
7. Linear Filtering

7.1 Convolution

7.2 Derivative Fil-
ters

7.3 Steerable
Filters

7.4 Edge Detection

7.5 Wiener Filter

7.1 Convolution

ωx

ωy

Figure 7.1 2-D

Frequency

Figure 7.2 Low-, Band-,

High-pass

The one-dimensional convolution sum, Equation (2.5), formed the
basis for much of our discussion on discrete-time signals and sys-
tems. Similarly the two-dimensional convolution sum will form
the basis from which we begin our discussion on image processing
and computer vision.

The 1-D convolution sum extends naturally to higher dimensions.
Consider an image f [x, y] and a two-dimensional filter h[x, y]. The
2-D convolution sum is then given by:

g[x, y] =
∞
∑

k=−∞

∞
∑

l=−∞

f [k, l]h[x − k, y − l]. (7.1)

In 1-D, the intuition for a convolution is that of computing inner
products between the filter and signal as the filter “slides” across
the signal. The same intuition holds in 2-D. Inner products are
computed between the 2-D filter and underlying image as the filter
slides from left-to-right/top-to-bottom.

In the Fourier domain, this convolution is equivalent to multiplying
the, now 2-D, Fourier transforms of the filter and image, where the
2-D Fourier transform is given by:

F [ωx,ωy] =
∞
∑

k=−∞

∞
∑

l=−∞

f [k, l]e−i(ωxk+ωyl). (7.2)

The notion of low-pass, band-pass, and high-pass filtering extends
naturally to two-dimensional images. Shown in Figure 7.1 is a
simplified decomposition of the 2-D Fourier domain parameterized
by ωx and ωy ∈ [−π,π]. The inner disc corresponds to the lowest
frequencies, the center annulus to the middle (band) frequencies,
and the outer dark area to the highest frequencies.

Two of the most common (and opposing) linear filtering opera-
tions are blurring and sharpening. Both of these operations can
be accomplished with a 2-D filter and 2-D convolution, or more
efficiently with a 1-D filter and a pair of 1-D horizontal and ver-
tical convolutions. For example, a 2-D convolution with the blur
filter:





0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625





47



can be realized by convolving in the horizontal and vertical direc-
tions with the 1-D filter:

blur = ( 0.25 0.50 0.25 ) . (7.3)

That is, an outer-product of the 1-D filter with itself yields the
2-D filter - the filters are xy-separable. The separability of 2-D
filters is attractive for two reasons: (1) it is computationally more
efficient and (2) it simplifies the filter design. A generic blur filter
may be constructed from any row of the binomial coefficients:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

Figure 7.3 Blur and

Sharpen

where each row (filter) should be normalized by it’s sum (i.e., blur
filters should always be unit-sum so as not to increase or decrease
the mean image intensity). The amount of blur is then directly
proportional to the size of the filter. Blurring simply reduces
the high-frequency content in an image. The opposing operation,
sharpening, is meant to enhance the high-frequencies. A generic
separable sharpening filter is of the form:

sharp = ( 0.08 −1.00 0.08 ) . (7.4)

This filter leaves the low-frequencies intact while enhancing the
contribution of the high-frequencies. Shown in Figure 7.3 are re-
sults from blurring and sharpening.

7.2 Derivative Filters

Discrete differentiation forms the foundation for many applications
in image processing and computer vision. We are all familiar with
the definition of the derivative of a continuous signal f(x):

D{f(x)} = lim
ε→0

f(x + ε) − f(x)

ε
. (7.5)

This definition requires that the signal f(x) be well defined for all
x ∈ R. So, does it make sense to differentiate a discretely sampled
signal, D{f [x]}, which is only defined over an integer sampling
lattice? Strictly speaking, no. But our intuition may be that this
is not such an unreasonable request. After all, we know how to
differentiate f(x), from which the sampled signal f [x] was derived,
so why not just differentiate the continuous signal f(x) and then
sample the result? Surely this is what we have in mind when we

48



ask for the derivative of a sampled signal. But one should not be
fooled by the seeming simplicity of our intuition, as we will soon
discover the design of an accurate and efficient discrete derivative
operator will prove to be sufficiently challenging.

