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 ALFRED DEMARIS Bowling Green State University

 A Tutorial in Logistic Regression

 This article discusses some major uses of the lo-
 gistic regression model in social data analysis.
 Using the example of personal happiness, a tri-
 chotomous variable from the 1993 General Social
 Survey (n = 1,601), properties of the technique
 are illustrated by attempting to predict the odds
 of individuals being less, rather than more, happy
 with their lives. The exercise begins by treating
 happiness as dichotomous, distinguishing those
 who are not too happy from everyone else. Later
 in the article, all three categories of happiness
 are modeled via both polytomous and ordered
 logit models.

 Logistic regression has, in recent years, become
 the analytic technique of choice for the multivari-
 ate modeling of categorical dependent variables.
 Nevertheless, for many potential users this proce-
 dure is still relatively arcane. This article is there-
 fore designed to render this technique more ac-
 cessible to practicing researchers by comparing it,
 where possible, to linear regression. I will begin
 by discussing the modeling of a binary dependent
 variable. Then I will show the modeling of poly-
 tomous dependent variables, considering cases in
 which the values are alternately unordered, then
 ordered. Techniques are illustrated throughout

 *Department of Sociology, Bowling Green State University,
 Bowling Green, OH 43403.

 Key Words: logistic regression, logit models, odds ratios, or-
 dered logit models, polytomous logistic regression, probability
 models.

 using data from the 1993 General Social Survey
 (GSS). Because these data are widely available,
 the reader is encouraged to replicate the analyses
 shown so that he or she can receive a "hands on"

 tutorial in the techniques. The Appendix presents
 coding instructions for an exact replication of all
 analyses in the paper.

 BINARY DEPENDENT VARIABLES

 A topic that has intrigued several family re-
 searchers is the relationship of marital status to
 subjective well-being. One indicator of well-being
 is reported happiness, which will be the focus of
 our analyses. In the GSS happiness is assessed by
 a question asking, "Taken all together, how would
 you say things are these days-would you say that
 you are very happy, pretty happy, or not too
 happy?" Of the total of 1,606 respondents in the
 1993 survey, five did not answer the question.
 Hence, all analyses in this article are based on the
 1,601 respondents providing valid answers to this
 question. Because this item has only three values,
 it would not really be appropriate to treat it as in-
 terval. Suppose instead, then, that we treat it as di-
 chotomous, coding the variable 1 for those who
 are not too happy, and 0 otherwise. The mean of
 this binary variable is the proportion of those in
 the sample who are "unhappy," which is
 178/1,601, or .111. The corresponding proportion
 of unhappy people in the population, denoted by
 mC, can also be thought of as the probability that a
 randomly selected person will be unhappy. My
 focus will be on modeling the probability of un-
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 Logistic Regression

 happiness as a function of marital status, as well
 as other social characteristics.

 Why Not OLS?

 One's first impulse would probably be to use
 linear regression, with E(Y) = X as the dependent
 variable. The equation would be n = a + P3X, +
 2X2 +... + PKXK. (There is no error term here be-
 cause the equation is for the expected value of Y,
 which, of course, is it.) However, the problems in-
 curred in using OLS have been amply documented
 (Aldrich & Nelson, 1984; Hanushek & Jackson,
 1977; Maddala, 1983). Three difficulties are
 paramount: the use of a linear function, the as-
 sumption of independence between the predictors
 and the error term, and error heteroskedasticity, or
 nonconstant variance of the errors across combi-

 nations of predictor values. Briefly, the use of a
 linear function is problematic because it leads to
 predicted probabilities outside the range of 0 to 1.
 The reason for this is that the right-hand side of

 the regression equation, a + ZSkXk, is not restrict-
 ed to fall between 0 and 1, whereas the left-hand
 side, 7C, is. The pseudo-isolation condition (Bollen,
 1989), requiring the error term to be uncorrelated
 with the predictors, is violated in OLS when a bi-
 nary dependent variable is used (see Hanushek &
 Jackson, 1977, or McKelvey & Zavoina, 1975, for
 a detailed exposition of why this happens). Final-
 ly, the error term is inherently heteroskedastic be-
 cause the error variance is i(I-n). In that n varies
 with the values of the predictors, so does the error
 variance.

 The Logistic Regression Model

 Motivation to use the logistic regression model
 can be generated in one of two ways. The first is
 through a latent variable approach. This is partic-
 ularly relevant for understanding standardized co-
 efficients and one of the R2 analogs in logistic re-
 gression. Using unhappiness as an example, we
 suppose that the true amount of unhappiness felt
 by an individual is a continuous variable, which
 we will denote as Y*. Let us further suppose that
 positive values for Y* index degrees of unhappi-
 ness, while zero or negative values for Y* index
 degrees of happiness. (If the dependent variable is
 an event, so that correspondence to an underlying
 continuous version of the variable is not reason-

 able, we can think of Y* as a propensity for the
 event to occur.) Our observed measure is very
 crude; we have recorded only whether or not an

 individual is unhappy. The observed Y is a reflec-
 tion of the latent variable Y*. More specifically,
 people report being not too happy whenever Y* >
 0. That is, Y= 1 if Y* > 0, and Y = 0 otherwise.
 Now Y* is assumed to be a linear function of the

 explanatory variables. That is, Y* = c + 2PkXk +
 e. Therefore, i, the probability that Y = 1, can be
 derived as:

 n = P(Y = 1) = P(Y* > 0) = P(c + E4kXk + e > 0)
 = P(F > - [o + ZkXk]) = P(e < a + ZkXk).

 The last term in this expression follows from
 the assumption that the errors have a symmetric
 distribution. In fact, it is the choice of distribution

 for the error term, E, that determines the type of
 analysis that will be used. If, for example, one
 assumes that e is normally distributed, we are led
 to using probit analysis (Aldrich & Nelson, 1984;
 Maddala, 1983). In this case, the last term in the
 above expression is the probability of a normally
 distributed variable (E) being less than the value a
 + S3kXk, which we shall call the linear predictor.
 There is no closed-form expression (i.e., simple
 algebraic formula) for evaluating this probability.
 If, instead, one assumes that the errors have a
 logistic distribution, the appropriate analytic tech-
 nique is logistic regression. Practically, the normal
 and logistic distributions are sufficiently similar in
 shape that the choice of distribution is not really
 critical. For this reason, the substantive conclu-
 sions reached using probit analysis or logistic re-
 gression should be identical. However, the logistic
 distribution is advantageous for reasons of both
 mathematical tractability and interpretability, as
 will be made evident below.

