIE Conference on Media Watermarking,
Security, and Forensics, 2011.

[333] Babak Mahdian, Stanislav Saic, and Radim Nedbal. JPEG quantization
tables forensics: A statistical approach. In International Workshop on
Computational Forensics, pages 150–159, 2010.

[334] Robert C. Maher. Acoustical characterization of gunshots. In Signal
Processing Applications for Public Security and Forensics, pages 109–
113, 2007.

[335] Hafiz Malik and Hany Farid. Audio forensics from acoustic reverber-
ation. In International Conference on Acoustics, Speech, and Signal
Processing, pages 1710–1713, 2010.

[336] Junwen Mao, Orhan Bulan, Gaurav Sharma, and Suprakash Datta. De-
vice temporal forensics: An information theoretic approach. In IEEE
International Conference on Image Processing, pages 1501–1504, 2009.

[337] Anthony F. Martone, Aravind K. Mikkilineni, and Edward J. Delp.
Forensics of things. In IEEE Southwest Symposium on Image Analy-
sis and Interpretation, pages 149–152, 2006.

[338] Scott McCloskey. Confidence weighting for sensor fingerprinting. In
Computer Vision and Pattern Recognition, pages 1–6, 2008.

[339] Christine McKay, Ashwin Swaminathan, Hongmei Gou, and Min Wu.
Image acquisition forensics: Forensic analysis to identify imaging source.
In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 1657–1660, April 2008.

[340] Fanjie Meng, Xiangwei Kong, and Xingang You. A new feature-based
method for source camera identification. In Indrajit Ray and Sujeet
Shenoi, editors, Advances in Digital Forensics IV, volume 285, pages
207–218, 2008.

[341] Xian-Zhe Meng, Shao-Zhang Niu, and Jian-Chen Zou. Tamper detection
for shifted double JPEG compression. In International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, pages
434–437, 2010.

[342] Aravind K. Mikkilineni, Osman Arslan, Pei-Ju Chiang, Roy M. Kumon-
toy, Jan P. Allebach, George T.-C. Chiu, and Edward J. Delp. Printer
forensics using SVM techniques. In International Conference on Digital
Printing Technologies, pages 223–226, 2005.

[343] Aravind K. Mikkilineni, Pei-Ju Chiang, Gazi N. Ali, George T.-C. Chiu,
Jan P. Allebach, and Edward J. Delp. Printer identification based on
textural features. In International Conference on Digital Printing Tech-
nologies, pages 306–311, 2004.

[344] Aravind K. Mikkilineni, Pei-Ju Chiang, Gazi N. Ali, George T.-C. Chiu,
Jan P. Allebach, and Edward J. Delp. Printer identification based on
graylevel co-occurence features for security and forensic applications. In
SPIE International Conference on Security, Steganography, and Water-
marking of Multimedia Contents, pages 430–440, 2005.

188

[345] Aravind K. Mikkilineni, Nitin Khanna, and Edward J. Delp. Foren-
sic printer detection using intrinsic signatures. In SPIE Conference on
Media Watermarking, Security, and Forensics, 2011.

[346] N. Mondaini, Roberto Caldelli, Alessandro Piva, Mauro Barni, and Vito
Cappellini. Detection of malevolent changes in digital video for forensic
applications. In Edward J. Delp and Ping Wah Wong, editors, SPIE
Conference on Security, Steganography, and Watermarking of Multime-
dia Contents, volume 6505, 2007.

[347] A. N. Myna, M. G. Venkateshmurthy, and C. G. Patil. Detection of
region duplication forgery in digital images using wavelets and log-polar
mapping. In International Conference on Computational Intelligence
and Multimedia Applications, volume 3, pages 371–377, 2007.

[348] Gopal Narayanan and Yun Qing Shi. A statistical model for quantized
ac block DCT coefficients in JPEG compression and its application to
detecting. In International Workshop on Digital Watermarking, pages
75–89, 2010.

[349] Lakshmanan Nataraj, Anindya Sarkar, and Bangalore S. Manjunath.
Adding gaussian noise to ”denoise” JPEG for detecting image resizing.
In IEEE International Conference on Image Processing, pages 1493–
1496, 2009.

[350] Lakshmanan Nataraj, Anindya Sarkar, and Bangalore S. Manjunath.
Improving re-sampling detection by adding noise. In SPIE Conference
on Media Forensics and Security, 2010.

[351] Ramesh Neelamani, Ricardo de Queiroz, Zhigang Fan, Sanjeeb Dash,
and Richard G. Baraniuk. JPEG compression history estimation for
color images. IEEE Transactions on Image Processing, 15(6):1365–1378,
2006.

