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Abstract 

Wythoff, B.J., 1993. Backpropagation neural networks. A tutorial. Chemometrics and Intelligent Laboratory Systems, 18: 115-155. 

Artificial neural networks have enjoyed explosive growth in the past ten years. An indication of the rate of growth of research in 
this area is the fact that, although the first research journal devoted exclusively to this subject was just introduced in 1987, there are 
now at least five refereed neural net research journals. These developments are being taken seriously by the semiconductor 
industry as well: in addition to a host of products developed by smaller firms, Intel, AT&T Bell Labs, Motorola and Hitachi have 
all introduced silicon implementations of neural network algorithms. Neural networks have a very broad scope of potential 
application, including many tasks central to chemical research and development. This tutorial begins with a short history of neural 
network research, and a review of chemical applications. The bulk, however, is devoted to providing a clear and detailed 
introduction to the theory behind backpropagation neural networks, along with a discussion of practical issues facing developers. 
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1. GENERAL INTRODUCTION AND HISTORY OF AR- 
TIFICIAL NEURAL NETWORKS 

As is the case with most new technologies 
reaching a broad scientific audience for the first 
time, artificial neural networks are currently the 
subject of a great deal of excitement. Along with 
this excitement come unrealistic expectations 
raised by enthusiastic new converts. We will see 
in this article that neural networks are not really 
new, nor completely different from classical 
methods, and that they will not solve all data 
processing problems. For many difficult problems 
which have stymied classical methods, however, 
neural networks can provide an effective solution. 
They offer the prospect of a usable solution to 
problems which cannot even be described analyti- 
cally. 

Artificial neural networks are based on simpli- 
fied mathematical descriptions of what is known 
about the physical structure and mechanism of 
biological cognition and learning. The roots of 
this research field can be traced back to qualita- 

tive ideas first published in the early 1940s by 
McCulloch and Pitts in their paper entitled ‘A 
logical calculus of the ideas immanent in nervous 
activity’ [l]. Therein, McCulloch and Pitts de- 
scribe binary neurons with fixed thresholds that 
integrate inputs received through weighted exci- 
tatory and inhibitory synapses, to determine the 
activation state of the neuron (on or off). Through 
complex formal proofs, they showed that net- 
works employing such neurons could implement 
any arithmetic or logical function. 

In 1949, Hebb published ‘The Organization of 
Behavior’ [2], in which he outlined the first plau- 
sible learning rule for modification of the synapse 
weights between neurons. Hebb’s postulate can 
be stated as: synapses used repeatedly in excita- 
tion are reinforced, or strengthened. 

The first practical computational model was 
described by Rosenblatt in a 19.58 paper entitled 
‘The perceptron: a probabilistic model for infor- 
mation storage and organization in the brain’ [3]. 
Rosenblatt described a multi-layered hierarchical 
structure of neurons with localized and random 
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connectivity. Each node formed a weighted sum 
of its inputs and compared them to a fixed 
threshold to determine if the output would be 1 
or - 1. His initial learning law was a relatively 
simple reinforcement rule, which later evolved 
into a mechanism for supervised learning using 
error feedback. The perceptron was implemented 
in the analog hardware of the day by Rosenblatt 
and coworkers, who used the system to experi- 
mentally demonstrate the learning, recall and 
generalization capabilities that they had postu- 
lated. They later proved that the perceptron (a 
linear hyperplane classifier) would converge to a 
solution, if one exists, for any binary classification 
problem, in a finite number of steps. 

An explosion of interest in neural networks 
followed, and many interesting and practical ap- 
plications of these linear learning machines were 
produced. Among these were chemical applica- 
tions of perceptrons to classifying infrared and 
mass spectral data in the late 1960s and early 
1970s [4-71. Two factors contributed to a marked 
decline of interest and funding for neural net- 
work research in the late 1960s and early 1970s. 
One was the realization that the hardware avail- 
able then simply could not support the calcula- 
tion workload required by larger experiments and 
applications. The second was the influential book 
‘Perceptrons’ published by Minsky and Papert in 
1969 [8]. They rigorously proved that networks 
employing linear transfer functions (such as the 
perceptron of that time) are incapable of solving 
nonlinear classification problems. This limitation 
had been realized previously by other workers. 
Such was the reputation of Minsky and Papert, 
however, that their pessimistic analysis of then 
current as well as future neural networks consid- 
erably diminished interest in the field until the 
early 1980s. During this interval, a number of 
dedicated researchers quietly made steady 
progress in both theory and practice. 

During the early 1980s neurocomputing under- 
went a renaissance; research funding began to 
rise rapidly as powerful new network models and 
learning rules were developed. Today, there are 
myriad varieties of neural network architectures 
and learning rules for both supervised and unsu- 
pervised learning, with many new variants re- 

ported every year. Despite its history, this is still a 
very young field - the research literature is each 
month rife with new theorems, lemmas, and asso- 
ciated proofs. Even a brief summary of the cur- 
rent state of the field is beyond the scope of this 
article. 