 The mathematical advantage of the logit for-
 mulation is evident in the ability to express the
 probability that Y = 1 as a closed-form expres-
 sion:

 P(Y= 1) exp(a + k (1)
 1 + exp(a + ZpkXk).

 In that the exponential function (exp) always re-
 sults in a number between 0 and infinity, it is evi-
 dent that the right-hand side of Equation 1 above
 is always bounded between 0 and 1. The differ-
 ence between linear and logistic functions involv-
 ing one predictor (X) is shown in Figure 1. The
 logistic function is an S-shaped or sigmoid curve
 that is approximately linear in the middle, but
 curved at either end, as X approaches either very
 small or very large values.

 Indeed, we need not resort to a latent-variable

 formulation to be motivated to use the logistic
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 FIGURE 1. LINEAR VERSUS LOGISTIC FUNCTIONS OF X
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 curve to model probabilities. The second avenue
 leading to the logistic function involves observing
 that the linear function needs to "bend" a little at

 the ends in order to remain within the 0, 1
 bounds. Just as the linear function is a natural

 choice for an interval response, so a sigmoid
 curve-such as the logistic function-is also a
 natural choice for modeling a probability.

 Linearizing the Model

 To write the right-hand side of Equation 1 as an
 additive function of the predictors, we use a logit
 transformation on the probability n. The logit
 transformation is log[7t/(l-c)], where log refers to
 the natural logarithm (as it does throughout this
 article). The term n/(1-n) is called the odds, and
 is a ratio of probabilities. In the current example,
 it is the probability of being unhappy, divided by
 the probability of not being unhappy, and for the
 sample as a whole it is .111/.889 = .125. One
 would interpret these odds to mean that individu-
 als are, overall, one-eighth (.125 = 1/8) as likely
 to be unhappy as they are to be happy. The log of
 this value is -2.079. The log odds can be any
 number between minus and plus infinity. It can
 therefore be modeled as a linear function of our

 predictor set. That is, the logistic regression
 model becomes:

 log( 1 )=a+PX, +P2X2+. ..+ XK. (2)

 This model is now analogous to the linear re-
 gression model, except that the dependent vari-
 able is a log odds. The estimation of the model
 proceeds via maximum likelihood, a technique
 that is too complex to devote space to here, but
 that is amply covered in other sources (e.g., Hos-
 mer & Lemeshow, 1989). The user need not be
 concerned with these details except for certain

 numerical problems unique to this estimation
 method, which will be touched on later. Maxi-
 mum likelihood estimates have desirable proper-
 ties, one of which is that, in large samples, the re-
 gression coefficients are approximately normally
 distributed. This makes it possible to test each co-
 efficient for significance using a z test.

 Predicting Unhappiness

 Let us attempt to predict unhappiness using sever-
 al variables in the 1993 GSS. The predictors cho-
 sen for this exercise are marital status, age, self-
 assessed health (ranging from poor = 1 to excel-
 lent = 4), income, education, gender, race, and
 trauma in the past year. This last factor is a
 dummy variable representing whether the respon-
 dent experienced any "traumatic" events, such as
 deaths, divorces, periods of unemployment, hos-
 pitalizations, or disabilities, in the previous year.
 Table 1 presents descriptive statistics for vari-
 ables used in the analysis. Four of the indepen-
 dent variables are treated as interval: age, health,
 income, and education. The other variables are
 dummies. Notice that marital status is coded as

 four dummies with married as the omitted catego-
 ry. Race is coded as two dummies with White as
 the omitted category.

 To begin, we examine the relationship be-
 tween unhappiness and marital status. Previous
 research suggests that married individuals are
 happier than those in other marital statuses (see
 especially Glenn & Weaver, 1988; Lee, Sec-
 combe, & Shehan, 1991; Mastekaasa, 1992). The
 log odds of being unhappy are regressed on the
 four dummy variables representing marital status,
 and the result is shown in Model 1 in Table 2. In

 TABLE 1. DESCRIPTIVE STATISTICS FOR
 VARIABLES IN THE ANALYSES

 VARIABLE MEAN SD

 Unhappy .111 .314
 Widowed .107 .309
 Divorced .143 .350

 Separated .027 .164
 Never married .187 .390

 Age 46.012 17.342
 Health 3.017 .700
 Income 12.330 4.261
 Education 13.056 3.046
 Male .427 .495
 Black .111 .314
 Other race .050 .218

 Trauma in past year .235 .424

 Note:n= 1,601.
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 linear regression, we use an F test to determine
 whether the predictor set is "globally" significant.
 If it is, then at least one beta is nonzero, and we
 conduct t tests to determine which betas are

 nonzero. Similarly, there is a global test in logis-
 tic regression, often called the model chi-square
 test. The test statistic is -2Log(LO) - [-2Log
 (LI)], where LO is the likelihood function for a
 model containing only an intercept, and LI is the
 likelihood function for the hypothesized model,
 evaluated at the maximum likelihood estimates.

 (The likelihood function gives the joint probabili-
 ty of observing the current sample values for Y,
 given the parameters in the model.) It appears on
 SPSS printouts as the "Model Chi-Square," and
 on SAS printouts in the column headed "Chi-
 Square for Covariates." The degrees of freedom
 for the test is the same as the number of predic-
 tors (excluding the intercept) in the equation,
 which, for Model 1, is 4. If this chi-square is sig-
 nificant, then at least one beta in the model is
 nonzero. We see that, with a value of 47.248, this
 statistic is highly significant (p < .0001).

 Tests for each of the dummy coefficients re-
 veal which marital statuses are different from

 being married in the log odds of being unhappy.
 (These show up on both SPSS and SAS printouts
 as the "Wald" statistics, and are just the squares
 of the z tests formed by dividing the coefficients
 by their standard errors.) Apparently, widowed,
 divorced, and separated respondents all have sig-
 nificantly higher log odds of being unhappy,

 compared to married respondents. Never-married
 people, on the other hand, do not. Because there
 are monotonic relationships among the log odds,
 the odds, and the probability, any variable that is
 positively related to the log odds is also positively
 related to the odds and to the probability. We can
 therefore immediately see that the odds or the
 probability of being unhappy are greater for wid-
 owed, divorced, and separated people, compared
 with married people.