[352] Tian-Tsong Ng. Camera response function signature for digital foren-
sics - part ii: Signature extraction. In IEEE Workshop on Information
Forensics and Security, pages 161–165, December 2009.

[353] Tian-Tsong Ng and Shih-Fu Chang. Classifying photographic and pho-
torealistic computer graphic images using natural image statistics. Tech-
nical report, ADVENT Technical Report, #220-2006-6, Columbia Uni-
versity, October 2004.

[354] Tian-Tsong Ng and Shih-Fu Chang. A data set of authentic and spliced
image blocks. Technical report, ADVENT Technical Report, #203-2004-
3, Columbia University, June 2004.

[355] Tian-Tsong Ng and Shih-Fu Chang. A model for image splicing. In
IEEE International Conference on Image Processing, 2004.

[356] Tian-Tsong Ng and Shih-Fu Chang. An online system for classifying
computer graphics images from natural photographs. In SPIE Con-
ference on Security, Steganography, and Watermarking of Multimedia
Contents, January 2006.

[357] Tian-Tsong Ng and Shih-Fu Chang. Identifying and prefiltering images.
IEEE Signal Processing Magazine, pages 49–58, March 2009.

[358] Tian-Tsong Ng, Shih-Fu Chang, Yu-Feng Hsu, and Martin Pepeljugoski.
Columbia photographic images and photorealistic computer graphics
dataset. Technical report, ADVENT Technical Report, #203-2004-3,
Columbia University, February 2005.

[359] Tian-Tsong Ng, Shih-Fu Chang, Yu-Feng Hsu, Lexing Xie, and Mao-Pei
Tsui. Physics-motivated features for distinguishing photographic images
and computer graphics. In ACM Multimedia, November 2005.

189

[360] Tian-Tsong Ng, Shih-Fu Chang, Ching-Yung Lin, and Qibin Sun. Mul-
timedia Security Technologies for Digital Rights, chapter Passive-Blind
Image Forensics, pages 383–412. Elsevier, 2006.

[361] Tian-Tsong Ng, Shih-Fu Chang, and Qibin Sun. Blind detection of
photomontage using higher order statistics. In International Symposium
on Circuits and Systems, page 688691, 2004.

[362] Tian-Tsong Ng, Shih-Fu Chang, and Mao-Pei Tsui. Lessons learned
from online classification of photorealistic computer graphics and pho-
tographs. In IEEE Workshop on Signal Processing Applications for Pub-
lic Security and Forensics, 2007.

[363] Tian-Tsong Ng, Shih-Fu Chang, and Mao-Pei Tsui. Using geometry
invariants for camera response function estimation. In IEEE Conference
on Computer Vision and Pattern Recognition, June 2007.

[364] Tian-Tsong Ng and Mao-Pei Tsui. Camera response function signature
for digital forensics - part i: Theory and data selection. In IEEE Work-
shop on Information Forensics and Security, pages 156–160, December
2009.

[365] Hieu Cuong Nguyen and Stefan Katzenbeisser. Security of copy-move
forgery detection techniques. In International Conference on Acoustics,
Speech and Signal Processing, 2011.

[366] Daniel Patricio Nicolalde and Jose Antonio Apolinario, Jr. Evaluating
digital audio authenticity with spectral distances and enf phase change.
In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 1417–1420, 2009.

[367] Andrea Oermann, Andreas Lang, and Jana Dittmann. Verifier-tuple for
audio-forensic to determine speaker environment. In ACM Multimedia
and Security Workshop, pages 57–62, 2005.

[368] Andrea Oermann, Claus Vielhauer, and Jana Dittmann. Sensometrics:
Identifying pen digitizers by statistical multimedia signal processing. In
SPIE Conference on Multimedia on Mobile Devices III, 2007.

[369] Martin S. Olivier. On the probability of a false positive match for dig-
ital camera identification based on sensor dirt location. South African
Computer Journal, 41:21–28, 2008.

[370] Martin S. Olivier. Using sensor dirt for toolmark analysis of digital
photographs. In Indrajit Ray and Sujeet Shenoi, editors, Advances in
Digital Forensics IV, volume 285, pages 193–206, 2008.

[371] Feng Pan and Jiwu Huang. Discriminating computer graphics images
and natural images using hidden markov tree model. In International
Workshop on Digital Watermarking, pages 23–28, 2010.

[372] Xunyu Pan and Siwei Lyu. Detecting image region duplication using sift
features. In International Conference on Acoustics, Speech, and Signal
Processing, pages 1706–1709, 2010.

