The amount of radiation r emitted by a radioactive isotope changes as a function of time t according to the following equation:

$$r = at - \log_b(t) + c - 3$$

where the unknowns a, b, and c depend on a number of factors that are not immediately knowable or observable. You measure the amount of radiation r_1 at time t_1, and r_2 at a later time t_2, and r_3 again at a later time t_3.

Specify the linear system in matrix/vector form for estimating the unknowns a, b, and c (you need not solve it).
The amount of radiation r emitted by a radioactive isotope changes as a function of time t according to the following equation:

$$r = a*t - b*\log(t) + c - 3$$

$$r_1 = a*t_1 - b*\log(t_1) + c - 3$$

$$r_2 = a*t_2 - b*\log(t_2) + c - 3$$

$$r_3 = a*t_3 - b*\log(t_3) + c - 3$$
The amount of radiation r emitted by a radioactive isotope changes as a function of time t according to the following equation:

$$r = a*t - b*\log(t) + c - 3$$

$$r_1 = a*t_1 - b*\log(t_1) + c - 3$$

$$r_2 = a*t_2 - b*\log(t_2) + c - 3$$

$$r_3 = a*t_3 - b*\log(t_3) + c - 3$$

$$\begin{pmatrix} t_1 & -\log(t_1) & 1 \\ t_2 & -\log(t_2) & 1 \\ t_3 & -\log(t_3) & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} r_1 + 3 \\ r_2 + 3 \\ r_3 + 3 \end{pmatrix}$$