 Interpretation in terms of odds ratios. The coeffi-
 cient values themselves can be rendered more in-

 terpretable in two ways. First, the estimated log
 odds are actually an estimate of the conditional
 mean of the latent unhappiness measure, Y*.
 Thus, the betas are maximum likelihood estimates
 for the linear regression of Y* on the predictors.
 This interpretation, however, is typically es-
 chewed in logistic regression in favor of the
 "odds-ratio" approach. It turns out that exp(bk) is
 the estimated odds ratio for those who are a unit

 apart on Xk, net of other predictors in the model.
 For dummy coefficients, a unit difference in Xk is
 the difference between membership in category
 Xk and membership in the omitted category. In
 this case, exp(bk) is the odds ratio for those in the
 membership category versus those in the omitted
 category. For example, the odds ratio for wid-
 owed versus married respondents is exp(1.248) =
 3.483. This implies that the odds of being unhap-

 TABLE 2. COEFFICIENTS FOR VARIOUS LOGISTIC REGRESSION MODELS OF THE LOG ODDS OF BEING UNHAPPY

 Model

 Variable 1 2 3 Beta 4

 Intercept -2.570*** .225 .405 --.461
 Widowed 1.248*** .967*** .907** .155 .915**
 Divorced .955*** .839*** .819*** .158 .820***

 Separated 1.701*** 1.586*** 1.486*** .134 1.487**
 Never married .376 .259 .262 .056 .268
 Age -.005 -.006 -.060 -.006
 Health -.823*** -.793*** -.306
 Income -.011 -.001 -.002 -.001
 Education -.038 -.064 -.038
 Male .052 .014 .052
 Black -.152 -.026 -.144
 Other race .210 .025 .209
 Trauma in past year .535** .125 .519**
 Excellent health -2.451***
 Good health -1.486***
 Fair health -.719*
 Model chi-squarea 47.248 104.540 116.036 116.419
 Degrees of freedom 4 7 12 14

 aAll model chi-squares are significant at p < .001.
 *p<.05. **p <.01. ***p <.001.
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 py are about 3.5 times as large for widowed peo-
 ple as they are for married people.

 It is important to note that it would not be cor-
 rect to say that widowed people are 3.5 times as
 likely to be unhappy, meaning that their probabil-
 ity of unhappiness is 3.5 times higher than for
 married people. If p, is the estimated probability
 of unhappiness for widowed people and p, is the
 estimated probability of unhappiness for married
 people, then the odds (of being unhappy) ratio for
 widowed, versus married people is:

 P -P/1 -=P (3)
 Po/l_p ( Po )(I -p.

 The aforesaid (incorrect) interpretation applies
 only to the first term on the right-hand side of

 Equation 3, (-), which would be called the rela-

 tive risk of unhappiness (Hosmer & Lemeshow,
 1989). However, this is not equivalent to the odds
 ratio unless both p1 and p0 are very small, in
 which case the second term on the right-hand side

 of Equation 3, (I _- P), approaches 1.

 Testing hierarchical models. To what extent are
 marital status differences in unhappiness ex-
 plained by other characteristics associated with
 marital status? For example, widowhood is asso-
 ciated with older age, and possibly poorer health.
 Divorce and separation are typically accompanied
 by a drop in financial status. Might these vari-
 ables account for some of the effect of marital

 status? Model 2 in Table 2 controls for three addi-

 tional predictors: age, health, and income.
 First, we can examine whether the addition of

 these variables makes a significant contribution to
 the prediction of unhappiness. The test is the dif-
 ference in model chi-squares between models
 with and without these extra terms. Under the null

 hypothesis that the coefficients for the three addi-
 tional variables are all zero, this statistic is itself
 distributed as chi-square with degrees of freedom
 equal to the number of terms added. In this case,
 the test is 104.540 - 47.248 = 57.292. With 3 de-

 grees of freedom, it is a highly significant result
 (p < .001), suggesting that at least one of the ad-
 ditional terms is important.

 Tests for the additional coefficients reveal that

 the significance of the added variable set is due
 primarily to the strong impact of health on unhap-
 piness. Each unit increment in self-assessed
 health (e.g., from being in fair health to being in

 good health) decreases the odds of unhappiness
 by a factor of exp(-.823) = .439. Another way of
 expressing this result is to observe that 100(eb -
 1) is the percentage change in the odds for each
 unit increase in X. Therefore, each unit increase in
 health changes the odds of unhappiness by
 100(e-823 - 1) = -56.1%, or effects a 56.1% re-
 duction in these odds. The effects for dummies

 representing marital status have all been reduced
 somewhat, indicating that the additional variables
 account for some of the marital status differences.

 However, widowed, divorced, and separated re-
 spondents are still significantly more unhappy
 than married respondents, even after these addi-
 tional variables are controlled.

 Model 3 in Table 2 includes the remaining
 variables of interest: education, gender, race, and
 trauma. Addition of this variable set also makes a

 significant contribution to the model (X2 =
 116.036 - 104.540 = 11.496, df= 5, p = .042). Of
 the added variables, trauma alone is significant.
 Its coefficient suggests that having experienced a
 traumatic event in the past year enhances the odds
 of being unhappy by a factor of exp(.535) =
 1.707.

 Standardized coefficients. In linear regression, the

 standardized coefficient is bk(SxklS), and is inter-
 preted as the standard deviation change in the
 mean of Y for a standard deviation increase in Xk,
 holding other variables constant. In logistic re-
 gression, calculating a standardized coefficient is
 less straightforward. The regression coefficient,
 bk, is the "unit impact" (i.e., the change in the de-
 pendent variable for a unit increase in Xk) on Y*,
 which is unobserved. But we require the standard
 deviation of Y* to compute a standardized coeffi-
 cient. One possibility would be to estimate the
 standard deviation of Y* as follows.