[373] Xunyu Pan and Siwei Lyu. Region duplication detection using image
feature matching. IEEE Transactions on Information Forensics and
Security, 5(4):857 –867, 2010.

[374] Marie-Charlotte Poilpre, Patrick Perrot, and Hugues Talbot. Image
tampering detection using bayer interpolation and JPEG compression.
In International Conference on Forensic Applications and Techniques in
Telecommunications, Information, and Multimedia, 2008.

[375] Stephen B. Pollard, Steven J. Simske, and Guy B. Adams. Model based
print signature profile extraction for forensic analysis of individual text
glyphs. In Workshop on Information Forensics and Security, 2010.

190

[376] Alin C. Popescu. Statistical Tools for Digital Image Forensics. PhD
thesis, Department of Computer Science, Dartmouth College, Hanover,
NH, 2005.

[377] Alin C. Popescu and Hany Farid. Exposing digital forgeries by detecting
duplicated image regions. Technical Report TR2004-515, Department
of Computer Science, Dartmouth College, 2004.

[378] Alin C. Popescu and Hany Farid. Statistical tools for digital forensics.
In International Workshop on Information Hiding, pages 128–147, 2004.

[379] Alin C. Popescu and Hany Farid. Exposing digital forgeries by de-
tecting traces of re-sampling. IEEE Transactions on Signal Processing,
53(2):758–767, 2005.

[380] Alin C. Popescu and Hany Farid. Exposing digital forgeries in color filter
array interpolated images. IEEE Transactions on Signal Processing,
53(10):3948–3959, 2005.

[381] S. Prasad and K. R. Ramakrishnan. On resampling detection and its ap-
plication to detect image tampering. In IEEE International Conference
on Multimedia and Expo, pages 1325–1328, July 2006.

[382] Ghulam Qadir, Xi Zhao, and Anthony T. S. Ho. Estimating JPEG2000
compression for image forensics using benford’s law. In SPIE Conference
on Optics, Photonics, and Digital Technologies for Multimedia Applica-
tions, 2010.

[383] Zhenhua Qu, Weiqi Luo, and Jiwu Huang. A convolutive mixing model
for shifted double JPEG compression with application to passive image
authentication. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, pages 1661–1664, 2008.

[384] Zhenhua Qu, Guoping Qiu, and Jiwu Huang. Detect digital image splic-
ing with visual cues. In Stefan Katzenbeisser and Ahmad-Reza Sadeghi,
editors, International Workshop on Information Hiding, pages 247–261,
2009.

[385] Judith A. Redi, Wiem Taktak, and Jean-Luc Dugelay. Digital image
forensics: A booklet for beginners. Multimedia Tools and Applications,
51(1):133–162, 2010.

[386] Christian Riess and Elli Angelopoulou. Scene illumination as an indica-
tor of image manipulation. In International Workshop on Information
Hiding, 2010.

[387] Anderson Rocha and Siome Goldenstein. Is it fake or real? In Brazilian
Symposium of Computer Graphics and Image Processing, 2006.

[388] Anderson Rocha, Walter Scheirer, Terrance E. Boult, and Siome Golden-
stein. Vision of the unseen: Current trends and challenges in digital im-
age and video forensics. ACM Computing Surveys (CSUR), 43(4):26:1–
26:42, 2011.

[389] Daniel P. N. Rodriguez, Jose A. Apolinario, and Luiz W. P. Biscainho.
Audio authenticity: Detecting enf discontinuity with high precision
phase analysis. IEEE Transactions on Information Forensics and Se-
curity, 5(3):534–543, 2010.

[390] Alessia De Rosa, Francesca Uccheddu, Alessandro Piva, Mauro Barni,
and Andrea Costanzo. Exploring image dependencies: A new challenge
in image forensics. In SPIE Conference on Media Forensics and Security,
2010.

[391] Kurt Rosenfeld and Husrev T. Sencar. A study of the robustness of
prnu-based camera identification. In Edward J. Delp, Jana Dittmann,
Nasir Memon, and Ping Wah Wong, editors, SPIE Conference on Media
Forensics and Security, 2009.

191

[392] Dmitry Rublev, Vladimir Fedorov, and Oleg Makarevich. Digital camera
identification based on rotated images. In 3rd International Conference
on Security of Information and Networks, pages 90–93, 2010.

[393] Seung-Jin Ryu, Hae-Yeoun Lee, Dong-Hyuck Im, Jung-Ho Choi, and
Heung-Kyu Lee. Electrophotographic printer identification by halftone
texture analysis. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 1846–1849, 2010.

[394] Seung-Jin Ryu, Min-Jeong Lee, and Heung-Kyu Lee. Detection of copy-
rotate-move forgery using zernike moments. In International Workshop
on Information Hiding, 2010.