Although the achievements of the pioneers of 
the ’40s and ’50s may seem to be eclipsed by 
those of current researchers, it is important to 
realize that many of the original ideas laid out 
during those early days are still in use today, 
albeit in different forms. 

2. BIOLOGICAL COMPARISONS 

Artificial neural networks, as their name im- 
plies, take their inspiration from biological sys- 
tems. The efforts of the true biological neural 
modelers are focused on generating a rigorous 
mathematical description of biological neural ac- 
tivities. The physical, morphological, and chemi- 
cal structure of the brain are exceedingly com- 
plex, however, and ethics preclude invasive stud- 
ies on the human cortex. While a great many 
pieces of information are known, there still re- 
mains a vast number of missing fragments to the 
puzzle which is the mystery of the human brain. 
Therefore, even the most rigorous of current 
mathematical models are not thought to be accu- 
rate, but to provide simply the fewest conflicts 
with what is known. 

While the work of the biophysicists, neuropsy- 
chologists, and biomathematicians has been going 
on, other scientists, mathematicians, and engi- 
neers have become interested in the purely ab- 
stract properties of connectionist models and their 
applications. These scientists (such as analytical 
chemists) are generally less interested in the 
faithfulness of an artificial neural network than in 
any new capabilities which the model may pro- 
vide as an alternative to classical methods. 

Both biological networks and backpropagation 
(or backprop) networks are parallel machines that 
use a large number of simple processors with a 
high degree of connectivity, and process informa- 
tion through relatively discrete events. Both sys- 
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terns use a distributed form of representation or 
memory. Biological networks and backprop net- 
works are both adaptive systems that learn by 
adjusting the ‘strength’ of the connections be- 
tween neurons in some manner. Table 1 indicates 
some of the gross differences between a typical 
backpropagation network implemented on a digi- 
tal computer, and nature’s human neural net- 
work. 

3. BACKPROPAGATION NETWORKS 

3.1. Introduction 

We will focus now on a single neural network 
model: multilayered, feed-forward, backpropaga- 
tion networks. This choice is not an arbitrary one: 
(a) backprop networks are capable of implement- 
ing pattern association, pattern classification, data 
compression, robot control, and function approxi- 
mation tasks, which together encompass the bulk 
of possible chemical applications; (b) they have 
been extensively studied, both theoretically and 
experimentally; (cl they have been the network 
architecture of choice in the vast majority of 
practical applications, including chemical applica- 
tions. 

To date, chemical applications of backpropa- 
gation networks have included classification of: 
sugars from 13C NMR data [9], functional groups 
from infrared spectra [lO,ll], infrared peaks from 
infrared spectra [12], functional groups from mass 
spectra [ 131, aromatic substitution reaction prod- 

TABLE 1 

ucts 1141, protein secondary structure [15,16], jet 
fuels from chromatographic data [17], odorants 
from piezoelectric crystal arrays [18], and alloys 
from glow-discharge atomic emission spectra [19]. 
Quantitative applications have included wheat 
samples from near-IR data [20], pharmaceutical 
components from UV-VIS data [20,21], quantita- 
tive structure-activity studies on drugs [22-241, 
and pork constituents from near-IR data [25]. 
Recirculating neural networks have been used for 
spectral data compression [26], and an algorithm 
for designing minimal networks has been re- 
ported in the chemometric literature [27]. A re- 
cent review explored many of these works in 
greater detail [28]. This list will continue to grow 
rapidly for the foreseeable future. 

3.2. Architecture and theory of the feed-forward 
process involved in prediction 

The explosion of interest in backpropagation 
networks is due to the work of Rumelhart and 
McClelland [29]. It has since been shown that 
other workers independently discovered the back- 
prop learning rule as early as 1974 [30]. Rumel- 
hart and McClelland, however, provided lucid 
descriptions of the architecture and a clear pre- 
sentation of the derivation of the training rule, 
along with elegant and simple example applica- 
tions in their 1986 manuscript. Their communica- 
tion skills caused rapid dissemination of the new 
method to other scientists and engineers. 

There are two phases to the operation of back- 
prop nets: the forward propagation of activation, 

Some of the differences between a typical backpropagation network simulated on a digital computer, and the human cortex 

Number of neurons 
Connection density 
Uniformity 
Timing 
‘Quanta’ 
Response time (1 neuron) 
Topological organization 
Learning modes 

Backpropagation 

lo’-104 
5-100 synapses/neuron 

Human cortex 

Homogenous 
Synchronous 
Digital 
Nanoseconds 
Usually none 
Supervised 
Deterministic 

10’0 
lo’-lo4 synapses/neuron 
Very heterogenous 
Asynchronous 
Analog 
Milliseconds 
Highly organized 
Supervised and unsupervised 
Deterministic and stochastic 
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Input Layer 

Hidden Layer 

Fig. 1. A fully connected backpropagation network, with the 
direction of activation and error flow indicated. 

which is involved in producing an output result, is 
described here. The backward propagation of er- 
ror, which is necessary for ‘learning’, is described 
in subsequent sections. 