 Recall from above that Y* = a + SpkXk + ?,
 where ? is assumed to follow the logistic distribu-
 tion. Like the standard normal, this distribution
 has a mean of zero, but its variance is T2/3, where
 r is approximately 3.1416. Moreover, V(Y*) =
 V(c + pkXk + -) = V(a + Z[kXk) + V(?). The sim-
 plicity of the last expression is due to the assump-
 tion that the error term is uncorrelated with the

 predictors (hence, there are no covariance terms
 involving the errors). Now the variance of the er-
 rors is assumed to be n2/3 (or about 3.290), so if
 we add to that the sample variance of the linear
 predictor, V(c + P;kXk), we have an estimate of
 the variance of Y*. The sample variance of the
 linear predictor can easily be found in SAS by
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 using an output statement after PROC LOGISTIC
 to add the SAS variable XBETA to the data set,
 and then employing PROC MEANS to find its
 variance. (SPSS does not make the linear predic-
 tor available as a variable.) For Model 3, this
 variance is .673, implying that the variance of Y*
 is .673 + 3.290 = 3.963. Adjusting our coeffi-
 cients by the factor (sklsy*) would then result in
 standardized coefficients with the usual interpre-
 tation, except that it would apply to the mean of
 the latent variable, Y*.

 The major drawback to this approach is that,
 because the variance of the linear predictor varies
 according to which model is estimated, so does
 our estimate of the variance of Y*. This means

 that it would be possible for a variable's standard-
 ized effect to change across equations even
 though its unstandardized effect remained the
 same. This would not be a desirable property in a
 standardized estimate.

 One solution to this problem, utilized by
 SAS's PROC LOGISTIC, is to "partially" stan-
 dardize the coefficients by the factor (s xk/a),
 where <o is the standard deviation of the errors, or

 Tc/x/3. In that (. is a constant, such a "standard-
 ized" coefficient will change across equations
 only if the unstandardized coefficient changes.
 Although these partially standardized coefficients
 no longer have the same interpretation as the stan-
 dardized coefficients in linear regression, they
 perform the same function of indicating the rela-
 tive magnitude of each variable's effect in the
 equation. The column headed beta in Table 2
 shows the "standardized coefficients" produced
 by SAS for Model 3. From these coefficients, we
 can see that self-assessed health has the largest
 impact on the log odds of unhappiness, with a co-
 efficient of -.306. This is followed by marital
 status, with being widowed, divorced, or sepa-
 rated all having the next largest effects. In that the
 standardized coefficients are estimates of the
 standardized effects of predictors that would be
 obtained from a linear regression involving Y*,
 the latent continuous variable, all caveats for the
 interpretation of standardized coefficients in ordi-
 nary regression apply (see, e.g., McClendon,
 1994, for cautions in the interpretation of stan-
 dardized coefficients).

 Nonlinear effects of predictors. Until now, we
 have assumed that the effects of interval-level
 predictors are all linear. This assumption can be
 checked. For example, health has only four levels.
 Is it reasonable to assume that it bears a linear re-

 lationship to the log odds of being unhappy? To
 examine this, I have dummied the categories of
 health, with poor health as the reference category,
 and rerun Model 3 with the health dummies in

 place of the quantitative version of the variable.
 The results are shown in Model 4 in Table 2. The

 coefficients for the dummies indeed suggest a lin-
 ear trend, with increasingly negative effects for
 groups with better, as opposed to poorer, health.
 In that Model 3 is nested within Model 4, the test

 for linearity is the difference in model chi-squares
 for these two models. The result is 116.419 -

 116.036 = .383, which, with 2 degrees of free-
 dom, is very nonsignificant (p > .8). We conclude
 that a linear specification for health is reasonable.

 What about potential nonlinear effects of age,
 income, and education? To examine these, I
 added three quadratic terms to Model 3: age-
 squared, income-squared, and education-squared.
 The chi-square difference test is not quite signifi-
 cant (X2 = 6.978, df= 3, p = .073), suggesting that
 these variables make no significant contribution
 to the model. Nonetheless, age-squared is signifi-
 cant at p = .02. For didactic purposes, therefore, I
 will include it in the final model. Sometimes pre-
 dictors have nonlinear effects that cannot be fitted

 by using a quadratic term. To check for these, one
 could group the variable's values into four or five
 categories (usually based on quartiles or quintiles
 of the variable's distribution) and then use dum-
 mies to represent the categories (leaving one cate-
 gory out, of course) in the model. This technique
 is illustrated in other treatments of logistic regres-
 sion (DeMaris, 1992; Hosmer & Lemeshow,
 1989).

 Predicted probabilities. We may be interested in
 couching our results in terms of the probability,
 rather than the odds, of being unhappy. Using the
 equation for the estimated log odds, it is a simple
 matter to estimate probabilities. We substitute the
 sample estimates of parameters and the values of
 our variables into the logistic regression equation
 shown in Equation 2, which provides the esti-
 mated log odds, or logit. Then exp(logit) is the es-
 timated odds, and the probability = odds/(I +
 odds). As an example, suppose that we wish to
 estimate the probability of unhappiness for 65-
 year-old widowed individuals in excellent health
 with incomes between $25,000 and $30,000 per
 year (RINCOM91 = 15), based on Model 2 in
 Table 2. The estimated logit is .225 + .967 -
 .005(65) - .823(4) -.011(15) = -2.59. The esti-
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 mated odds is exp(-2.59) = .075, and the estimat-
 ed probability is therefore .075/(1 + .075) = .07.

 Probabilities versus odds. Predicted probabilities
 are perhaps most useful when the purpose of the
 analysis is to forecast the probability of an event,
 given a set of respondent characteristics. If, as is
 more often the case, one is merely interested in
 the impact of independent variables, controlling
 for other effects in the model, the odds ratio is the

 preferred measure. It is instructive to consider
 why. In linear regression, the partial derivative,
 pk, is synonymous with the unit impact of Xk:
 Each unit increase in Xk adds fk to the expected
 value of Y. In logistic regression exp(/k) is its
 multiplicative analog: Each unit increase in Xk
 multiplies the odds by exp(,fk). There is no such
 summary measure for the impact of Xk on the
 probability. The reason for this is that an artifact
 of the probability model, shown in Equation 1, is
 that it is interactive in the X values. This can be

 seen by taking the partial derivative of 7t with re-
 spect to Xk. The result is Pfk(7)(l-7i). In that e
 varies with each X in the model, so does the value
 of the partial slope in this model. That, of course,
 means that the impact of Xk on n is not constant,

 as in linear regression, but rather depends on the
 values of the other variables, as well as on the
 value of Xk itself. Therefore, a value computed for
 the partial slope applies only to a specific set of
 values for the Xs, and by implication, a specific
 level of xt. (See DeMaris, 1993a, 1993b, for an
 extended discussion of this problem. Another arti-
 fact of the model is that the partial slope is great-
 est when it = .5; see Nagler, 1994, for a descrip-
 tion of the "scobit" model, in which the n value at

 which Xk has maximum effect can be estimated
 from the data.)