[395] Priscila Saboia, Tiago Carvalho, and Anderson Rocha. Eye specular
highlights telltales for digital forensics: A machine learning approach.
In International Conference on Image Processing, 2011.

[396] Dario L. M. Sacchi, Franca Agnoli, and Elizabeth F. Loftus. Changing
history: Doctored photographs affect memory for past public events.
Applied Cognitive Psychology, (21):1005–1022, 2007.

[397] Naoki Saitoh, Kenji Kurosawa, Kenro Kuroki, Norimitsu Akiba, Zeno J.
Geradts, and Jurrien Bijhold. Ccd fingerprint method for digital still
cameras. In SPIE Conference on Investigative Image Processing II, pages
37–48, 2002.

[398] Richard W. Sanders. Digital audio authenticity using the electric net-
work frequency. In AES International Conference on Audio Forensics,
Theory and Practice, 2008.

[399] Gopinath Sankar, H. Vicky Zhao, and Yee-Hong Yang. Feature based
classification of computer graphics and real images. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pages
1513–1516, 2009.

[400] Anindya Sarkar, Lakshmanan Nataraj, and Bangalore S. Manjunath.
Detection of seam carving and localization of seam insertions in digital
images. In ACM Multimedia and Security Workshop, pages 107–116,
2009.

[401] Husrev T. Sencar and Nasir Memon. Algorithms, Architecture and Infor-
mation Systems Security, chapter Overview of State-of-the-Art in Digital
Image Forensics, pages 325–348. World Scientific, 2007.

[402] Husrev T. Sencar and Nasir Memon. Algorithms, Architectures and
Information Systems Security, chapter Overview of State-of-the-art in
Digital Image Forensics, pages 325–348. World Scientific Press, 2008.

[403] Yun Qing Shi. First digit law and its application to digital forensics. In
International Workshop on Digital Watermarking, 2008.

[404] Yun Qing Shi, Chunhua Chen, and Wen Chen. A natural image model
approach to splicing detection. In ACM Multimedia and Security Work-
shop, pages 51–62, 2007.

[405] B. L. Shivakumar and S. Santhosh Baboo. Detecting copy-move forgery
in digital images: A survey and analysis of current methods. Global
Journal of Computer Science and Technology, 10(7):61–65, 2011.

[406] Matthew Sorell. Conditions for effective detection and identification of
primary quantization of re-quantized JPEG images. In International
Conference on Forensic Applications and Techniques in Telecommuni-
cations, Information, and Multimedia, 2008.

[407] Matthew Stamm and K. J. Ray Liu. Blind forensics of contrast enhance-
ment in digital images. In IEEE International Conference on Image
Processing, pages 3112–3115, 2008.

192

[408] Matthew Stamm and K. J. Ray Liu. Forensic detection of image tam-
pering using intrinsic statistical fingerprints in histograms. In Proc.
APSIPA Annual Summit and Conference, 2009.

[409] Matthew Stamm and K. J. Ray Liu. Forensic detection of image ma-
nipulation using statistical intrinsic fingerprints. IEEE Transactions on
Information Forensics and Security, 5(3):492–506, 2010.

[410] Matthew Stamm and K. J. Ray Liu. Forensic estimation and reconstruc-
tion of a contrast enhancement mapping. In International Conference
on Acoustics, Speech, and Signal Processing, pages 1698–1701, 2010.

[411] Matthew Stamm and K. J. Ray Liu. Wavelet-based image compression
anti-forensics. In International Conference on Image Processing, 2010.

[412] Matthew Stamm and K. J. Ray Liu. Anti-forensics for frame dele-
tion/addition in mpeg video. In International Conference on Acoustics,
Speech and Signal Processing, 2011.

[413] Matthew Stamm and K. J. Ray Liu. Anti-forensics of digital image
compression. IEEE Transactions on Information Forensics and Security,
6(3):1050–1065, 2011.

[414] Matthew Stamm, Steven Tjoa, W. Sabrina Lin, and K. J. Ray Liu.
Anti-forensics of JPEG compression. In International Conference on
Acoustics, Speech, and Signal Processing, pages 1694–1697, 2010.

[415] Matthew Stamm, Steven Tjoa, W. Sabrina Lin, and K. J. Ray Liu. Un-
detectable image tampering through JPEG compression anti-forensics.
In International Conference on Image Processing, 2010.

[416] Martin Steinebach, Huajian Liu, Peishuai Fan, and Stefan Katzen-
beisser. Cell phone camera ballistics: Attacks and countermeasures.
In SPIE Conference on Multimedia on Mobile Devices, 2010.