Recall from earlier chapters that under certain conditions (Nyquist
theory), the relationship between the continuous and sampled sig-
nals can be expressed precisely as:

f(x) = f [x] $ h(x), (7.6)

where h(x) = sin(πx/T )/(πx/T ) is the ideal sync, and $ is the
convolution operator. Now, applying the continuous differential
operator to both sides yields:

D{f(x)} = D{f [x] $ h(x)}, (7.7)

and expressing the right-hand side in terms of the convolution
sum:

D{f(x)} = D







∞
∑

k=−∞

f [k]h(x − k)







=
∞
∑

k=−∞

f [k]D{h(x − k)}

= f [x] $ D{h(x)}. (7.8)

Notice that the derivative operator D{·} is being applied only
to continuous entities. Having computed the desired derivatives,
we need only sample the results, denoting S{·} as the sampling
operator:

0

0

1

0

0

Figure 7.4 Ideal sync

and its derivative

S{ D{f(x)} } = f [x] $ S{ D{h(x)} }
S{f ′(x)} = f [x] $ S{h′(x)}

f ′[x] = f [x] $ h′[x]. (7.9)

On the left-hand side of the above equation is the desired quan-
tity, the derivative of the sampled signal. On the right-hand side
is a discrete convolution between two known quantities, the sam-
pled derivative of the sync and the original sampled signal. The
derivative of the sync can be expressed analytically by simply dif-
ferentiating the sync function:

h′(x) =
π2x/T 2 cos(πx/T ) − π/T sin(πx/T )

(πx/T )2
, (7.10)

where T is the sampling period at which f(x) was sampled. So,
if the signal f(x) is sampled above the Nyquist rate and if it is in

49



fact differentiable, then Equation (7.9) tells us that we can exactly
compute the derivative of the sampled signal f [x], an altogether
happy ending.

If you are feeling a bit uneasy it is for a good reason. Although
mathematically correct, we have a solution for differentiating a
discretely sampled signal that is physically unrealizable. In partic-
ular the derivative of the sync, h′(x), is spatially infinite in extent,
meaning that it cannot be implemented on a finite machine. And
even worse, h′(x) falls off slowly from the origin so that truncation
will cause significant inaccuracies. So we are going to have to part
with mathematical perfection and design a finite-length filter.

To begin we need to compute the frequency response of the ideal
derivative filter. We can compute the response indirectly by first
expressing f [x] in terms of its Fourier series:

f [x] =
1

2π

π
∑

ω=−π

F [ω]eiωx, (7.11)

and then differentiating both sides with respect to x:

D{f [x]} =
1

2π

π
∑

ω=−π

F [ω]D{eiωx}

=
1

2π

π
∑

ω=−π

iωF [ω]eiωx. (7.12)

Differentiation in the space domain is then seen to be equivalent to
multiplying the Fourier transform F [ω] by an imaginary ramp iω.
And since multiplication in the frequency domain is equivalent
to convolution in the space domain, an imaginary ramp is the
frequency response of the ideal derivative filter. Trying to directly

−pi  0  pi−pi

 0 

 pi

Figure 7.5 Ideal and ap-

proximate derivative fre-

quency response

design a finite length filter to this response is futile because of the
discontinuity at −π/π, which of course accounts for the spatially
infinite extent of h′(x). So we are resigned to designing a filter with
a periodic frequency response that “best” approximates a ramp.
The simplest such approximation is that of a sinusoid where, at
least in the low-frequency range, the match is reasonably good
(i.e., sin(ω) = ω, for small ω). Employing the least-squares filter
design technique (Equation (4.8)) we formulate a quadratic error
function to be minimized:

E(%h) = | M%h − %H |2, (7.13)

where M is the N × n Fourier matrix (Equation (2.28)), %H is the
N sampled desired frequency response, and n the filter size is.

50



To minimize we differentiate, set equal to zero and solve for the
minimal solution:

%h = (M tM)−1M t %H (7.14)

Since the desired frequency response, a sinusoid, has only two de-
grees of freedom, amplitude and phase, a 2-tap filter will suffice
(i.e., n = 2). The resulting filter is of the form %h = ( 0.5 −0.5 ).
Intuitively this is exactly what we should have expected - for ex-
ample, applying this filter via a convolution and evaluating at,
arbitrarily, n = 0 yields:

f ′[x] = h[x] $ f [x]

=
∞
∑

k=−∞

h[x − k]f [k]

f ′[0] = h[1]f [−1] + h[0]f [0]

= 0.5f [0] − 0.5f [−1]. (7.15)

Note that the derivative is being approximated with a simple two-
point difference, that is, a discrete approximation to the continu-
ous definition in Equation (7.5). We could of course greatly im-
prove on this filter design. But since we are really interested in
multi-dimensional differentiation, let’s put aside further analysis
of the one-dimensional case and move on to the two-dimensional
case.

