compute the whole-number factors of a number

the factors of 42 are 1, 2, 3, 6, 7, 14, 21, 42
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))
 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))
 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while f <= n:
 if n % f == 0:
 print(str(f) + " is a factor of " + str(n))

f = f + 1

print("And that's all the factors of " + str(n))
n = 42
f = 1

while(f <= n):
 if(n % f == 0):
 print(str(f) + " is a factor of " + str(n))

 f = f + 1

print("And that's all the factors of " + str(n))
temperature = 72

if temperature <= 32:
 print("It's freezing.")
else:
 print("It’s not so cold.")
temperature = 72

if temperature <= 32:
 print("It's freezing.")
else:
 print("It’s not so cold.")
temperature = 72

if temperature <= 32:
 print("It's freezing.")

else:
 print("It’s not so cold.")
Conditionals

temperature = 72

if temperature <= 32:
 print("It's freezing.")
elif temperature <= 50:
 print("It's cool.")
elif temperature <= 75:
 print("It's warm.")
else:
 print("It's hot.")
Temperature = 72

if temperature <= 32:
 print("It's freezing.")
elif temperature <= 50:
 print("It's cool.")
elif temperature <= 75:
 print("It's warm.")
else:
 print("It's hot.")
conditionals

temperature = 72

if temperature <= 32:
 print("It's freezing.")

elif temperature <= 50:
 print("It's cool.")

elif temperature <= 75:
 print("It's warm.")

else:
 print("It's hot.")
temperature = 72

if temperature <= 32:
 print("It's freezing.")
elif temperature <= 50:
 print("It's cool.")
elif temperature <= 75:
 print("It's warm.")
else:
 print("It's hot.")
temperature = 72

if temperature <= 32:
 print("It's freezing.")
elif temperature <= 50:
 print("It's cool.")
elif temperature <= 75:
 print("It's warm.")
else:
 print("It's hot.")
x = 1

if(x > 0):
 print("positive")
 x = -1 * x
elif(x < 0):
 print("negative")
else:
 print("zero")

print(x)
x = 1

if (x > 0):
 print("positive")
 x = -1 * x
elif (x < 0):
 print("negative")
else:
 print("zero")

print(x)
x = 1

if(x > 0):
 print("positive")
 x = -1 * x
elif(x < 0):
 print("negative")
else:
 print("zero")

print(x)
Conditionals

x = 1

if(x > 0):
 print("positive")
 x = -1 * x

elif(x < 0):
 print("negative")

else:
 print("zero")

print(x)

positive
x = 1

if (x > 0):
 print("positive")
 x = -1 * x

elif (x < 0):
 print("negative")

else:
 print("zero")

print(x)

positive
x = 1

if(x > 0):
 print("positive")
 x = -1 * x
elif(x < 0):
 print("negative")
else:
 print("zero")

print(x)

positive
x = 1

if(x > 0):
 print("positive")
 x = -1 * x
elif(x < 0):
 print("negative")
else:
 print("zero")

print(x)
Pulsing Circle

--- DRILL -----
draw expanding/contracting circle
r = 0 # current radius
R = 100 # maximum radius
sign = 1 # direction (1: expand; -1: contract)
with draw.animate_jupyter(draw_frame, delay=0.01) as anim:
 while(
 circle is fully expanded or contracted
):
 anim.draw_frame(r)
 if(sign == 1):
 # expand circle
 else:
 # contract circle

 if(circle is fully expanded or contracted):
 reverse direction
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]
 if r <= 0.25:
 print("Most likely")
 elif r <= 0.5:
 print("Ask again later")
 elif r <= 0.75:
 print("Don't count on it")
 elif r <= 1:
 print("No")
magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if (r > 3 and r <= 4):
 print("Most likely")
 elif (???):
 print("Ask again later")
 elif (???):
 print("Don't count on it")
 elif (???):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if (r > 3 and r <= 4):
 print("Most likely")
 elif (r > 2 and r <= 3):
 print("Ask again later")
 elif (r <= 2):
 print("Don't count on it")
 elif (r <= 1):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]
 if (r > 3 and r <= 4):
 print("Most likely")
 elif (r > 2 and r <= 3):
 print("Ask again later")
 elif (r > 1 and r <= 2):
 print("Don't count on it")
 elif (???):
 print("No")
magic_8_ball()
def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if (r > 3 and r <= 4):
 print("Most likely")
 elif (r > 2 and r <= 3):
 print("Ask again later")
 elif (r > 1 and r <= 2):
 print("Don't count on it")
 elif (r >= 0 and r <= 1):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0, 4]

 if (r > 3 and r <= 4):
 print("Most likely")
 elif (r > 2 and r <= 3):
 print("Ask again later")
 elif (r > 1 and r <= 2):
 print("Don't count on it")
 elif (r >= 0 and r <= 1):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if (r > 3):
 print("Most likely")
 elif (r > 2 and r <= 3):
 print("Ask again later")
 elif (r > 1 and r <= 2):
 print("Don't count on it")
 elif (r <= 1):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if(r > 3):
 print("Most likely")
 elif(r > 2 and r <= 3):
 print("Ask again later")
 elif(r > 1 and r <= 2):
 print("Don't count on it")
 elif(r <= 1):
 print("No")

magic_8_ball()
def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0, 4]

 if r > 3:
 print("Most likely")
 elif r > 2:
 print("Ask again later")
 elif r > 1 and r <= 2:
 print("Don't count on it")
 elif r <= 1:
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if(r > 3):
 print("Most likely")
 elif(r > 2):
 print("Ask again later")
 elif(r > 1):
 print("Don't count on it")
 elif(r <= 1):
 print("No")

magic_8_ball()
from random import uniform

def magic_8_ball():
 r = uniform(0, 4) # a floating-point number in [0,4]

 if (r > 3):
 print("Most likely")
 elif (r > 2):
 print("Ask again later")
 elif (r > 1):
 print("Don't count on it")
 else:
 print("No")

magic_8_ball()
isPrime

----DRILL----
Write some code to determine if a number is prime. Print either “not prime” or “is prime”. A number is prime if the only integer divisors are 1 and itself.
Write some code to determine if a number is prime. Print either “not prime” or “is prime”. A number is prime if the only integer divisors are 1 and itself.

```python
x = 17
c = 2

while( c < x ):
    if( x % c == 0 ):
        print( "not prime" )
        break;
    else:
        c = c + 1
```
isPrime

-- DRILL --
Write some code to determine if a number is prime.
Print either “not prime” or “is prime”. A number is prime if the only integer divisors are 1 and itself.
x = 17

if(x % c == 0):
 print("not prime")
else:
 c = c + 1

if(c == x):
 print("is prime")
---DRILL ---
Write some code to determine if a number is prime.
Print either “not prime” or “is prime”. A number is
prime if the only integer divisors are 1 and itself

x = 17

if(x % c == 0)
 print("not prime")
 break;

if(c == x)
 print("is prime")