[417] Martin Steinebach, Mohamed El Ouariachi, Huajian Liu, and Stefan
Katzenbeisser. On the reliability of cell phone camera fingerprint recog-
nition. In International ICST Conference on Digital Forensics and Cyber
Crime, pages 69–76, 2009.

[418] Shao-Jie Sun, Qiong Wu, and Guo-Hui Li. Detection of image composit-
ing based on a statistical model for natural images. Acta Automatica
Sinica, 35(12):1564–1568, 2009.

[419] Yagiz Sutcu, Sevinc Bayram, Husrev T. Sencar, and Nasir Memon. Im-
provements on sensor noise based source camera identification. In IEEE
International Conference on Multimedia and Expo, pages 24–27, 2007.

[420] Yagiz Sutcu, Baris Coskun, Husrev T. Sencar, and Nasir Memon. Tam-
per detection based on regularity of wavelet transform coefficients. In
IEEE International Conference on Image Processing, September 2007.

[421] Patchara Sutthiwan, Xiao Cai, Yun Qing Shi, and Hong Zhang. Com-
puter graphics classification based on markov process model and boost-
ing feature selection technique. In IEEE International Conference on
Image Processing, pages 2913–2916, 2009.

[422] Patchara Sutthiwan, Yun Qing Shi, Jing Dong, Tieniu Tan, and Tian-
Tsong Ng. New developments in color image tampering detection. In
International Symposium on Circuits and Systems, 2010.

[423] Patchara Sutthiwan, Yun Qing Shi, Wei Su, and Tian-Tsong Ng. Rake
transform and edge statistics for image forgery detection. In IEEE In-
ternational Conference on Multimedia and Expo, 2010.

[424] Patchara Sutthiwan, Jingyu Ye, and Yun Qing Shi. An enhanced sta-
tistical approach to identifying photorealistic images. In Anthony T. S.
Ho, Yun Qing Shi, Hyoung-Joonq Kim, and Mauro Barni, editors, In-
ternational Workshop on Digital Watermarking, pages 323–335, 2009.

193

[425] Ariawan Suwendi and Jan P. Allebach. Nearest-neighbor and bilinear
resampling factor estimation to detect blockiness or blurriness of an
image. Journal of Electronic Imaging, 17(2):94–101, 2008.

[426] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Component forensics
of digital cameras: A non-intrusive approach. In Information Sciences
and Systems, pages 1194–1199, March 2006.

[427] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Image tampering
identification using blind deconvolution. In IEEE International Confer-
ence on Image Processing, pages 2309–2312, 2006.

[428] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Non-intrusive foren-
sic analysis of visual sensors using output images. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, May 2006.

[429] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. A component esti-
mation framework for information forensics. In Workshop on Multimedia
Signal Processing, pages 397–400, October 2007.

[430] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Intrinsic finger-
prints for image authentication and steganalysis. In SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents,
February 2007.

[431] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Nonintrusive compo-
nent forensics of visual sensors using output images. IEEE Transactions
on Information Forensics and Security, 2(1):91–106, mar 2007.

[432] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Optimization of
input pattern for semi non-intrusive component forensics of digital cam-
eras. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 225–228, April 2007.

[433] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Digital image foren-
sics via intrinsic fingerprints. IEEE Transactions on Information Foren-
sics and Security, 3(1):101–117, 2008.

[434] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. A pattern classifica-
tion framework for theoretical analysis of component forensics. In IEEE
International Conference on Acoustics, Speech, and Signal Processing,
pages 1665–1668, April 2008.

[435] Ashwin Swaminathan, Min Wu, and K. J. Ray Liu. Component foren-
sics. IEEE Signal Processing Magazine, 26(2):38–48, mar 2009.

[436] Jun Takamatsu, Yasuyuki Matsushita, Tsukasa Ogasawara, and Kat-
sushi Ikeuchi. Estimating demosaicing algorithms using image noise
variance. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2010.

[437] Steven Tjoa, W. Sabrina Lin, and K. J. Ray Liu. Transform coder clas-
sification for digital image forensics. In IEEE International Conference
on Image Processing, September 2007.

[438] Steven Tjoa, W. Sabrina Lin, H. Vicky Zhao, and K. J. Ray Liu. Block
size forensic analysis in digital images. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2007.

[439] Min-Jen Tsai, Cheng-Liang Lai, and Jung Liu. Camera/mobile phone
source identification for digital forensics. In IEEE International Con-
fernece on Acoustics, Speech, and Signal Processing, volume 2, pages
II–221–II–224, 2007.