 Suppose that we are interested in examining
 the estimated impact of a given variable, say edu-
 cation, on the probability of being unhappy. The
 final model for unhappiness is shown in the first
 two columns of Table 3. The antilogs of the coef-
 ficients are shown in the column headed Exp(b).
 As noted, these indicate the impact on the odds of
 being unhappy for a unit increase in each predic-
 tor, controlling for the others. To estimate the unit
 impact of education on the probability, we must
 choose a set of values for the Xs. Hence, suppose
 that we set the quantitative variables, age, health,
 income, and education, at the mean values for the
 sample, and we set the qualitative variables, mari-

 TABLE 3. FINAL LOGISTIC REGRESSION MODEL FOR THE LOG ODDS OF BEING UNHAPPY
 AND INTERACTION MODEL ILLUSTRATING PROBLEMS WITH ZERO CELLS

 Final Interaction
 Model Model

 Variable b Exp(b) b SE(b)

 Intercept -1.022 .360 -1.044 .911
 Widowed 1.094*** 2.985 1.164*** .327
 Divorced .772*** 2.163 .880* * .250

 Separated 1.476'** 4.376 1.394** .503
 Never married .430 1.537 .624* .288

 Age .061 1.062 .058 .032
 Age-squared -.0007* .999 -.0006* .0003
 Health -.785*** .456 -.789*** .116
 Income -.006 .994 -.006 .022
 Education -.043 .958 -.042 .031
 Male .065 1.067 .052 .181
 Black -.179 .836 .380 .467
 Other race .197 1.217 .561 .513
 Trauma in past year .535** 1.708 .558** .180
 Black x widowed -.651 .743
 Black x divorced -1.010 .818
 Black x separated -.364 .862
 Black x never married -.904 .745
 Other race x widowed -.340 1.063
 Other race x divorced -.292 .989
 Other race x separated 5.972 22.252
 Other race x never married -1.695 1.183
 Model chi-square 120.910*** 126.945***
 Degrees of freedom 13 21

 *p<.05. **p<.01. ***p<.00l.
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 tal status, gender, race, and trauma, to their
 modes. We are therefore estimating the probabili-
 ty of unhappiness for 46.012-year-old White mar-
 ried females with 13.056 years of education, earn-
 ing between $17,500 and $20,000 per year (RIN-
 COM91 = 12.33), who are in good health (health
 = 3.017) and who have not experienced any
 trauma in the past year. Substituting these values
 for the predictors into the final model for the log
 odds produces an estimated probability of unhap-
 piness of .063.

 The simplest way to find the change in the
 probability of unhappiness for a year increase in
 education is to examine the impact on the odds
 for a unit change in education, then translate the
 new odds into a new probability. The current
 odds are .063/(1 - .063) = .067. The new odds are
 .067(.958) = .064, which implies a new probabili-
 ty of .06. The change in probability (new proba-
 bility - old probability) is therefore -.003. What
 if we are interested, more generally, in the impact
 on the odds or the probability of a c-unit change,
 where c can be any value? The estimated impact
 on the odds for a c-unit increase in Xk is just
 exp(cbk). For example, what would be the change
 in the odds and the probability of unhappiness in
 the current example for a 4-year increase in edu-
 cational level? The new odds would be

 .067[exp(-.043 x 4)] = .0564, implying a new
 probability of .053, or a change in probability of
 -.01.

 Nonlinear effects, such as those for age, in-
 volve the coefficients for both X and X-squared.
 In general, if b, is the coefficient for X, and b2 is
 the coefficient for X-squared, then the impact on

 the log odds for a unit increase in X is b, + b2 +
 2(b2X). The impact on the odds therefore is
 exp(bl+b2) exp(2b2X). For age, this amounts to
 exp(.061 - .0007) exp(2[-.0007 x age]). It is evi-
 dent from this expression that the impact on the
 odds of unhappiness of growing a year older de-
 pends upon current age. For 18-year-olds, the im-
 pact is 1.036, for 40-year-olds, it is 1.004, and for
 65-year-olds it is .97. This means that the effect
 of age changes direction, so to speak, after about
 age 40. Before age 40, growing older slightly in-
 creases the odds of unhappiness; after age 40,
 growing older slightly decreases those odds. This
 trend might be called convex curvilinear. In that I
 have devoted considerable attention to interpreta-
 tion issues in logistic regression elsewhere (De-
 Maris 1990, 1991, 1993a, 1993b), the interested
 reader may wish to consult those sources for fur-
 ther discussion.

 Evaluating predictive efficacy. Predictive efficacy
 refers to the degree to which prediction error is
 reduced when using, as opposed to ignoring, the
 predictor set. In linear regression, this is assessed
 with R2. There is no commonly accepted analog
 in logistic regression, although several have been
 proposed. I shall discuss three such measures, all
 of which are readily obtained from existing soft-
 ware. Additional means of evaluating the fit of
 the model are discussed in Hosmer and

 Lemeshow (1989).
 In logistic regression, -2LogLO is analogous

 to the total sum of squares in linear regression,
 and -2LogLl is analogous to the residual sum of
 squares in linear regression. Therefore, the first
 measure, denoted R2 (Hosmer & Lemeshow,
 1989) is:

 R2 = -2LogL0 - (-2LogL1)
 L -2LogLO

 The log likelihood is not really a sum of squares,
 so this measure does not have an "explained vari-
 ance" interpretation. Rather it indicates the rela-
 tive improvement in the likelihood of observing
 the sample data under the hypothesized model,
 compared with a model with the intercept alone.
 Like R2 in linear regression, it ranges from 0 to 1,
 with I indicating perfect predictive efficacy. For
 the final model in Table 3, R2 =. 108.

