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Fourier Series and Transform

Consider a 1-D discretely sampled signal of length m:

f(x) =
!
1 2 4 5 3 0 . . . 7

"
. (1)

Although not made explicit, such a signal is represented with respect to a
basis consisting of the canonical vectors (or unit impulses) in Rm. That is,
the signal is represented as a weighted sum of the basis vectors:

f(x) = 1
!
1 0 0 0 0 0 . . . 0

"

+ 2
!
0 1 0 0 0 0 . . . 0

"

+ 4
!
0 0 1 0 0 0 . . . 0

"

+ . . .

+ 7
!
0 0 0 0 0 0 . . . 1

"
. (2)

This can be written more compactly as:

f(x) =
m−1#

k=0

akbk(x), (3)

where bk(x) are the canonical basis vectors, and:

ak =
m−1#

l=0

f(l)bk(l). (4)
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Figure 1: 1-D Fourier basis.

In the language of linear algebra, the weights ak are simply an inner product
between the signal f(x) and the corresponding basis vector bk(x).

A signal (or image) can be represented with respect to any of a number of
different basis vectors. A particularly convenient and powerful choice is the
Fourier basis. The Fourier basis consists of sinusoids of varying frequency
and phase, Figure 1. Specifically, we seek to express a periodic signal as a
weighted sum of the sinusoids:

f(x) =
1

m

m−1#

k=0

ck cos

$
2πk

m
x+ φk

%
, (5)

where the frequency of the sinusoid is ωk = 2πk/m, the phase is φk, and the
weighting (or amplitude) of the sinusoid is ck. The sinusoids form a basis
for the set of periodic signals. That is, any periodic signal can be written as
a linear combination of the sinusoids. This expression is referred to as the
Fourier series.

Note that this basis is not fixed because the phase term, φk, is not fixed,
but depends on the underlying signal f(x). This can become problematic
when comparing the Fourier representation of two or more signals which will
be expressed with respect to different basis vectors and therefore will no
longer be comparable. It is, however, possible to rewrite the Fourier series
with respect to a fixed basis of zero-phase sinusoids. With the trigonometric
identity:

cos(A+B) = cos(A) cos(B)− sin(A) sin(B), (6)
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the Fourier series of Equation (5) may be rewritten as:

f(x) =
1

m

m−1#

k=0

ck cos(ωkx+ φk)

=
1

m

m−1#

k=0

ck cos(φk) cos(ωkx) + ck sin(φk) sin(ωkx)

=
1

m

m−1#

k=0

ak cos(ωkx) + bk sin(ωkx). (7)

The basis of cosine and sine of varying frequency is now fixed. Notice the
similarity to the basis representation in Equation (3): the signal is being
represented as a weighted sum of a basis. We’ve simply replaced the canonical
basis with a sine and cosine basis.

The Fourier series tells us that a signal can be represented in terms of
the sinusoids. The Fourier transform tells us how to determine the relative
weights ak and bk:

ak =
m−1#

l=0

f(l) cos(ωkl) and bk =
m−1#

l=0

f(l) sin(ωkl). (8)

As in Equation (4), these Fourier coefficients are determined from an inner
product between the signal and corresponding basis.

A more compact notation is often used to represent the Fourier series and
Fourier transform which exploits the complex exponential and its relationship
to the sinusoids:

eiωx = cos(ωx) + i sin(ωx), (9)

where i is the complex value
√
−1. With this complex exponential notation,

the Fourier series and transform take the form:

f(x) =
1

m

m−1#

k=0

cke
iωkx and ck =

m−1#

l=0

f(l)e−iωkl, (10)

where ck = ak − ibk. This notation simply bundles the sine and cosine terms
into a single expression.
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Figure 2: 2-D Fourier basis.

The Fourier coefficients ck are complex valued. These complex valued co-
efficients can be analyzed in terms of their real and imaginary components,
corresponding to the cosine and sine terms. This can be helpful when ex-
ploring the symmetry of the underlying signal f(x), as the cosine terms are
symmetric about the origin and the sine terms are asymmetric about the
origin. These complex valued coefficients can also be analyzed in terms of
their magnitude and phase. Considering the complex value as a vector in the
real-complex space, the magnitude and phase are defined as:

|ck| =
&

a2k + b2k and ∠ck = tan−1(bk/ak). (11)

The magnitude describes the overall contribution of a frequency in construct-
ing a signal, and the phase describes the relative position of each frequency.

In 2-D: In two dimensions, an m×m image can be expressed with respect
to two-dimensional sinusoids:

f(x, y) =
1

m2

m−1#

k=0

m−1#

l=0

ckl cos(ωkx+ ωly + φkl), (12)

with:

ckl =
m−1#

u=0

m−1#

v=0

f(u, v) cos(ωku+ ωlv + φkl), (13)

The 2-D Fourier basis consist of sinusoidal gratings of varying orientation
and frequency, Figure 2. From left to right are three vertically oriented basis
of increasing frequency (ωk > 0 and ωl = 0), three horizontally oriented
basis of increasing frequency (ωk = 0 and ωl > 0), and three oblique basis of
increasing frequency (ωk > 0 and ωl > 0).

As with the 1-D Fourier basis, the 2-D Fourier basis can be expressed
with respect to a fixed basis as:

f(x, y) =
1

m2

m−1#

k=0

m−1#

l=0

akl cos(ωkx+ ωly) + bkl sin(ωkx+ ωly), (14)
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where,

akl =
m−1#

u=0

m−1#

v=0

f(u, v) cos(ωku+ ωlv) (15)

bkl =
m−1#

v=0

m−1#

v=0

f(u, v) sin(ωku+ ωlv). (16)

As with the 1-D Fourier basis and transform, the sine and cosine terms
can be bundled using the complex exponential:

f(x, y) =
1

N2

m−1#

k=0

m−1#

l=0

ckle
i(ωkx+ωly) (17)

ckl =
m−1#

u=0

m−1#

v=0

f(u, v)e−i(ωku+ωlv), (18)

where ckl = akl−bkl. The Fourier transform ckl is often denoted as F (ωk,ωl).
Because the Fourier basis are periodic, the Fourier representation is par-

ticularly useful in discovering periodic patterns in a signal that might not
otherwise be obvious when the signal is represented with respect to a canon-
ical basis.
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