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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a standard approach to multi-class
classification. LDA projects data onto a linear subspace so that the within-
class scatter (specifically, the within-class variance) is minimized and the
across-class scatter is maximized. Shown in Figure 1 are two classes of data
in a 2-D space (red and blue solid points), and their projection onto an axis
that is optimal for classification (red and blue open circles).

Note that in this 1-D space, the data are perfectly separated and can be
classified with a simple threshold. Novel data are projected onto the same
axis and classified by comparing against a threshold.

For simplicity a two-class LDA is described – the extension to multiple
classes is straight-forward. Denote column vectors !xi, i = 1, ..., Nx and !yj,
j = 1, ..., Ny as training data from each of two classes. The within-class
means are defined as:

!µx =
1

Nx

Nx!

i=1

!xi, and !µy =
1

Ny

Ny!

j=1

!yj. (1)

The between-class mean is defined as:
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Figure 1: Two class LDA.

The within-class scatter matrix is defined as:

Sw = MxM
T
x +MyM

T
y , (3)

where, the ith column of matrix Mx contains the zero-meaned ith exemplar
given by !xi − !µx. Similarly, the jth column of matrix My contains !yj − !µy.
The between-class scatter matrix is defined as:

Sb = Nx(!µx − !µ)(!µx − !µ)T +Ny(!µy − !µ)(!µy − !µ)T . (4)

Let !e be the maximal generalized eigenvalue-eigenvector of Sb and Sw

(i.e., Sb!e = λSw!e). The training data !xi and !yj are projected onto the
one-dimensional linear subspace defined by !e (i.e., !xT

i !e and !yTj !e). This pro-
jection simultaneously minimizes the within-class scatter while maximizing
the between-class scatter.

Once the LDA projection axis is determined from the training set, a novel
exemplar, !z, from the testing set is classified by first projecting onto the same
subspace, !zT!e. In the simplest case, the class to which this exemplar belongs
is determined via a simple threshold.
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In the case of a two-class LDA, we are guaranteed to be able to project
onto a one-dimensional subspace (i.e., there will be at most one non-zero
eigenvalue). In the case of a N -class LDA, the projection may be onto as
high as a N − 1-dimensional subspace.

By formulating the optimization in terms of maximizing projected vari-
ance, it is being implicitly assumed that the original data is Gaussian dis-
tributed. Significant deviations of data from this assumption can result in
poor classification results.
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