 A second measure is a modified version of the

 Aldrich-Nelson "pseudo-R2" (Aldrich & Nelson,
 1984). This measure, proposed by Hagle and
 Mitchell (1992), is:

 - R 2
 max(RN I t)

 where R2N, the original Aldrich-Nelson measure,
 is: model chi-square/(model chi-square + sample
 size), and max(R2Nlft) is the maximum value at-
 tainable by R2N given 7t, the sample proportion

 with Y equal to 1. The formula for max(R2ANI ft)is:

 -2[7logfr + (1 -fr)log(1 -71)]
 1 -2[tlogi + (1 -it)log(l -t)].

 This modification to R2N ensures that the measure
 will be bounded by 0 and 1. Other than the fact
 that it is so bounded, with 1 again indicating per-
 fect predictive efficacy, the value is not really in-
 terpretable. For the final model, max(R2NIlt) is
 .4108, and R% is. 171.

 A third measure of predictive efficacy, pro-
 posed by McKelvey and Zavoina (1975), is an
 estimate of R2 for the linear regression of Y* on
 the predictor set. Its value is:
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 2 V(a + Zpk)
 MZ V(a + pkXk) +72/3

 where, as before, V(ao + S3kXk) is the sample vari-
 ance of the linear predictor, or the variance ac-
 counted for by the predictor set, and the denomi-
 nator is, once again, an estimate of the variance of
 Y*. This measure is .175 in the current example
 (the variance of the linear predictor is .7 for the
 final model), suggesting that about 17.5% of the
 variance in the underlying continuous measure of
 unhappiness is accounted for by the model. (For a
 comparison of the performance of these three
 measures, based on simulation results, see Hagle
 & Mitchell, 1992.)

 Tests for contrasts on a qualitative variable. To
 assess the global impact of marital status in the
 final model, we must test the significance of the
 set of dummies representing this variable when
 they are added after the other predictors. This test
 proves to be quite significant (X2 = 22.156, df = 4,
 p = .00019). We see that widowed, separated, and
 divorced individuals have higher odds of being
 unhappy than those who are currently married.
 What about other comparisons among categories
 of marital status? In all, there are 10 possible con-
 trasts among these categories. Exponentiating the
 difference between pairs of dummy coefficients
 provides the odds ratios for the comparisons in-
 volving the dummied groups. For example, the
 odds ratio for widowed versus divorced individu-

 als is exp(l.094 - .772) = 1.38. This ratio is sig-
 nificantly different from 1 only if the difference
 between coefficients for widowed and divorced

 respondents is significant. The test is the differ-
 ence between estimated coefficients divided by
 the estimated standard error of this difference. If

 bi and b2 are the coefficients for two categories,
 the estimated standard error is:

 estimated SE(b1 - b2) =JV(bl) + V(b2) - 2cov(bl, b2).

 The necessary variances and covariances for these
 computations can be obtained in SAS by request-
 ing the covariance matrix of parameter estimates.

 When making multiple comparisons, it is cus-
 tomary to adjust for the concomitant increase in
 the probability of Type I error. This can be done
 using a modified version of the Bonferroni proce-
 dure, proposed by Holm (Holland & Copenhaver,
 1988). The usual Bonferroni approach would be
 to divide the desired alpha level for the entire se-
 ries of contrasts, typically .05, by the total num-
 ber of contrasts, denoted by m, which in this case
 is 10. Hence each test would be made at an alpha
 level of .005. Although this technique ensures
 that the overall Type I error rate for all contrasts
 is less than or equal to .05, it tends to be too con-
 servative, and therefore not very powerful.

 The Bonferroni-Holm procedure instead uses a
 graduated series of alpha levels for the contrasts.
 First, one orders the p values for the contrasts
 from smallest to largest. Then, the smallest p
 value is compared to alpha/m. If significant, the
 next smallest p value is compared to alpha/(m -
 1). If that contrast is significant, the next smallest
 p value is compared to alpha/(m - 2). We con-
 tinue in this manner, until, provided that each
 contrast is declared significant, the last contrast is
 tested at alpha. If at any point, a contrast is not
 significant, the testing is stopped, and all con-
 trasts with larger p values are also declared non-
 significant. The results of all marital-status con-
 trasts, using this approach, are shown in Table 4,
 in which c' is the Bonferroni-Holm alpha level
 for each contrast. It appears that the only signifi-
 cant contrasts are, as already noted, between wid-
 owed, divorced, and separated people, on the one
 hand, and married individuals on the other.
 Notice that, without adjusting for capitalization
 on chance, we would also have declared separated
 individuals to have greater odds of being unhappy
 than the never-married respondents.

 TABLE 4. BONFERRONI-HOLM ADJUSTED TESTS FOR MARITAL STATUS CONTRASTS ON THE LOG ODDS

 OF BEING UNHAPPY (BASED ON THE FINAL MODEL IN TABLE 3)

 Contract p ' Conclusion

 Separated vs. married .0002 .0050 Reject HO
 Widowed vs. married .0003 .0056 Reject HO
 Divorced vs. married .0008 .0063 Reject HO
 Separated vs. never married .0133 .0071 Do not reject HO
 Widowed vs. never married .0732 .0083 Do not reject HO
 Divorced vs. separated .0823 .0100 Do not reject HO
 Married vs. never married .1073 .0125 Do not reject HO
 Divorced vs. never married .2542 .0167 Do not reject HO
 Widowed vs. divorced .3310 .0250 Do not reject HO
 Widowed vs. separated .4017 .0500 Do not reject HO
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 Numerical problems. As in linear regression, mul-
 ticollinearity is also a problem in logistic regres-
 sion. If the researcher suspects collinearity prob-
 lems, these can be checked by running the model
 using OLS and requesting collinearity diagnos-
 tics. Two other numerical problems are unique to
 maximum likelihood estimation. One is a prob-
 lem called complete separation. This refers to the
 relatively rare situation in which one or more of
 the predictors perfectly discriminates the outcome
 groups (Hosmer & Lemeshow, 1989). Under this
 condition the maximum likelihood estimates do

 not exist for the predictors involved. The tip-off
 in the estimation procedure will usually be esti-
 mated coefficients reported to be infinite, or un-
 reasonably large coefficients along with huge
 standard errors. As Hosmer and Lemeshow noted

 (1989, p. 131), this is a problem the researcher
 has to work around.