[440] Min-Jen Tsai and Cheng-Sheng Wang. Adaptive feature selection for
digital camera source identification. In IEEE International Symposium
on Circuits and Systems, pages 412–415, 2008.

194

[441] Min-Jen Tsai, Cheng-Sheng Wang, and Jung Liu. A hybrid model for
digital camera source identification. In IEEE International Conference
on Image Processing, pages 2901–2904, 2009.

[442] Min-Jen Tsai and Guan-Hui Wu. Using image features to identify cam-
era sources. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 2, 2006.

[443] Chih-Hsuan Tzeng and Wen-Hsiang Tsai. A new technique for authen-
tication of image/video for multimedia applications. In International
Multimedia Conference on Multimedia and Security: New Challenges,
pages 23–26, 2001.

[444] Giuseppe Valenzise, Vitaliano Nobile, Marco Tagliasacchi, and Stefano
Tubaro. Countering JPEG anti-forensics. In International Conference
on Image Processing, 2011.

[445] Giuseppe Valenzise, Marco Tagliasacchi, and Stefano Tubaro. The cost
of JPEG compression anti-forensics. In International Conference on
Acoustics, Speech and Signal Processing, 2011.

[446] Wiger Van Houten and Zeno J. Geradts. Source video camera identifi-
cation for multiply compressed videos originating from youtube. Digital
Investigation, 6(1-2):48–60, 2009.

[447] Wiger Van Houten and Zeno J. Geradts. Using sensor noise to identify
low resolution compressed videos from youtube. In Zeno J. Geradts,
Katrin Y. Franke, and Cor. J. Veenman, editors, International Workshop
on Computational Forensics, pages 104–115, 2009.

[448] Tran Van Lanh, Sabu Emmanuel, and Mohan S. Kankanhalli. Identify-
ing source cell phone using chromatic aberration. In IEEE International
Conference on Multimedia and Expo, July 2007.

[449] David Vazquez-Padin, Carlos Mosquera, and Fernando Perez-Gonzalez.
Two-dimensional statistical test for the presence of almost cyclostation-
arity on images. In International Conference on Image Processing, 2010.

[450] David Vazquez-Padin and Fernando Perez-Gonzalez. Prefilter design for
forensic resampling estimation. In Workshop on Information Forensics
and Security, 2011.

[451] Bo Wang, Xiangwei Kong, and Xingang You. Source camera identifica-
tion using support vector machines. In Advances in Digital Forensics V,
pages 107–118, 2009.

[452] Jing Wang and Hongbin Zhang. Exposing digital forgeries by detecting
traces of image splicing. In International Conference on Signal Process-
ing, 2006.

[453] Jingwei Wang, Byung-Ho Cha, Seong-Ho Cho, and C. C. Jay Kuo. Un-
derstanding benford’s law and its vulnerability in image forensics. In
IEEE International Conference on Multimedia and Expo, pages 1568–
1571, 2009.

[454] Junwen Wang, Guangjie Liu, Hongyuan Li, Yuewei Dai, and Zhiquan
Wang. Detection of image region duplication forgery using model with
circle block. In International Conference on Multimedia Information
Networking and Security, pages 25–29, 2009.

[455] Junwen Wang, Guangjie Liu, Zhan Zhang, Yuewei Dai, and Zhiquan
Wang. Fast and robust forensics for image region-duplication forgery.
Acta Automatica Sinica, 35(12):1488–1495, 2009.

[456] Wei Wang, Jing Dong, and Tieniu Tan. Effective image splicing de-
tection based on image chroma. In IEEE International Conference on
Image Processing, pages 1257–1260, 2009.

195

[457] Wei Wang, Jing Dong, and Tieniu Tan. A survey of passive image tam-
pering detection. In Anthony T. S. Ho, Yun Qing Shi, Hyoung-Joonq
Kim, and Mauro Barni, editors, International Workshop on Digital Wa-
termarking, pages 308–322, 2009.

[458] Wei Wang, Jing Dong, and Tieniu Tan. Image tampering detection based
on stationary distribution of markov chain. In International Conference
on Image Processing, 2010.

[459] Wei Wang, Jing Dong, and Tieniu Tan. Tampered region localization of
digital color images based on JPEG compression noise. In International
Workshop on Digital Watermarking, pages 120–133, 2010.

[460] Wei Wang, Jing Dong, and Tieniu Tan. Exploring DCT coefficient quan-
tization effect for image tampering localization. In Workshop on Infor-
mation Forensics and Security, 2011.

[461] Weihong Wang. Digital Video Forensics. PhD thesis, Department of
Computer Science, Dartmouth College, Hanover, NH, 2009.