A backpropagation network uses a layered hi- 
erarchical architecture of simple neurons (nodes) 
employing a high degree of connectivity between 
layers. Only between-layer connections (synapses) 
are allowed in the ‘simple’ non-recursive net- 
works described here; no within-layer connec- 
tions may be used. A schematic diagram of a two 
layered feed-forward network employing full con- 
nectivity between adjacent layers is shown in Fig. 
1. It is often overlooked that the backpropagation 
algorithm does not require complete connection 
of adjacent layers - restricted connectivity 
schemes may be employed. Also permitted are 
synapses which ‘skip’ one or more layers. The 
only real restriction is that activation can only 
flow forward in the network, not backward, later- 
ally, or recursively. 

The ‘input layer’ performs no processing on its 
inputs, and serves merely to distribute them to 
the first processing layer. For this reason, it is 
often not counted in reporting the number of 
layers in a network architecture, as will be done 
here. Following the input layer are one or more 
‘hidden layers’, so called because they receive no 
input from, and produce no output to, the out- 
side world. Finally, the ‘output layer’ produces 
the output results of the network for the user. 
The number of input nodes is fixed by the num- 
ber of input variables provided for the task, and 
the number of output nodes is fixed by the num- 
ber of values which are desired. These would 

normally correspond to the number of indepen- 
dent and dependent variables involved in the 
problem, respectively. 

Each node in the network receives one or 
more inputs from the outside world or from pre- 
ceding layers, and produces a single output value 
which is broadcast to other node inputs in suc- 
ceeding layers. The equations which follow are 
expressed from the viewpoint of a single node, 
and should be understood to be carried out over 
the entire network. The first step in calculating 
the output of a given node is to determine the net 
input, which is just the dot product of the node’s 
weight vector with its input vector: 

a = 2 wini + 8 (1) 
i=l 

where xi represent the inputs to the node; wi 
represent the weights applied to those inputs; 8 is 
the offset or bias term for the node; and n is the 
number of synapses for the node. 

Next comes the determination of the node 
output, which is performed by passing the net 
input of the node through its transfer function. 

Although any continuously differentiable (the 
derivative is defined over the entire function do- 
main) and monotonic (the function is either con- 
tinually increasing or decreasing over the entire 
domain) transfer function may be employed in 
backpropagation networks, those used most often 
are linear and sigmoidal functions. Linear nodes 
may be used in conjunction with nonlinear nodes, 
for scaling the input or output, or to perform 
feature compression by generating a reduced lin- 
ear combination of a preceding layer’s outputs. A 
nonlinear transfer function in a multilayered neu- 
ral network allows it to perform nonlinear func- 
tional mappings. There are several forms of equa- 
tions which may be used to implement a sig- 
moidal transfer function, including the hyperbolic 
tangent, but the most often used form is shown 
below: 

1.0 
o= 

1.0 + e-* (2) 

where o is the node output, and a is the net 
input, from Eqn. 1. 
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A one-dimensional sigmoid function was gen- 
erated by using Eqn. 2, and is shown along with 
its first derivative in Fig. 2a. This is the type of 
function that would be produced by a node with 
one input. The weight on the single input was 
fixed at 1.0, and the offset at 0.0 for the plots 
shown in Fig. 2a. For future reference, it is im- 
portant to note that, with this weight and offset, 
the net input is equal to the external input, so 
Fig. 2a also shows the response of the sigmoid 
with respect to its net input. The effects of vary- 

(a) (W 
l.OO- 

0.60- 

0.60- 
2 
3 
ao.ro- 

1st Derivative 

-20 -10 0 10 20 

Inout 

(4 k-4 
1.00 

1 

-10 0 10 20 

Input 

ing the offset from - 10.0 to 10.0, by steps of 2.0, 
is shown in Fig. 2b. Varying the offset serves to 
translate the sigmoid along the x axis. When a 
positive input weight is used, positive offsets shift 
the sigmoid center to more negative values, and 
negative offsets shift it to more positive values. A 
negative input weight produces the converse be- 
havior. 