It has been the tendency to blindly extend the one-dimensional
design to higher-dimensions, but, as we will see shortly, in higher-
dimensions the story becomes slightly more complicated. In the
context of higher-dimensional signals we first need to consider par-
tial derivatives. For example the partial derivative of a two dimen-
sional signal f(x, y) in it’s first argument is defined as:

fx(x, y) ≡
∂f(x, y)

∂x

= lim
ε→0

f(x + ε, y) − f(x, y)

ε
. (7.16)

According to the Nyquist theory, the continuous and discrete sig-
nals (if properly sampled) are related by the following equality:

f(x, y) = f [x, y] $ h(x, y), (7.17)

where h(x, y) = sin(πx/T ) sin(πy/T )
π2xy/T 2 is the two-dimensional ideal sync.

As before we apply the continuous partial differential operator to
both sides:

Dx{f(x, y)} = f [x, y] $ Dx{h(x, y)}, (7.18)

51



noting again that the differential operator is only applied to contin-
uous entities. Since the two-dimensional sync is separable (i.e., h(x, y) =
h(x) $ h(y)), the above equation can be rewritten as:

fx(x, y) = f [x, y] $ Dx{h(x) $ h(y)}
= f [x, y] $ Dx{h(x)} $ h(y)

= f [x, y] $ h′(x) $ h(y). (7.19)

And finally, sampling both sides gives an expression for the partial
derivative of the discretely sampled two-dimensional signal:

S{fx(x, y)} = f [x, y] $ S{h′(x)} $ S{h(y)}
fx[x, y] = f [x, y] $ h′[x] $ h[y]. (7.20)

Notice that calculating the partial derivative requires a pair of

f’[x]

f[y]

Figure 7.6 Horizontal

partial differentiation

one-dimensional convolutions: a derivative filter, h′[x], in the di-
mension of differentiation, and an interpolation filter, h[y], in
the other dimension (for multi-dimensional signals, all remain-
ing dimensions would be convolved with the interpolation filter).
Since two-dimensional differentiation reduces to a pair of one-
dimensional convolutions it is tempting to simply employ the same
differentiation filter used in the one-dimensional case. But since a
pair of filters are now required perhaps we should give this some
additional thought.

In some ways the choice of filters seems trivial: chose an interpo-
lation function h(x), differentiate it to get the derivative function
h′(x), and sample these functions to get the final digital filters
h[x] and h′[x]. So how is this different from the one-dimensional
case? In the one-dimensional case only the derivative filter is em-
ployed, whereas in the two-dimensional case we require the pair
of filters. And by our formulation we know that the pair of fil-
ters should satisfy the relationship that one is the derivative of
the other h′(x) = D(h(x)). And in fact this constraint is au-
tomatically enforced by the very nature in which the continu-
ous functions are chosen, but in the final step, these functions
are sampled to produce discrete filters. This sampling step typi-

−pi  0  pi

Figure 7.7

Sobel frequency response

cally destroys the required derivative relationship, and, although
a seemingly subtle point, has dramatic effects on the accuracy of
the resulting derivative operator. For example consider the often
used Sobel derivative filters with h[x] = ( 1

√
2 1 ) /(2 +

√
2)

and h′[x] = ( 1 0 −1 ) /3. Shown in Figure 7.7 are the magni-
tudes of the Fourier transform of the derivative filter (solid line)
and the interpolation filter times iω (i.e., frequency domain differ-
entiation). If the filters obeyed the required derivative relationship
than these curves would be exactly matched, which they clearly

52



are not. The mismatching of the filters results in gross inaccura-
cies in derivative measurements. Let’s see then if we can design a
better set of filters.