[462] Weihong Wang and Hany Farid. Exposing digital forgeries in video by
detecting double mpeg compression. In ACM Multimedia and Security
Workshop, pages 37–47, 2006.

[463] Weihong Wang and Hany Farid. Exposing digital forgeries in interlaced
and de-interlaced video. IEEE Transactions on Information Forensics
and Security, 3(2):438–449, 2007.

[464] Weihong Wang and Hany Farid. Exposing digital forgeries in video
by detecting duplication. In ACM Multimedia and Security Workshop,
pages 35–42, 2007.

[465] Weihong Wang and Hany Farid. Detecting re-projected video. In Inter-
national Workshop on Information Hiding, pages 72–86, 2008.

[466] Weihong Wang and Hany Farid. Exposing digital forgeries in video
by detecting double quantization. In ACM Multimedia and Security
Workshop, pages 39–48, 2009.

[467] Xin Wang, Bo Xuan, and Si-Long Peng. Digital image forgery detection
based on the consistency of defocus blur. In International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, pages
192–195, 2008.

[468] Ying Wang and Pierre Moulin. On discrimination between photoreal-
istic and photographic images. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2006.

[469] Weimin Wei, Shuozhong Wang, and Zhenjun Tang. Estimation of rescal-
ing factor and detection of image splicing. In International Conference
on Communication Technology, pages 676–679, 2008.

[470] Weimin Wei, Shuozhong Wang, Xinpeng Zhang, and Zhenjun Tang.
Estimation of image rotation angle using interpolation-related spectral
signatures with application to blind detection of image forgery. IEEE
Transactions on Information Forensics and Security, 5(3):507–517, 2010.

[471] Dave Wolin. Document verification and traceability through image qual-
ity analysis. In International Conference on Digital Printing Technolo-
gies, pages 214–217, 2002.

[472] Jie Wu, Markad V. Kamath, and Skip Poehlman. Detecting differences
between photographs and computer generated images. In International
Conference on Signal Processing, Pattern Recognition, and Applications,
pages 268–273, 2006.

196

[473] Qiong Wu, Shao-Jie Sun, Wei Zhu, Guo-Hui Li, and Dan Tu. Detection
of digital doctoring in exemplar-based inpainted images. In Interna-
tional Conference on Machine Learning and Cybernetics, pages 1222–
1226, July 2008.

[474] Ruoyu Wu, Xiaolong Li, and Bin Yang. Identifying computer generated
graphics via histogram features. In International Conference on Image
Processing, 2011.

[475] Yubao Wu, Xiangwei Kong, Xingang You, and Yiping Guo. Printer
forensics based on page document’s geometric distortion. In IEEE In-
ternational Conference on Image Processing, pages 2909–2912, 2009.

[476] Guanshuo Xu, Shang Gao, Yun Qing Shi, RuiMin Hu, and Wei Su.
Camera-model identification using Markovian transition probability ma-
trix. In Anthony T. S. Ho, Yun Qing Shi, Hyoung-Joonq Kim, and
Mauro Barni, editors, International Workshop on Digital Watermark-
ing, pages 294–307, 2009.

[477] Guanshuo Xu, Yun Qing Shi, and Wei Su. Camera brand and model
identification using moments of 1-d and 2-d characteristic functions. In
IEEE International Conference on Image Processing, pages 2917–2920,
2009.

[478] Toshihiko Yamasaki, Tomoaki Matsunami, and Kiyoharu Aizawa. De-
tecting resized JPEG images by analyzing high frequency elements in
DCT coefficients. In International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing, pages 567–570, 2010.

[479] Rui Yang, Zhenhua Qu, and Jiwu Huang. Detecting digital audio forg-
eries by checking frame offsets. In ACM Multimedia and Security Work-
shop, pages 21–26, 2008.

[480] Rui Yang, Yun Qing Shi, and Jiwu Huang. Defeating fake-quality mp3.
In ACM Multimedia and Security Workshop, pages 117–124, 2009.

[481] Rui Yang, Yun Qing Shi, and Jiwu Huang. Detecting double compression
of audio signal. In SPIE Conference on Media Forensics and Security,
2010.

[482] Shuiming Ye, Qibin Sun, and Ee-Chien Chang. Detecting digital image
forgeries by measuring inconsistencies of blocking artifact. In IEEE
International Conference on Multimedia and Expo, pages 12–15, 2007.

[483] Ido Yerushalmy and Hagit Hel-Or. Digital image forgery detection based
on lens and sensor aberration. International Journal of Computer Vi-
sion, 92(1):71–91, 2011.

[484] Hang Yu, Tian-Tsong Ng, and Qibin Sun. Recaptured photo detection
using specularity distribution. In IEEE International Conference on
Image Processing, October 2008.