The effects of varying the weight from 0.25 to 
4.0, by factors of 2, is shown in Fig. 2c. The 
sigmoid is a centrosymmetric function, with the 

1.00 

+,0.60 

z 
U 
so.40 

-20 -10 0 10 20 

Inout 

\ 
\ 
\ 

\ \ 
\ \ 
\ \ 
\ \ 

\ 
\ 

-10 0 10 20 

Input 

Fig. 2. A one-dimensional sigmoid function as would be formed by a single neuron with one input. (a) The sigmoid and its first 
derivative; (b) when a positive input weight is used, a positive offset shifts the active region toward values more negative from zero, 
and a negative offset shifts the center to more positive values; (c) increasing the input weight increases the steepness of the sigmoid 
response; (d) a positive offset combined with: positive weight values (solid lines) and negative weight values (dashed lines). 
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center located at output 0.50. It can easily be 
verified by the reader that this occurs when the 
net input is zero, and therefore occurs at: 

8 = - xwixi (31 

Increasing the weight magnitude produces a 
steeper sigmoid function, and in the special case 
of zero offset, as shown in Fig. 2c, does not 
change the location of the center (refer also to 
Eqn. 3). The solid lines in Fig. 2d show the result 
of varying the weight through the same range as 
was used in generating Fig. 2c, when an offset of 
4.0 is used. Larger weights shift the center to 
more positive values, as well as increase the slope. 
Finally, the dashed lines in Fig. 2d show the 
sigmoid output when an offset of 4.0 is used, and 
the weights were varied from -0.25 to -4.0, by 
factors of 2. The effect of reversing the weight 
polarity while retaining the same offset is to 
reflect the function output about the line input = 
0.0. If both the weight and the offset polarities 
are reversed, then the response function is re- 
flected about its center. 

The adjustment of the network weights during 
training provides the adaptive fitting capabilities 

of backprop nets. It is important to note that 
since the input domain of the sigmoid is bounded 
during training (a finite range of input magni- 
tudes is presented), the weight adjustments can 
also serve to ‘select’ a portion of the full shape of 
the sigmoid function to be observed over this 
input domain, by performing the appropriate 
affine transformation. 

Some important characteristics of this sig- 
moidal function are that it is a centrosymmetric 
analog threshold logic function, with a smoothly 
varying output, bounded at 0.0 at -03, and 1.0 at 
+a. The first derivative is very small when the 
function center is approached from the left (pro- 
viding resistance to noisy inputs) or from the right 
(providing stability to the learning process, as 
explained later). In fact, the output of the sig- 
moid function is approximately equal to one con- 
stant (0.0) over roughly half the domain of the set 
of real numbers and another constant (1.0) for 
the complementary set elements, under ordinary 
conditions. All the significant variation is nor- 
mally contained in a narrow portion of the input 
domain, this portion will hereafter be termed the 
‘active region’ of the sigmoid. 

Fig. 3. A two-dimensional sigmoid function, as would be generated by a neuron with two inputs. (a) Schematic of the ‘network’; (b) 
surface plot of the response in the two-dimensional input space; (c) contour plot of the response. 
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Fig. 3 (continued). 

A two-dimensional sigmoid, corresponding to shown in Fig. 2a. Similarly, the equation of the 
a node receiving two inputs, is shown in Fig. 3. It net input for two independent variables forms the 
is helpful to mentally visualize the two individual equation of a plane. The sigmoidal transfer func- 
parts of the activation equation: if x is the input tion modifies the flat plane to produce the S- 
vector, then the calculation of the net input can shaped plane shown in Fig. 3b. As before, chang- 
be symbolically represented as f(x), and the cal- ing the offset serves to translate the active region 
culation of the output as g(f(x)). Calculation of in the input space. With multidimensional sig- 
the net input (forming f(x)> for a single input moids, changing the relative values of the weights 
(independent variable) constitutes the equation serves to rotate or orient the active region in the 
of a line. Passing this dependent value through input space, while changing the absolute weight 
the transfer function (forming g(f(x))) modifies values serves to alter the slope (and also size) of 
the straight line to give the S-shaped response the active region. 

6.00 

-6.00 

-9.00 

-12.00 

-15.00 
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In a network employing sigmoidal nodes, each 
layer of m nodes receiving n inputs can be con- 
sidered to individually perform a nonlinear pro- 
jection of the data from an n-dimensional input 
space to an m-dimensional output space. If m is 
less than n, then it may be considered that a data 
reduction is performed by such a layer. The net- 
work learns by positioning, orienting, and ‘slop- 
ing’ the active regions of its sigmoids in the input 
space of each layer, so as to approximate the 
overall mapping desired. 