We begin by writing down the desired relationship between the
derivative and interpolation filters, most conveniently expressed
in the frequency domain:

H ′(ω) = iωH(ω), (7.21)

from which we can write a weighted least-squares error functional
to be minimized:

E(H,H ′) =
∫

dω
[

W (ω)(iωH(ω) − H ′(ω))
]2 , (7.22)

where W (ω) is a frequency weighting function. Next, we write a
discrete approximation of this continuous error functional over the
n-vectors %h and %h′ containing the sampled derivative and interpo-
lation filters, respectively:

E(%h, %h′) = |W (F ′%h − F %h′)|2, (7.23)

where the columns of the matrix Fm×n contain the first n Fourier
basis functions (i.e., a discrete-time Fourier transform), the matrix
F ′

m×n = iωFm×n, and Wm×m is a diagonal frequency weighting
matrix. Note that the dimension n is determined by the filter size
and the dimension m is the sampling rate of the continuous Fourier
basis functions, which should be chosen to be sufficiently large to
avoid sampling artifacts. This error function can be expressed
more concisely as:

E(%u) = |M%u|2, (7.24)

where the matrix M and the vector %u are constructed by “packing
together” matrices and vectors:

M = (WF ′ | −WF ) and %u =
( %h

%h′

)

. (7.25)

The minimal unit vector %u is then simply the minimal-eigenvalue
eigenvector of the matrix M tM . After solving for %u, the derivative
and interpolation filters can be “unpacked” and normalized so that
the interpolation filter is unit sum. Below are the resulting filter
values for a 3-tap and 5-tap filter pair.

53



Shown in Figure 7.8 are the matching of these filters in the fre-
quency domain. Notice that the 5-tap filters are nearly perfectly
matched.

−pi  0  pi

−pi  0  pi

Figure 7.8

Frequency response of

matched derivative filters

h 0.223755 0.552490 0.223755
h′ 0.453014 0.0 -0.453014

h 0.036420 0.248972 0.429217 0.248972 0.036420
h′ 0.108415 0.280353 0.0 -0.280353 -0.108415

Higher-order derivative filters can be designed by replacing the
initial constraint in Equation (7.21) with H ′(ω) = (iω)kH(ω) for
a kth order derivative.

A peculiar aspect of this filter design is that nowhere did we ex-
plicitly try to model a specified frequency response. Rather, the
design fell naturally from the relationship between the continuous-
and discrete-time signals and the application of the continuous
derivative operator, and in this way is quite distinct from the one-
dimensional case. The proper choice of derivative filters can have
a dramatic impact on the applications which utilize them. For

Figure 7.9

Differential motion esti-

mation

example, a common application of differential measurements is in
measuring motion from a movie sequence f(x, y, t). The standard
formulation for motion estimation is:

fx(x, y, t)vx(x, y) + fy(x, y, t)vy(x, y) + ft(x, y, t) = 0, (7.26)

where the motion vector is %v = ( vx vy )t, and fx(·), fy(·), and
ft(·) are the partial derivatives with respect to space and time.
Shown in Figure 7.9 are the resulting motion fields for a sim-
ple translational motion with the Sobel (top panel) and matched
(bottom) derivative filters used to compute the various derivatives.
Although these filters are the same size, the difference in accuracy
is significant.

7.3 Steerable Filters

In the previous section we showed how to compute horizontal and
vertical partial derivatives of images. One may naturally wonder
how to compute a derivative in an arbitrary direction. Quite re-
markably it turns out that we need not design a new set of filters
for each possible direction because the derivative in any direction
can be synthesized from a linear combination of the horizontal and
vertical derivatives. This property of derivatives has been termed
steerability. There are several formulations of this property, we
chose to work in the frequency domain where differentiation takes
on a particularly simple form.

54



To begin, we express a two-dimensional image with respect to its
Fourier series:

f(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

F (ωx,ωy)e
−j(ωxx+ωyy). (7.27)

Differentiating 8 both sides with respect to x gives:

fx(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωxF (ωx,ωy)e
−j(ωxx+ωyy).(7.28)

That is, in the frequency domain differentiation in the horizon-
tal direction u is equivalent to multiplying the Fourier transform
F (ωx,ωy) by an imaginary horizontal ramp, −jωx. Similarly, the
vertical partial derivative in v is:

fy(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωyF (ωx,ωy)e
−j(ωxx+ωyy).(7.29)