[485] Jun Yu, Scott A. Craver, and Enping Li. Toward the identification
of dslr lenses by chromatic aberration. In SPIE Conference on Media
Watermarking, Security, and Forensics, 2011.

[486] Chi Zhang and Hongbin Zhang. Detecting digital image forgeries
through weighted local entropy. In IEEE International Symposium on
Signal Processing and Information Technology, pages 62–67, December
2007.

[487] Chi Zhang and Hongbin Zhang. Digital camera identification based on
canonical correlation analysis. In IEEE Workshop on Multimedia Signal
Processing, pages 769–773, 2008.

[488] Chi Zhang and Hongbin Zhang. Digital camera identification based
on curvelet transform. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 1389–1392, 2009.

197

[489] Chi Zhang and Hongbin Zhang. Identifying color image origin using
curvelet transform. In International Conference on Image Processing,
2010.

[490] Jing Zhang, Zhanlei Feng, and Yuting Su. A new approach for detecting
copy-move forgery in digital images. In IEEE Singapore International
Conference on Communication Systems, pages 362–366, 2008.

[491] Jing Zhang, Yuting Su, and Mingyu Zhang. Exposing digital video
forgery by ghost shadow artifact. In ACM Multimedia and Security
Workshop, pages 49–54, 2009.

[492] Jing Zhang, Haiying Wang, and Yuting Su. Detection of double-
compression in JPEG2000 images. In International Symposium on In-
telligent Information Technology Application, volume 1, pages 418–421,
2008.

[493] Pin Zhang and Xiangwei Kong. Detecting image tampering using fea-
ture fusion. In International Conference on Availability, Reliability and
Security, pages 335–340, Fukuoka, Japan, 2009.

[494] Ting Zhang and Rang-Ding Wang. Copy-move forgery detection based
on SVD in digital image. In International Congress on Image and Signal
Processing, 2009.

[495] Wei Zhang, Xiaochun Cao, Zhiyong Feng, Jiawan Zhang, and Ping
Wang. Detecting photographic composites using two-view geometrical
constraints. In IEEE International Conference on Multimedia and Expo,
pages 1078–1081, 2009.

[496] Wei Zhang, Xiaochun Cao, Yanling Qu, Yuexian Hou, Handong Zhao,
and Chenyang Zhang. Detecting and extracting the photo composites
using planar homography and graph cut. IEEE Transactions on Infor-
mation Forensics and Security, 5(3):544–555, 2010.

[497] Wei Zhang, Xiaochun Cao, Jiawan Zhang, Jigui Zhu, and Ping Wang.
Detecting photographic composites using shadows. In IEEE Interna-
tional Conference on Multimedia and Expo, pages 1042–1045, 2009.

[498] Zhen Zhang, Jiquan Kang, and Yuan Ren. An effective algorithm of im-
age splicing detection. In International Conference on Computer Science
and Software Engineering, pages 1035–1039, 2008.

[499] Zhen Zhang, Yuan Ren, Xi-Jian Ping, Zhi-Yong He, and Shan-Zhong
Zhang. A survey on passive-blind image forgery by doctor method detec-
tion. In International Conference on Machine Learning and Cybernetics,
2008.

[500] Zhen Zhang, Ying Zhou, Jiquan Kang, and Yuan Ren. Study of image
splicing detection. In International Conference on Intelligent Comput-
ing, pages 1103–1110, 2008.

[501] Xudong Zhao, Jianhua Li, Shenghong Li, and Shilin Wang. Detecting
digital image splicing in chroma spaces. In International Workshop on
Digital Watermarking, pages 12–22, 2010.

[502] Yu Qian Zhao, Frank Y. Shih, and Yun Qing Shi. Passive detection
of paint-doctored JPEG images. In International Workshop on Digital
Watermarking, pages 1–11, 2010.

[503] Jiangbin Zheng and Miao Liu. A digital forgery image detection algo-
rithm based on wavelet homomorphic filtering. In International Work-
shop on Digital Watermarking, pages 152–160, 2008.

[504] Linna Zhou, Dongming Wang, Yunbiao Guo, and Jingfei Zhang. Blur
detection of digital forgery using mathematical morphology. In Interna-
tional Symposium on Agent and Multi-Agent Systems: Technologies and
Applications, pages 990–998, 2007.

198

[505] Xiu Ming Zhu, Guo Rong Xuan, Qiu Ming Yao, Xue Feng Tong, and
Yun Qing Shi. Resampling detection in information forensics. Journal
of Computer Applications, 26(11):2596–2597, 2006.

199