3.3. Backpropagation networks and supervised 
lea ming 

Backpropagation nets are used to implement 
supervised learning tasks, i.e., tasks for which a 
representative number of example inputs and 
correct outputs are known. All backprop net- 
works work by learning to approximate a unidi- 
rectional mapping from an n-dimensional input 
space R”, (where n is the number of input vari- 
ables) to an m-dimensional output space R” 
(where m is the number of output variables). 
Learning is accomplished by adjusting the weights 
shown in Eqn. 1, using error feedback from the 
training examples, so as to bring the network 
estimates of the correct outputs for the training 
patterns closer to the true values. The fundamen- 
tal concept involved in all backpropagation appli- 
cations is that we are using an ensemble of rela- 
tively simple functions (e.g. sigmoids), and com- 
bining them in both additive and embedded fash- 
ions in order to approximate a complex unknown 
mapping function. 

3.4. Regression and backpropagation learning 

The metric used to measure performance on 
backprop nets is normally (other metrics are 
sometimes used) the mean squared error (MSE), 
defined as 

I nrm 1 

E = ~ ,C I C (Ytj-Oij)2 
I=1 j=l J (4) 

where y,, represent the correct outputs for a 
pattern i; Oij represent the network estimates for 

pattern i; m is the number of output nodes; and 
n is the number of training patterns. This can 
readily be seen to be a least squares error crite- 
rion just as is used in classical regression analysis. 
The fundamental difference is that, while classi- 
cal regression begins with the assignment of an 
explicit model generated using analytical knowl- 
edge of the system under study, backpropagation 
develops an implicit model. The form of this 
model is constrained only by the bounds on the 
set of all functions that the chosen architecture 
can implement. Therefore, backpropagation 
learning can be considered to be a generalization 
of classical regression, a sort of ‘super regression’. 
It is interesting to note, therefore, that the title of 
Werbos’ 1974 Harvard dissertation, which con- 
tains the first known published derivation of the 
backprop learning rule, is entitled ‘Beyond Re- 
gression’ [30]. 

Just as in classical regression analysis, since 
the regression performed in backprop learning is 
a nonlinear form, it must be accomplished itera- 
tively, rather than by direct solution through ma- 
trix inversion, as is done for linear regression 
problems. A form of gradient descent function 
minimization is implemented in backprop learn- 
ing to solve the problem of minimizing Eqn. 4. 
Although it is tempting to propose that we re- 
quire at least as many training patterns as the 
total number of weights in the network to solve 
the system, this is not necessarily so. Such an idea 
is based loosely on the fact that in order to 
specify a unique solution to a mapping problem, 
if it exists, then the number of independent con- 
straints available must be greater than or equal to 
the number of independent free parameters. One 
difficulty with this line of reasoning is that train- 
ing patterns with more than one output value 
may provide a corresponding number of indepen- 
dent constraints per pattern. 

Despite claims by many network proponents 
that backpropagation networks are superior to 
conventional methods, this is not always true. 
Consider a situation where the variance in a data 
set may be adequately described by a known 
theoretical model, for example a linear model: 

r=k,x+k,+e (5) 
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where r is the experimental response, k, and k, 
are the experimental constants to be fitted, and E 
represents random error. The deterministic por- 
tion of the variation is completely described by 
this model. The very meaning of the term E is 
that it cannot be predicted. Therefore, assuming 
that the E is homogenously distributed over the 
input variables, the only way to reduce the uncer- 
tainty of the predictions of the model is to reduce 
the average magnitude of E, through better in- 
strumentation or sample manipulation, not to 
substitute a neural network. 

Now consider a data set with IZ degrees of 
freedom (d.o.f.1, and an underlying deterministic 
behavior (the analytical description of the system) 
containing m d.o.f., where m <n. The n - m 
degrees of freedom which remain are due to 
errors in the data. The pitfall of using a neural 
network to generate the mapping function, rather 
than fitting the analytical equation, is that the 
neural network has no explicit description of the 
functional model, and so can make no distinction 
between deterministic and stochastic variation in 
the data. The network will use all available d.o.f 
(determined by the architecture) to reduce the 
MSE for the data. If the network has many more 
d.o.f than the system (m), this will result (if the 
training process converges to the global mini- 
mum) in overfitting, or ‘fitting to the noise’ in the 
data. 

It has been observed experimentally for some 
time that the use of IZ hidden nodes to learn a 
mapping on a training set of m datapoints, where 
II am, can result in ‘grandmothering’ behavior, 
where the network serves as a simple lookup 
table for the training set. There has been much 
theoretical effort directed toward establishing 
bounds on the mapping capabilities of various 
network architectures and transfer functions. We 
will informally present here some of the practical 
consequences of recent theorems published by 
Sontag [31,32]. The manuscripts cited consider 
the mapping capabilities of a feedforward net- 
work with a single hidden layer, and employing 
some commonly used transfer functions. 

