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Least Squares

You are given a collection of data points (x;,y;), for i € [1,m], and asked to
fit a line to these data. The model of a line is parametrized by two parameters
the slope a and intercept b:

Y = axi_'_ba (1)

Each data point (x;,y;) provides one constraint on each model parameter. A
total of m such constraints provides an over-constrained system that can be
expressed in matrix form as:
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This linear system of equations will have a solution only when the vector 4 is
contained in the column space of matrix X: that is, when g can be expressed
as a linear combination of the columns of the matrix X. From a geometric
perspective, this will occur when all points (z;,y;) lie precisely on a line. If,
however, the points deviate even slightly from a perfect line, then 7 will not
be in the column space of X, and there will be no solution to the above linear



system. It is in these situations that we seek a solution that minimizes some
measure of goodness of fit of a line to the points.

The six data points in Figure 1(a), for example, lie close, but not exactly
along a line. The solid line minimizes the overall vertical displacement of
the points from the line. Minimizing this vertical distance, ax + b — y, lends
itself to a particularly straightforward optimization, termed least-squares. In
matrix form, the vertical distance between points and a line with slope a and
intercept b is given by:
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We seek to minimize the sum of these squared distances:

m
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where || - || denotes vector norm. The sum of squared distances is minizmied
by first establishing a quadratic error function in the parameters of the line:

E(@) = | Xa—g]* (5)
This quadratic error is minimized by differentiating:
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setting the result equal to zero, and solving for u:

2XT(Xid—4) = 0
XTXu = X'y
i = (XTX)'XTy, (7)
yielding the least-squares estimation of the line parameters. The matrix

XTX will be singular and hence not invertible if the rows of the matrix
X are linearly dependent. Geometrically, this corresponds to one of two



Figure 1: (a) Least squares; (b) weighted least-squares; and (c) total
least-squares.

situations: (1) the m points are identical in which case there is no unique
solution to fitting a line to a single point; or (2) the m points lie on a vertical
line (x; = z9 = ... = x,,) in which case a = 0.

This basic framework is, of course, applicable to estimating any model
that is linear in their unknown parameters. For example, a parabola
y = ax? + bx + ¢ can be fit to m points by first constructing the follow-
ing linear system:
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and then solving using the least-squares solution in Equation (7).

Weighted least-squares: In the standard least-squares formulation, each
data point contributes equally to the overall error being minimized. Weighted
least-squares allows for a non-uniform treatment of the contribution of each
individual point to the overall error. The error function of Equation (5) takes
the form:

E(@) = [W(Xi-5)]* 9)

where W is a diagonal m x m weighting matrix with diagonal elements w;
corresponding to the weight associated with the " point. A larger weight



places more emphasis on minimizing that point’s deviation from the model.
This error function is minimized by differentiating:

dFE
dit
setting the result equal to zero and solving for « to yield the weighted least-
squares solution:
2XTWT(WXi—Wy) = 0
X"WIwXa = XTWiwy
i = (X"W'wxX)“ ' XTwrwy
i = (XTWoX) ' XTW,y, (11)

= 2XTWH(W X i — W), (10)

where the diagonal elements of the matrix W5 contain the square of the
individual weights w;. Notice that if W is the identity matrix, then this
solution reverts back to the least-squares solution of Equation (5).

The six data points in Figure 1(b) are fit with a line using least-squares
(solid line) and weighted least squares (dashed line). In the weighted least-
squares fit, the two bottom left most points were weighted disproportionately
relative to the other points. Notice how the line minimizes the error for these
points at the price of significantly higher error for the remaining points.

Total Least-Squares: In the above line fitting examples it is the vertical
distances between each data point and the line that are minimized, Fig-
ure 1(a). This gives special distinction to the y-component of the data.
In some cases, it is preferable to make no such distinction and to instead
minimize the perpendicular distance between each data point and the line,
Figure 1(c). Such a minimization is termed total least-squares.

For ease of exposition, but without loss of generality, assume that the
data points (z;,y;) are centered about the origin. In this case, the line can
be parameterized by a unit vector «. With this parameterization, the per-
pendicular distance between each data point and a line is the inner product
(xz- yz) - 4. In matrix form, the perpendicular distances between each of m
points and the line is given by:
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We seek to minimize the sum of these squared distances:

m
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The sum of squared distances is minizmied by establishing a quadratic error
function in the parameters of the line:

E(@) = x|, (14)

which we seek to minimize subject to the constraint that « is unit length,
||@|| = 1. Unlike least-squares minimization, total least-squares requires a
constrained minimization to ensure that the estimated solution @ is unit-
length.!

The constrained minimization can be framed using a Lagrange multiplier?
or equivalently as an unconstrained minimization of the Rayleigh quotient:
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This error function is minimized by differentiating:
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and setting the result equal to zero:
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The scalar-valued term on the right-hand side that multiplies # is itself the
Rayleigh quotient being minimized:

X'Xi = R(d)d. (18)

'Without the constraint that ||i@|| = 1, the zero vector @ = 0 would trivially minimize
the error function E(@) = || X|?.

2The constrained minimization can be solved by minimizing the error function: L(u) =
| X2 + X(||@]|? — 1), where X is the Lagrange multiplier.



This constraint on the solution u tells us two things: (1) the vector @ that
minimizes (or maximizes) R(%) is an eigenvector® of the matrix X7 X’; and (2)
since the eigenvalue for the eigenvector u is R(#), the vector @ that minimizes
R(u) must be the minimial eigenvalue eigenvector. The total least-squares
estimate is therefore the minimial eigenvalue eigenvector of the matrix X7 X.

3The non-zero eigenvector € of a square matrix M satisfies Mé = A& where \ is the
eigenvalue. That is, the product of a matrix and its eigenvector € yields a scaled version
of €, by an amount A.



