
Master of Information and Data Science
DATASCI 281: Computer Vision

Spring 2022

Professor Hany Farid
University of California, Berkeley

Motion Estimation

Our visual world is inherently dynamic. People, cars,
dogs, etc. are (usually) moving. These may be large
motions, walking across the room, or smaller motions,
scratching behind your ear. Our task is to estimate
such motions from two or more images taken at different
instances in time.

With respect to notation, an image is denoted
as f(x, y) and an image sequence is denoted as
f(x(t), y(t), t), where x(t) and y(t) are the spatial pa-
rameters and t is the temporal parameter. For example,
a sequence of N images taken in rapid succession may
be represented as f(x(t), y(t), t+i∆t) with i ∈ [0, N−1],
and ∆t representing the amount of time between image
capture (typically on the order of 1/30th of a second).
Given such an image sequence, our task is to estimate
the amount of motion at each point in the image. For
a given instant in space and time, we require an esti-
mate of motion (velocity) !v =

!
vx vy

"
, where vx and

vy denote the horizontal and vertical components of the
velocity vector !v. Shown to the right are a pair of im-
ages taken at two moments in time as a textured square
is translating uniformly across the image. Also shown
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is the corresponding estimate of motion often referred
to as a flow field. The flow field consists of a velocity vector at each point in
the image (shown of course are only a subset of these vectors).

In order to estimate motion, an assumption of brightness constancy is
made. That is, it is assumed that as a small surface patch is moving, its
brightness value remains unchanged. This constraint can be expressed with
the following differential equation:

df(x(t), y(t), t)

dt
= 0. (1)

This constraint holds for each point in space and time. Expanding this
constraint according to the chain rule yields:

∂f

∂x

∂x

∂t
+
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∂y

∂y

∂t
+

∂f

∂t
= 0, (2)

where the partials of the spatial parameters x and y with respect to time
correspond to the velocity components:

fxvx + fyvy + ft = 0. (3)

The subscripts on the function f denote partial derivatives. Note again that
this constraint holds for each point in space and time but that for notational
simplicity the spatial/temporal parameters are dropped. This transformed
brightness constancy constraint is rewritten by packing together the partial
derivatives and velocity components into row and column vectors.

!
fx fy

"#vx
vy

$
+ ft = 0 (4)

The space/time derivatives fx, fy, and ft are measured quantities, leaving us
with a single constraint in two unknowns (the two components of the velocity
vector, !v). The constraint can be solved by assuming that the motion in a
small pixel neighborhood is the same. Consider, for example, the nine con-
straints for a 3×3 pixel neighborhood, yielding the following over-constrained
system of linear equations:

%

&&&'

fx(x1, y1) fy(x1, y1)
fx(x2, y2) fy(x2, y2)

...
...

fx(x9, y9) fy(x9, y9)

(
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ft(x1, y1)
ft(x2, y2)

...
ft(x9, y9)

(

)))*
= 0

A!v + !t = 0. (5)
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We can solve for the veclocity vector !v by minimizing the following quadratic
error function:

E(!v) = ‖A!v + !t‖2, (6)

The error function can be minimized using least-squares. The error function
is differentiated with respect to !v:

dE(!v)

d!v
= 2AT (A!v + !t), (7)

setting the result equal to zero and solving:

2AT (A!v + !t) = !0

ATA!v + AT!t = !0

!v = −(ATA)−1AT!t, (8)

where

ATA =

%
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... . . .
...
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(
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and

AT!t =

%

&'
fx(x1, y1) . . . fx(x9, y9)

... . . .
...

fy(x1, y1) . . . fy(x9, y9)

(

)*
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...
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(

)*

=

#+
Ω fxft+
Ω fyft

$
. (10)

and where Ω corresponds to the pixel neighborhood over which we are as-
suming that the motion is constant (a 3× 3 pixel neighborhood in the above
example).

In order to find a solution, the matrix ATA must be invertible. Generally
speaking this matrix is rank deficient, and hence not invertible, when the in-
tensity variation in a local image neighborhood varies only one-dimensionally
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(e.g., fx = 0 or fy = 0) or zero-dimensionally (fx = 0 and fy = 0). These sin-
gularities are sometimes referred to as the aperture and blank wall problem.
The motion at such points simply cannot be estimated.

Motion estimation then reduces to computing, for each point in space and
time, the spatial/temporal derivatives fx, fy, and ft. Of course the temporal
derivative requires a minimum of two images, and is typically estimated
from between two and seven images. The spatial/temporal derivatives are
computed as follows. Given a temporal sequence of N images, the spatial
derivatives are computed by first creating a temporally prefiltered image. The
spatial derivative in the horizontal direction fx is estimated by prefiltering
this image in the vertical y direction and differentiating in x. Similarly, the
spatial derivative in the vertical direction fy is estimated by prefiltering in
the horizontal x direction and differentiating in y. Finally, the temporal
derivative is estimated by temporally differentiating the original N images,
and prefiltering the result in both the x and y directions. The choice of filters
depends on the image sequence length: an N tap pre/derivative filter pair is
used for an image sequence of length N .
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