With respect to the lower bounds on classifica- 
tion performance, Sontag has shown that such a 
network employing n sigmoidal nodes is capable 

of dividing any arbitrary set of 2n points, regard- 
less of the dimensionality, into two arbitrary sub- 
sets. Clearly, if the training procedure is success- 
ful in locating the global minimum, we will never 
need to use more than half as many hidden nodes 
as training patterns to perform any binary classifi- 
cation task. If we have a sufficient number of 
training patterns to define the true shape of the 
class boundaries, we can expect to use far fewer 
to achieve proper generalization. The network 
limit described above could even resolve training 
patterns which were ‘randomly mixed’ in the in- 
put space, and we should not expect meaningful 
data to have this distribution. 

Sontag also derived results on the interpola- 
tion capabilites of networks employing a single 
hidden layer of sigmoidal nodes, relevant to 
quantitative chemical analysis applications. Again, 
we consider here only the lower limit on such 
capabilities. Sontag found that a network employ- 
ing n sigmoidal hidden nodes can approximate to 
an arbitrary degree of accuracy the response of 
any 2n - 1 datapoints, regardless of the dimen- 
sionality of the input. Again, this lower limit on 
performance places upper bounds on the archi- 
tecture required for a given training set. While a 
great many questions remain unanswered, results 
such as these are emerging which are beginning 
to clearly define the sometimes nebulous nature 
of neural network research and application is- 
sues. 

The discussion above also leads to the follow- 
ing generalization: neural networks should only 
be used when the equations describing the varia- 
tion in a system are unknown, or cannot be 
solved. Attempts to do otherwise will produce a 
solution which can at best match the predictive 
performance of the analytical solution on un- 
known inputs, and will probably be worse. 

3.5 Generalization, inteqwlation and extrapolation 

A close fit of the neural network model to the 
training data is not the cardinal issue for the 
tasks which we seek to solve with them. If all that 
is desired is to recall a particular output pattern 
when presented with a particular input pattern, 
then no model, either explicit or implicit, is 
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needed for the system. Instead, a simple lookup 
table is sufficient. 

What is desired is to produce a valid estimate 
of the correct output when a novel input is pre- 
sented to the trained network. This capability is 
termed generalization, and can only be measured 
using test inputs which have not been used to 
guide the network training process. We can dis- 
tinguish two types of generalization: interpola- 
tion, and extrapolation. Interpolation is measured 
by using test inputs which lie within the bound- 
aries of the training inputs. Extrapolation is 
measured by using test inputs which lie outside 
the boundaries formed by the training inputs. 

A neural network with the appropriate archi- 
tecture, properly trained, will possess good inter- 
polative capabilities. Extrapolation results, how- 
ever, are often unsatisfactory. The reason for this 
is simply that the equation which is actually fitted 
is not the analytical description for the system, 
and has only been constrained to behave well 
within the bounds of the training set. It is useful 
to consider, for example, that in a simple 3 : 2 : 1 
network employing three input variables, two hid- 
den layer nodes, and one output node, the equa- 
tion which is fitted is: 

r= {I + exp[ -(wZ1i expp[ --(wiiiri 

+w112x2 + w113x3 + 4l)l + w212 

xem[ - tw121x1 + w122x2 + w123x3 + %2)1 + 

021>1} -’ 

where the first subscript on the quantities indi- 
cates the row in the network, the second indicates 
the node, and the third, where used, indicates the 
synapse; the xi here are the external inputs to 
the network; and the Wijk and Oij are the parame- 
ters to be fitted. 

With proper adjustment of the weights accord- 
ing to the MSE criterion the network may pro- 
duce good results over the domain of the training 
set and for intermediate values. However, the 
lack of an analytical model becomes a critical 
issue when trying to extend the empirical model 
generated to values outside the training domain. 
With no training data to constrain the model in 
this region, the network may exhibit pathological 

behavior on extrapolation. Although extrapolat- 
ing a valid theoretical model is often risky as well, 
due to uncertainty in the model parameters or to 
a limited range of model validity, this is nonethe- 
less an issue on which an analytical solution is 
preferable. 

3.6. The learning equations 

In order to minimize the expression of Eqn. 4 
by adjusting the weights, we need to have an 
expression for the partial derivative of the error 
with respect to each weight: 

*w& 
, 

We will not derive this expression here - the 
derivation is very nicely sketched by Rumelhart 
and McClelland [291, and involves repeated appli- 
cation of the chain rule for partial derivatives, 
and some clever substitutions. The backprop 
learning law, also known as the ‘generalized delta 
rule’ is given by: 

Awj = q&xi (8) 

where Xii represents the jth input to the ith 
node on that pattern presentation; 77 is the ‘step- 
size’ parameter; and ai is the ‘delta’ term repre- 
senting the error for the ith node. 

The stepsize parameter is a user adjustable 
parameter which allows some control over the 
size of the weight changes during training. The 
delta term is related to calculable quantities for 
an output node by: 

si=(y,-oi)[oi(l-oi)] (9) 

where oi is the actual output for node i, and yi is 
the correct output for node i. 