Now, differentiation in the vertical direction v is equivalent to
multiplying the Fourier transform by an imaginary vertical ramp.
This trend generalizes to arbitrary directions, that is, the partial
derivative in any direction α can be computed by multiplying the
Fourier transform by an imaginary oriented ramp −jωα:

fα(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−jωαF (ωx,ωy)e
−j(ωxx+ωyy),(7.30)

where the oriented ramp can be expressed in terms of the horizon-
tal and vertical ramps:

ωα = cos(α)ωx + sin(α)ωy . (7.31)

Substituting this definition back into the partial derivative in α,
Equation (7.30), gives:

fα(x, y) =
π
∑

ωx=−π

π
∑

ωy=−π

−j[cos(α)ωx + sin(α)ωy]F (ωx,ωy)e
−j(ωxx+ωyy)

= cos(α)
π
∑

ωx=−π

π
∑

ωy=−π

−jωxF (ωx,ωy)e
−j(ωxx+ωyy)

+ sin(α)
π
∑

ωx=−π

π
∑

ωy=−π

−jωyF (ωx,ωy)e
−j(ωxx+ωyy)

= cos(α)fx(x, y) + sin(α)fy(x, y). (7.32)

8Recall that the derivative of an exponential is an exponential, so that
according to the chain rule, Dx{e

ax} = aeax.

55



Notice that we obtain the horizontal and vertical derivatives when
α = 0 and α = 90. This equation embodies the principle of steer-
ability - the derivative in any direction α can be synthesized from
a linear combination of the partial horizontal and vertical deriva-
tives, fx(x, y) and fy(x, y). Pause to appreciate how remarkable
this is, a pair of directional derivatives is sufficient to represent an
infinite number of other directional derivatives, i.e., α can take on
any real-valued number.

Figure 7.10 Steerability

From the previous section we know how to compute the horizon-
tal and vertical derivatives via convolutions with an interpolation
and derivative filter. To compute any other directional derivative
no more convolutions are required, simply take the appropriate
linear combinations of the horizontal and vertical derivatives as
specified in Equation (7.32). Shown in Figure 7.10 from top to
bottom is a disc f(x, y), its horizontal derivative fx(x, y), its ver-
tical derivative fy(x, y), and its steered derivative f45(x, y), where
the steered derivative was synthesized from the appropriate linear
combinations of the horizontal and vertical derivatives. The ob-
vious benefit of steerability is that the derivative in any direction
can be synthesized with minimal computational costs.

Steerability is not limited to first-order derivatives. Higher-order
derivatives are also steerable; the N th-order derivative is steerable
with a basis set of size N + 1. For example, the second-order
derivative in an arbitrary direction can be synthesized as follows:

fαα = cos2(α)fxx + 2cos(α) sin(α)fxy + sin2(α)fyy, (7.33)

where for notational simplicity the spatial arguments (x, y) have
been dropped, and the multiple subscripts denote higher-order
differentiation. Note that three partial derivatives are now needed
to steer the second-order derivative. Similarly, the third-order
derivative can be steered with a basis of size four:

fααα = cos3(α)fxxx + 3cos2(α) sin(α)fxxy

+3cos(α) sin2(α)fxyy + sin3(α)fyyy. (7.34)

You may have noticed that the coefficients needed to steer the basis
set look familiar, they are the binomial coefficients that come from
a polynomial expansion. More specifically, as in Equation(7.30)
the N th-order derivative in the frequency domain is computed by
multiplying the Fourier transform by an imaginary oriented ramp
raised to the N th power, (−jωα)N . Expressing this oriented ramp
in terms of the horizontal and vertical ramps provides the basis
and coefficients needed to steer derivatives of arbitrary order:

(ωα)N = (cos(α)ωx + sin(α)ωy)
N . (7.35)

56



Although presented in the context of derivatives, the principle of
steerability is not limited to derivatives. In the most general case,
a two-dimensional filter f(x, y) is steerable in orientation if it can
be expressed as a polar-separable function, g(r)h(θ), where h(θ) is
band-limited. More specifically, for an arbitrary radial component
g(r), and for h(θ) expressed as:

h(θ) =
N
∑

n=1

an cos(nθ) + bn sin(nθ) (7.36)

then the filter is steerable with a basis size of 2N .