 A more common problem with a simpler solu-
 tion is the case of zero cell counts. For example,
 suppose that we wish to test for an interaction be-
 tween race and marital status in their effects on

 the odds of unhappiness. If one forms the three-
 way contingency table of unhappy by marital by
 race, one will discover a zero cell: Among those
 in the other race category who are separated,
 there are no happy individuals. This causes a
 problem in the estimation of the coefficient for
 the interaction between the statuses other race and

 separated. The interaction model in Table 3
 shows the results. We are alerted that there is a

 problem by the standard error for the other race x
 separated term: It is almost 20 times larger than
 the next largest standard error, and clearly stands
 out as problematic. To remedy the situation, we
 need only collapse categories of either marital
 status or race. Taking the latter approach, I have
 coded both Blacks and those of other races as

 non-White, and retested the interaction. It proves
 to be nonsignificant (X2 = 3.882, df= 4, p > .4).

 Interpreting interaction effects. Although the in-
 teraction effect is not significant here, it is worth-
 while to consider briefly the interpretation of
 first-order interaction in logistic regression (the
 interested reader will find more complete exposi-
 tions in DeMaris, 1991, or Hosmer & Lemeshow,
 1989). Suppose that, in general, we wish to ex-
 plore the interaction between Xl and X2 in their
 effects on the log odds. We shall also assume that
 these variables are involved only in an interaction
 with each other, and not with any other predic-
 tors. We will further designate X1 as the focus

 variable and X2 as the moderator variable. The lo-
 gistic regression equation, with W1 W21 .. ., WK
 as the other predictors in the model, is:

 log 1 ) = + + X w2X2 + P3XX
 = a + zXkWk + :2X2 + (P, + 33X2)X,.

 The partial slope of the impact of X1 on the log
 odds is therefore (fp + 533X2), implying that the
 impact of X1 depends upon the level of X2. The
 multiplicative impact of X1 on the odds is, corre-
 spondingly, exp(Pl + 3X2). This can also be in-
 terpreted as the odds ratio for those who are a unit

 apart on XI, controlling for other predictors. This
 odds ratio changes across levels of X2, however.
 When X1 and X2 are each dummy variables, the
 interpretation is simplified further. For instance,
 in the model discussed above in which the vari-

 able non-White interacts with marital status (re-
 sults not shown), the coefficient for being separat-
 ed is 1.396, whereas the coefficient for the cross-
 product of separated status (X1) by non-White
 status (X2) is -.290. The multiplicative impact on
 the odds of being separated is therefore exp(1.396
 - .290*non-White). For Whites, the impact of
 being separated is exp(l.396) = 4.039. This sug-
 gests that among Whites, separated individuals
 have odds of unhappiness that are about 4 times
 those of married individuals. Among non-Whites,
 on the other hand, the odds of being unhappy are
 only exp(1.396 - .290) = 3.022 times as great for
 separated, as opposed to married, individuals.

 POLYTOMOUS DEPENDENT VARIABLES

 The Qualitative Case

 We now turn to the case in which we wish to

 model a response with three or more categories.
 This actually describes the original uncollapsed
 variable, happy, in the GSS. Although we would
 most probably consider this variable ordinal, we
 will begin by ignoring the ordering of levels of
 happiness, and treat the variable as though it were
 purely qualitative. We will see that the nature of
 the associations between happiness and the pre-
 dictors will itself suggest treating the variable as
 ordinal.

 To model a polytomous dependent variable,
 we must form as many log odds as there are cate-
 gories of the variable, minus 1. Each log odds
 contrasts a category of the variable with a base-
 line category. In that the modal category of happi-
 ness was being pretty happy, this will be the base-
 line category. My interest will be in examining
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 how the predictor set affects the log odds of (a)
 being very happy, as opposed to being pretty
 happy, and (b) being not too happy, as opposed to
 being pretty happy. That is, I will predict depar-
 tures in either direction from the modal condition

 of saying that one is pretty happy. Each log odds
 is modeled as a linear function of the predictor
 set, just as with a binary dependent variable.
 Notice again that each odds is the ratio of two
 probabilities, and that in both cases the denomina-
 tor of the odds is the probability of being pretty
 happy. The third contrast, involving the odds of
 being very happy versus not too happy, is not
 estimated, because the coefficients for this equa-
 tion are simply the differences between coeffi-
 cients from the first and second equations.

 To run this analysis, I use PROC CATMOD in
 SAS. (As of this writing, SPSS has no procedure
 for running polytomous logistic regression; an ap-
 proximation, however, can be obtained using the
 method outlined by Begg & Gray, 1984.) How-
 ever, I must first recode the variable happy so that
 1 is very happy, 2 is not too happy, and 3 is pretty
 happy. The reason for this is that the highest
 valued category of the variable is automatically
 used by SAS as the baseline category. The results
 are shown in the first two columns of Table 5.

 Once again there is a global test for the impact
 of the predictor set on the dependent variable, of
 the form -2Log(LO) - [-2Log(Ll)]. This test,
 however, is not a standard part of SAS output.

 Nevertheless, because SAS always prints out
 minus twice the log likelihood for the current
 model, it is easy to compute. We simply request a
 model without any predictors (e.g., MODEL
 POLYHAP = /ML NOPROFILE NOGLS;) to get
 -2LogL0 (it is the value for the last iteration

 under "Maximum-Likelihood Analysis"). With
 -2LogLl reported in the analysis for the hypothe-
 sized model, we can then calculate the model chi-
 square by hand. In this example it is 235.514.
 With 26 degrees of freedom, it is highly signifi-
 cant (p < .0001).

