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Expectation Maximization

The expectation/maximization (EM) algorithm simultaneously groups and
fits data generated from multiple parametric models. Consider the data
points in Figure 1(a). You can clearly see that these data points are well
fit to one of two possible lines (our models). Specifically, each data point,
(x(i),y(z)) with ¢ € [1,n], is generated from one of two models given by the
equation of a line:

y(i) = ayx(i) 4+ by + ny(7) (1)
y(i) = agx(i) + by + na(i), (2)

where the model parameters are a,b; and as, by. We assume some amount
of imperfection in the data or underlying model, which we approximate with
additive noise terms n, (i) and ns (7).

If we are given the model parameters (aq, b; and ag, bs), then determining
which data point ¢ was generated by which model would be a simple matter
of choosing the model k£ that minimizes the error between the data and the
model prediction:

re(i) = lap(i) + bk — y(0)], (3)

for £ = 1,2 in our example. That is, we simply ask, to which line is each data
point closest, Figure 1(b). We measure this error using the vertical distance
between the data point and the model, as opposed to the orthogonal distance.
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Figure 1: Fit two lines to the data points. The data point (z;,y;) has a
residual error 71 (7) and r2(i) for each model (line) M; and Mo.

This is because this error lends itself to a least-squares estimation, described
next.

On the other hand, if we are given which data points were generated by
which model, then estimating the model parameters reduces to solving, for
each model k, an over-constrained set of linear equations:

(2 1 a k(2
N I R )
zi(n) 1 Yr(n)

where the 24 (i) and yi(7) all belong to model k.

In either case, knowing one piece of information (the model assignment
or parameters) makes determining the other relatively easy. But, lacking
either piece of information makes this a considerably more difficult estimation
problem. The EM algorithm is an iterative two step algorithm that estimates
both the model assignment and model parameters.

The E-step of EM assumes that the model parameters are known (ini-
tially, the parameters can be assigned random values) and calculates the
probability of each data point belonging to each model. In so doing the
model assignment is made in a probabilistic fashion. Each data point is not
explicitly assigned ownership to a single model, rather each data point 7 is
assigned a probability of membership in model k. For each model the residual



error is first computed as:
ri(i) = apz(i) + by — y(i) (5)

from which the probabilities are calculated. We ask, what is the probability
of point ¢ belonging to model k£ given the residual error. For our two model
example:!

o P(ry(i) | a, br)
Plawbe 1 re®) = 5T b + Plal) [aaba)’ ©)

for £ = 1,2. If we assume a Gaussian probability distribution for the noise
ng(7), then the probability takes the form:

. ‘ 6—r%(i)/202
wy (i) = P(ag, br|ri (7)) = e—r1(0)/202 | o—r3(i)/202” (7)

where, ¢ is proportional to the amount of noise in the data.

The M-step of EM takes the probability of each data point belonging
to each model and re-estimates the model parameters using weighted least-
squares. The following weighted quadratic error function on the model pa-
rameters is minimized:

n

E(ag,by) = Y (wi(i)(are(i) + by — y(0)))". (8)

i=1
The intuition here is that each data point contributes to the estimation of
each model’s parameters in proportion to the belief in its membership in that
particular model.

This quadratic error function can be rewritten in matrix form:

E(ny) = [[Wi(Xru - g)|, (9)

where the model parameters are my = (a bk), the n x 2 matrix X is:
z(l) 1
X = ( 1, (10)

!The expression P(ay, by, | r1(i)) is the conditional probability of observing the model
parameters ag, by given the residual error r4(7) for each data point i. If, for example, the
residual error is zero, then the probability will be high. As the residual error increases, the
probability decreases proportionally because the sample does not satisfy the model. The

expansion of the conditional probability is from Bayes’ rule: P(X | Yy) = %.
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Figure 2: Four iterations of the EM algorithm.

the n x 1 vector y is:

we(l) 00 0

The quadratic error function is minimized by computing the gradient with
respect to the model parameters, setting the result equal to zero and solving
for the model parameters. This yields the weighted least squares solution:

m = (XTWIWX) ' XTWIW,y, (13)

The EM algorithm iteratively executes the E- and M-step, repeatedly
estimating and refining the model assignments and parameters. Several it-
erations of EM applied to fitting data generated from two linear models are
shown in Figure 2. The model parameters are initially assigned random
values, and after a few iterations the algorithm converges to a solution.

The EM algorithm is guaranteed to converge. The convergence to the
right or desired solution, however, depends on the quality of the initial model
parameters used to bootstrap the EM iterations.

The EM algorithm can be sensitive to the value of o used, Equation (7).
It is recommended that with a reasonable starting value, the value of o} can
be updated on each EM iteration as:

2 iy we()ri (1)
2 wi(i)
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O =

(14)



If the value of ¢ is initially too small, then it is unlikely that data points
will be assigned to the correct model. On the other hand, if ¢ is initially too
large, then data points will be equally likely to belong to either model. In
either case, the convergence of EM to the desired solution will be hampered
by an inappropriate value of o.