7.4 Edge Detection

Figure 7.11 Edges

Discrete differentiation forms the foundation for many applica-
tions in computer vision. One such example is edge detection - a
topic that has received an excessive amount of attention, but is
only briefly touched upon here. An edge is loosely defined as an
extended region in the image that undergoes a rapid directional
change in intensity. Differential techniques are the obvious choice
for measuring such changes. A basic edge detector begins by com-
puting first-order spatial derivatives of an image f [x, y]:

fx[x, y] = (f [x, y] $ h′[x]) $ h[y] (7.37)

fy[x, y] = (f [x, y] $ h[x]) $ h′[y], (7.38)

where h′[·] and h[·] are the derivative and prefilter defined in Sec-
tion 7.2. The “strength” of an edge at each spatial location is
defined to be the magnitude of the gradient vector &[x, y] =
( fx[x, y] fy[x, y] ), defined as:

|& [x, y]| =
√

f2
x [x, y] + f2

y [x, y]. (7.39)

As shown in Figure 7.11, the gradient magnitude is only the begin-
ning of a more involved process (not discussed here) of extracting
and localizing the salient and relevant edges.

7.5 Wiener Filter

+

n

s s

Figure 7.12 Additive

noise

For any of a number of reasons a digital signal may become cor-
rupted with noise. The introduction of noise into a signal is often
modeled as an additive process, ŝ = s+n. The goal of de-noising is
to recover the original signal s from the corrupted signal ŝ. Given
a single constraint in two unknowns this problem is equivalent to
my asking you “37 is the sum of two numbers, what are they?”
Lacking clairvoyant powers or knowledge of how the individual
numbers were selected we have little hope of a solution. But by

57



making assumptions regarding the signal and noise characteris-
tics and limiting ourselves to a linear approach, a solution can be
formulated known as the Wiener filter, of famed Mathematician
Norbert Wiener (1894-1964).

−pi  0 pi 0

1

Figure 7.13 Wiener fil-

ter

Figure 7.14 Einstein

plus noise

Having restricting ourselves to a linear solution, our goal is to
design a filter h[x] such that:

s[x] = h[x] $ ŝ[x]

= h[x] $ (s[x] + n[x]), (7.40)

that is, when the filter is convolved with the corrupted signal the
original signal is recovered. With this as our goal, we reformulate
this constraint in the frequency domain and construct a quadratic
error functional to be minimized:

E(H(ω)) =
∫

dω [H(ω)(S(ω) + N(ω)) − S(ω)]2. (7.41)

For notational simplicity we drop the frequency parameter ω and
express the integral with respect to the expected value operator
E{·}:

E(H) = E
{

(H(S + N) − S)2
}

= E
{

H2(S + N)2 − 2HS(S + N) + S2
}

= E
{

H2(S2 + 2SN + N2) − 2H(S2 + SN) + S2
}

(7.42)

In order to simplify this expression we can assume that the signal
and noise are statistically independent (i.e., E{SN} = 0), yielding:

E(H) = E
{

H2(S2 + N2) − 2HS2 + S2
}

. (7.43)

To minimize, we differentiate:

dE(H)

dH
= 2H(S2 + N2) − 2S2, (7.44)

set equal to zero and solve:

H(ω) =
S2(ω)

S2(ω) + N2(ω)
. (7.45)

At an intuitive level this frequency response makes sense - when
the signal is strong and the noise is weak the response is close to
1 (i.e., frequencies are passed), and when the signal is weak and
the noise is strong the response is close to 0 (i.e., frequencies are
stopped). So we now have an optimal (in the least-squares sense)

58



frequency response in terms of the signal and noise characteris-
tics, but of course we don’t typically know what those are. But
we can instantiate them by making assumptions about the general
statistical nature of the signal and noise, for example a common
choice is to assume white noise, N(ω) is constant for all ω, and,
for natural images, to assume that S(ω) = 1/ωp. The frequency
response in the top panel of Figure 7.13 was constructed under
these assumptions. Shown in the bottom panel is a 7-tap filter
derived from a least-squares design. This one-dimensional formu-
lation can easily be extended to two or more dimensions. Shown
in Figure 7.14 from top to bottom, is Einstein, Einstein plus noise,
and the results of applying a 7 × 7 Wiener filter. Note that the
noise levels are reduced but that much of the sharp image struc-
ture has also been lost, which is an unfortunate but expected side
effect given that the Wiener filter is low-pass in nature.

59