 In polytomous logistic regression, each predic-
 tor has as many effects as there are equations esti-
 mated. Therefore there is also a global test for
 each predictor, and these are reported in SAS.
 From these results, we find that variables with
 significant effects overall are: being widowed,
 being divorced, being separated, being never-
 married, health, being male, trauma, and age-
 squared. Tests for coefficients in each equation
 reveal which log odds are significantly affected
 by the predictor. Hence, we see that being wid-
 owed or divorced significantly reduces the odds
 of being very happy, and significantly enhances
 the odds of being not too happy, compared with
 being married. Exponentiating the coefficients
 moreover provides odds ratios to facilitate inter-
 pretation, as before. Divorced individuals, for ex-
 ample, have odds of being very happy that are
 exp(-.831) = .436 times those for married indi-

 TABLE 5. COEFFICIENTS FOR POLYTOMOUS AND ORDERED LOGIT MODELS OF GENERAL HAPPINESS

 Not Too

 Very Not Too Happy Not Too Less,
 Happy Happy Vs. or Pretty Rather
 Vs. Vs. Pretty Vs. Than
 Pretty Pretty or Very Very More,

 Variable Happy Happy Happy Happy Happy

 Intercept -2.665 -1.125 -1.022 2.946
 Widoweda -.942*** .823** 1.094*** 1.079*** 1.155***
 Divorceda -.831*** .542* .772*** .906*** .849***
 Separateda -.213 1.393*** 1.476*** .509 1.090***
 Never marrieda -.395* .312 .430 .435* .441**
 Age -.006 .061 .061 .014 .030
 Age-squareda .0002 -.0006* -.0007* -.0003 -.0004*
 Healtha .683*** -.614*** -.785*** -.771*** -.793***
 Income -.0002 -.008 -.006 -.0003 -.0005
 Education .011 -.039 -.043 -.017 -.025
 Malea -.361** -.030 .065 .359** .272*
 Black -.353 -.260 -.179 .321 .135
 Other race -.127 .159 .197 .153 .173
 Trauma in past yeara -.100 .500** .535** .173 .283*
 Model chi-square 235.514*** 235.514*** 120.910*** 154.356*** 215.295**
 Degrees of freedom 26 26 13 13 13

 aGlobal effect on both log odds is significant in polytomous model.
 *p<.05. **p<.01. ***p < .001.
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 viduals. That is, divorced people's odds of being
 very happy are less than half of those experienced
 by married people.

 Health is also a variable that enhances the

 odds of being very happy, while reducing the
 odds of being not too happy. Other factors, on the
 other hand, affect only one or the other log odds.
 Thus being separated increases the odds of being
 not too happy, as opposed to being pretty happy,
 but does not affect the odds of being very happy.
 Trauma similarly affects only the odds of being
 not too happy. And age apparently has significant
 nonlinear effects only on the log odds of being
 unhappy. Interestingly, when all three categories
 of happiness are involved, men and never-married
 individuals are less likely than women and mar-
 ried people to say they are very happy. There are
 no significant differences between these groups,
 however, in the likelihood of being not too happy.

 Ordinal Dependent Variables

 The direction of effects of the predictors on each
 log odds provides considerable support for treat-
 ing happiness as an ordinal variable. All signifi-
 cant predictors, and most of the nonsignificant
 ones as well, have effects that are of opposite
 signs on each log odds. (As an example, health is
 positively related to the odds of being very happy,
 and negatively related to the odds of being unhap-
 py.) This suggests that unit increases in each pre-
 dictor are related to monotone shifts in the odds

 of being more, rather than less, happy. To take
 advantage of the ordered nature of the levels of
 happiness, we use the ordered logit model.

 With ordinal variables, the logits are formed in
 a manner that takes ordering of the values into ac-
 count. One method is to form "cumulative logits,"
 in which odds are formed by successively cumu-
 lating probabilities in the numerator of the odds
 (Agresti, 1990). Once again we estimate equa-
 tions for two log odds. However, this time the
 odds are (a) the probability of being not too
 happy, divided by the probability of being pretty
 happy, or very happy and (b) the probability of
 being not too happy, or pretty happy, divided by
 the probability of being very happy. The first log
 odds is exactly the same as was estimated in
 Table 3. Those coefficients are reproduced in the
 third column of Table 5. The equation for the sec-
 ond log odds is shown in the fourth column of the
 Table.

 Because the coefficients for each predictor
 across these two equations are, for the most part,

 similar, we might test whether, in fact, only one
 equation is necessary instead of two. That is,
 whether the predictor set has the same impact on
 the log odds of being less, rather than more,
 happy, regardless of how less happy and more
 happy are defined; can be tested via a chi-square
 statistic. This is reported in SAS as the "Score
 Test for the Proportional Odds Assumption." In
 the current example, its value is 22.21, which,
 with 13 degrees of freedom, is not quite signifi-
 cant (p = .052). This suggests that we cannot re-
 ject the hypothesis that the coefficients are the
 same across equations, thus implying that one
 equation is sufficient to model the log odds of
 being less, rather than more, happy. This equation
 is shown in the last column of Table 5. (To run
 this analysis in SAS, the variable happy must be
 reverse-coded.) To summarize, we can say that all
 nonmarried statuses are associated with enhanced

 odds of being less (rather than more) happy, com-
 pared with married people. Men and those experi-
 encing trauma in the past year also have enhanced
 odds of being less happy. Those in better health
 have lower odds of being less happy. Age, as be-
 fore, shows a convex curvilinear relationship with
 the log odds of being less happy.

 CONCLUSION

 Because of its flexibility in handling ordinal as
 well as qualitative response variables, logistic re-
 gression is a particularly useful technique. In this
 article I have touched on what I feel are its most

 salient features. Space limitations have precluded
 the discussion of many other important topics,
 such as logistic regression diagnostics, or the use
 of logistic regression in event history analysis.
 The interested reader should consult the refer-

 ences below for more in-depth coverage of these
 topics.
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 APPENDIX

 CODING INSTRUCTIONS FOR CREATING THE DATA FILE USED IN THE ANALYSES

 Value

 Declared Replaced
 Variable Missing With Comment

 HAPPY 9 Left missing Reverse coded for ordered logit
 SEX None Dummy coded with 1 = male
 MARITAL 9 1 Four dummies, married is left out
 AGE 99 46.04

 EDUC 98 13.05

 RINCOM91 22,98,99 12.33
 RACE None - Two dummies, White is left out

 HEALTH 8,9 2 Reverse coded for analysis
 TRAUMA1 9 0 Dummied; 1 = 1 through 3

 Note: Data are from the 1993 General Social Survey.
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