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5.1 Pinhole Camera

The history of the pinhole camera (or camera obscura) dates back
as early as the fifth century B.C., and continues to be popular to-
day among students, artists, and scientists. The Chinese philoso-
pher Mo Ti is believed to be the first to notice that objects reflect
light in all directions and that the light rays that pass through
a small hole produce an inverted image. In its simplest form a

Figure 5.1 Pinhole im-

age formation

pinhole camera is a light-tight box with a tiny hole in one end and
a photo-sensitive material on the other. Remarkably, this simple
device is capable of producing a photograph. However, the pinhole
camera is not a particularly efficient imaging system (often requir-
ing exposure times as long as several hours) and is more popular
for its artistic value than for its practical value. Nevertheless, the
pinhole camera is convenient because it affords a simple model of
more complex imaging systems. That is, with a pinhole camera
model, the projection of points from the three-dimensional world
onto the two-dimensional sensor takes on a particularly simple
form.

Denote a point in the three-dimensional world as a column vector,
!P = (X Y Z )t and the projection of this point onto the two
dimensional image plane as !p = (x y )t. Note that the world
and image points are expressed with respect to their own coordi-
nate systems, and for convenience, the image coordinate system
is chosen to be orthogonal to the Z-axis, i.e., the origins of the
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Figure 5.2 Perspective

projection

two systems are related by a one-dimensional translation along
the Z−axis or optical axis. It is straight-forward to show from a
similar triangles argument that the relationship between the world
and image point is:

x = −
dX

Z
and y = −

dY

Z
, (5.1)

where d is the displacement of the image plane along the Z-axis 6

These equations are frequently referred to as the perspective pro-
jection equations. Although non-linear in their nature, the per-
spective projection equations may be expressed in matrix form

6The value d in Equation (5.1) is often referred to as the focal length. We
do not adopt this convention primarily because it is a misnomer, under the
pinhole model all points are imaged in perfect focus.
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using the homogeneous equations:
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where the final image coordinates are given by ( x y )t = ( xs
s

ys

s )t.

An approximation to the above perspective projection equations
is orthographic projection, where light rays are assumed to travel
from a point in the world parallel to the optical axis until they
intersect the image plane. Unlike the pinhole camera and perspec-
tive projection equations, this model is not physically realizable
and is used primarily because the projection equations take on a
particularly simple linear form:
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Figure 5.3 Orthographic

projection

x = X and y = Y. (5.3)

And in matrix form:

(

x
y

)

=
(

1 0 0
0 1 0

)





X
Y
Z



 (5.4)

Orthographic projection is a reasonable approximation to perspec-
tive projection when the difference in depth between points in the
world is small relative to their distance to the image plane. In
the special case when all the points lie on a single frontal-parallel
surface relative to the image plane (i.e., d

Z is constant in Equa-
tion (5.1)), the difference between perspective and orthographic is
only a scale factor.

5.2 Lenses

It is important to remember that both the perspective and or-
thographic projection equations are only approximations of more
complex imaging systems. Commercial cameras are constructed
with a variety of lenses that collect and focus light onto the im-
age plane. That is, light emanates from a point in the world
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Figure 5.4 Thin lens

in all directions and, whereas a pinhole camera captures a single
light ray, a lens collects a multitude of light rays and focuses the
light to a small region on the image plane. Such complex imaging
systems are often described with the simpler thin-lens model. Un-
der the thin-lens model the projection of the central or principal
ray obeys the rules of perspective projection, Equation (5.1): the
point !P = ( X Y Z )t is projected onto the image plane cen-
tered about the point ( x y )t = ( −dX

Z
−dY

Z )t. If the point !P
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is in perfect focus, then the remaining light rays captured by the
lens also strike the image plane at the point !p. A point is imaged
in perfect focus if its distance from the lens satisfies the following
thin-lens equation:

1

Z
+

1

d
=

1

f
, (5.5)

where d is the distance between the lens and image plane along the
optical axis, and f is the focal length of the lens. The focal length
is defined to be the distance from the lens to the image plane such
that the image of an object that is infinitely far away is imaged
in perfect focus. Points at a depth of Zo "= Z are imaged onto a
small region on the image plane, often modeled as a blurred circle
with radius r:
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where R is the radius of the lens. Note that when the depth of a
point satisfies Equation (5.5), the blur radius is zero. Note also
that as the lens radius R approaches 0 (i.e., a pinhole camera),
the blur radius also approaches zero for all points independent of
its depth (referred to as an infinite depth of field).

Alternatively, the projection of each light ray can be described in
the following more compact matrix notation:

(

l2
α2

)
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1 0
− 1

R
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n2

)

n1
n2

)(

l1
α1

)

, (5.7)

where R is the radius of the lens, n1 and n2 are the index of
refraction for air and the lens material, respectively. l1 and l2 are
the height at which a light ray enters and exits the lens (the thin
lens idealization ensures that l1 = l2). α1 is the angle between the
entering light ray and the optical axis, and α2 is the angle between
the exiting light ray and the optical axis. This formulation is
particularly convenient because a variety of lenses can be described
in matrix form so that a complex lens train can then be modeled
as a simple product of matrices.
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Figure 5.5

Non-invertible projection

Image formation, independent of the particular model, is a three-
dimensional to two-dimensional transformation. Inherent to such
a transformation is a loss of information, in this case depth infor-
mation. Specifically, all points of the form !Pc = ( cX cY cZ )t,
for any c ∈ R, are projected to the same point (x y )t - the pro-
jection is not one-to-one and thus not invertible. In addition to
this geometric argument for the non-invertibility of image forma-
tion, a similarly straight-forward linear algebraic argument holds.
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In particular, we have seen that the image formation equations
may be written in matrix form as, !p = Mn×m

!P , where n < m
(e.g., Equation (5.2)). Since the projection is from a higher di-
mensional space to a lower dimensional space, the matrix M is
not invertible and thus the projection is not invertible.

5.3 CCD

To this point we have described the geometry of image formation,
how light travels through an imaging system. To complete the im-
age formation process we need to discuss how the light that strikes
the image plane is recorded and converted into a digital image.
The core technology used by most digital cameras is the charge-
coupled device (CCD), first introduced in 1969. A basic CCD
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Figure 5.6 MOS capaci-
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consists of a series of closely spaced metal-oxide-semiconductor
capacitors (MOS), each one corresponding to a single image pixel.
In its most basic form a CCD is a charge storage and transport de-
vice: charge is stored on the MOS capacitors and then transported
across these capacitors for readout and subsequent transformation
to a digital image. More specifically, when a positive voltage, V , is
applied to the surface of a P-type MOS capacitor, positive charge
migrates toward ground. The region depleted of positive charge
is called the depletion region. When photons (i.e., light) enter the
depletion region, the electrons released are stored in this region.
The value of the stored charge is proportional to the intensity of
the light striking the capacitor. A digital image is subsequently
formed by transferring the stored charge from one depletion re-
gion to the next. The stored charge is transferred across a series
of MOS capacitors (e.g., a row or column of the CCD array) by
sequentially applying voltage to each MOS capacitor. As charge
passes through the last capacitor in the series, an amplifier con-
verts the charge into a voltage. An analog-to-digital converter
then translates this voltage into a number (i.e., the intensity of an
image pixel).
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