The second term in Eqn. 9 [Oi(l - oil] repre- 
sents the derivative of the activation function 
with respect to the net input. This term must be 
modified appropriately if a transfer function other 
than Eqn. 2 is to be used. 

Although the first term, representing the error 
portion of Eqn. 8, may be directly specified for an 
output layer node, it cannot be determined di- 
rectly for a hidden layer node. Instead, it is 
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defined recursively in terms of the delta values 
for the nodes in the layers above it. These delta 
values are passed back through the synapses, or 
‘backpropagated’, so that the error value for a 
hidden layer node (i) is taken as a weighted sum 
of the errors of the nodes in the layers above to 
which it is connected: 

(10) 
j=l 

where wij is the weight on the output line of node 
i to node j; Sj is the 6 value for the node j in the 
layer above which is ‘pointed to’ by the synapse 
with weight wij; and IZ is the number of synapses 
for node i. 

It can be seen from Eqn. 8 that when using 
incremental learning (a correction is made after 
each pattern presentation) the weight vector of a 
given node must move parallel to the line defined 
by its input vector on that presentation. This is 
why weight plots of nodes located in the first 
hidden layer often show the same features as the 
input patterns. 

Consider a network employing sigmoidal nodes 
which is being used for classification, with either 
a separate output node, or even a separate net- 
work, for each class. Normally, an output value of 
1.0 is requested for class presence, and 0.0 for 

(4 stepsize- 2.000 Momentum- 0.000 

Weight 1 value 

class absence. In such cases, and where certain 
nodes in the first hidden layer are associated with 
a particular output class, the polarities in the 
features visible in the weights will be opposite for 
the target class and for competing classes. This is 
because errors being fed back from the output 
nodes will have opposite signs for the target class 
and for competing classes. This can be stated 
with certainty because the sigmoidal function ap- 
proaches the values of 0.0 and 1.0 asymptotically, 
and so the network estimate for class presence 
must always be low (less than l.O), and for class 
absence must always be high (greater than 0.0). 
Knowledge of this opposed polarity of error feed- 
back, and hence, weight adjustment, allows inter- 
pretation of the features observed in weight plots 
in terms of the uniqueness of characteristic fea- 
tures in the input, for classification problems. 

As alluded to above, even when incremental 
learning is employed, the weight vector plots need 
not appear like any of the input patterns, how- 
ever. The final form of the weight vector is deter- 
mined from the summation of many steps of 
different magnitudes and signs (corresponding to 
the 6 term of Eqn. 8 at each step). Only each 
individual step is oriented along the line defined 
by a given pattern vector. A particular neuron 
with II weights that experiences n linearly inde- 

(b) 
stepsize- 2.000 Momentum- 0.900 

Weight 1 value 

Fig. 4. Training progress on the problem cos(x, +x2) for a system with two weights. The surface shows the mean squared error as a 
function of the two weight values. (a) Stepsize = 2.0, momentum = 0.0; (b) stepsize = 2.0, momentum = 0.90. 
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pendent input patterns during training has access 
to the entire n-dimensional weight space belong- 
ing to it. Fewer than it linearly independent input 
patterns will allow access to only a subset of the 
weight space for that neuron, because they can- 
not completely span its weight space. 

3.7. Sampling the training and test sets 

In developing a backpropagation solution, it is 
essential to have a sufficient number of known 
examples for training and validation. A ‘sufficient 
number’ constitutes enough examples to con- 
strain the functional mapping learned by the net- 
work into the proper form. Data sets exhibiting 
more complex functional behavior such as multi- 
ple interactions between variables, disjoint 
and/or overlapping pattern classes, etc. will re- 
quire more training examples to completely con- 
strain the model, and more testing examples to 
properly validate the model performance. 

The training and test examples can be consid- 
ered to be drawn by discretely sampling the en- 
tire ‘world’ of possible input/output pairs for the 
problem. This sampling should be performed ran- 
domly, and with the same probability distribution 
as the world of possible inputs/outputs. If these 
conditions are met, then as the size of the train- 
ing set is increased, the functional mapping 
learned will converge to the behavior which would 
be observed if the entire problem world were 
sampled. Similarly, as the size of the test set is 
increased, then for a given network, the mean 
squared error measured on the test set will con- 
verge to the idealized world value. If it is known 
that an adequate training set was used, the proper 
size for a test set can therefore be established by 
using progressively larger test sets, and looking 
for convergence of the mean squared error for 
the test set [33]. Alternatively, to verify adequate 
training and test sets, we can repeatedly train and 
test the same network on a data set, dividing the 
training data into training and test sets of fixed 
proportion, and randomly choosing the elements 
of each set. If adequate test and training data are 
available for the number of degrees of freedom 
present in the network, then stable MSE values 
will be observed on both the training and test 

sets, regardless of the random elements placed in 
either. 

Another important consideration for training 
set sampling is that the error minimization can be 
seen from Eqn. 4 to take on any bias present in 
the training set. Consider, for example, a classifi- 
cation problem for which class A has many more 
examples in the training data than any other 
class. The resulting network will likely perform 
best on discrimination for class A, because the 
error minimization will be biased toward it, due 
to its greater frequency of appearance in the 
training data. One simple way to overcome this 
sort of behavior is to divide the training data into 
separate ‘bags’, one for each class, and to sample 
from each bag with equal likelihood. This does 
not make very efficient use of the training data, 
however. 

Curry and Rumelhart [13] interpreted the class 
frequency bias as the Bayesian class prior proba- 
bilites, and used an error weighting system to 
eliminate that bias. This author has used an anal- 
ogous weighting system, which will be termed 
‘fractional complement error weighting’ here: 

Ei = Ci( yi - o$ (11) 
where Ei is the error value for pattern i; ci is 
equal to 1 - (NA/NT) if the pattern belongs to 
class A, and ci is equal to (NA/NT) if the pattern 
does not belong to class A; NA is the number of 

A 

E 

I 
* 

Wmin W 

Fig. 5. A conceptual diagram of a divergent trajectory in a 
one-dimensional quadratic weight error space. 
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patterns belonging to class A; and NT is the total 
number of patterns. 

These weights are proportional to those used 
by Curry and Rumelhart. The latter system em- 
ployed weights of l/(NJNr) for patterns con- 
taining class A, and l/[l - (N,/N,)] for pat- 
terns not containing class A. It is not entirely 
clear from the text of their manuscript [13], but it 
appears that Curry and Rumelhart still normal- 
ized the weight error derivative sums by the num- 
ber of patterns sampled, whether or not error 
weighting was used. This might explain why they 

reported that they needed to use a lower value of 
the stepsize parameter, when “. . . prior probabil- 
ity weighted errors.. . ” were used, because they 
found that such weighting was “. . .causing an 
uneven descent.” In any case, the present author 
has found a very simple modification to the nor- 
malization factor to be useful. The error sum may 
alternatively be normalized with the sum of the 
pattern error weights encountered during the 
batch, just as is done when calculating any con- 
ventional weighted mean. Such a scheme places 
the individual error weights in proper relative 
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Fig. 6. A 1: 2 : 1 network solution to a nonlinear one-dimensional classification problem. (a) Schematic diagram of the network; (b) 
response of hidden nodes 1 (solid line) and 2 (dashed line); Cc) output node response; Cd) response of hidden node 1 versus that of 
hidden node 2, along with the contour of the sigmoid of the output node at output = 0.50 in the hidden node space. 
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proportion, while still preserving the ‘correct’ 
magnitude for the overall error sum, and hence 
weight error derivative vector length. 

Finally, the training patterns are normally 
sampled in random, rather than sequential order. 
When full batch mode learning is used (see be- 
low), there are no practical differences between 
random or sequential pattern sampling. If train- 
ing steps are made after sampling only a subset of 
the training patterns, however, then random sam- 
pling of the training patterns will decrease the 
likelihood of becoming trapped in a repetitive 
cycle of nonproductive steps on the error surface. 

3.8. Application of the learning equations 

3.8.1. Local and multiple minima 
One can consider the training process to be a 

search for the global minimum on an n-dimen- 
sional error surface, for which n is the total 
number of adjustable weights in the network. 
With multilayered nonlinear neural networks, lo- 
cal minima may exist on the error surface. In 
addition, the error surface has multiple ‘copies’ 
of the various minima, due to degeneracy arising 

(W 
m 

I) 

from symmetry in the network architecture. In 
order to rationalize this redundancy, consider 
what would happen to the entire network map- 
ping function if any hidden layer node is swapped 
with another in the same layer, and their input 
and output synapses are transferred along with 
them: there would be no change in the network 
mapping function. The larger the number of hid- 
den layer nodes, the more ‘duplicate’ minima that 
are present, as this is essentially a combinatorial 
phenomenon. 

While the existence of multiple global minima 
is (generally) good news, the existence of any 
local minima is bad news. Other than exploring 
the entire error surface, there is no way to guar- 
antee that a minimum which has been located on 
an arbitrary error surface is the global minimum. 
This difficulty with local minima is shared with a 
great many alternative methods, however. 

3.8.2. Incremental versus batch mode learning 
It can be seen from Eqn. 4 that in order to 

rigorously calculate the weight error derivatives 
for the training set, it is necessary to sum the 
errors over the entire training set, before making 

Fig. 7. A 2 : 2: 1 network solution to the circle in a square problem, representing a single class modeling problem. (a) Schematic 
representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in 
the two-dimensional input space; (d) contour plot of the fitted response surface. 
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Fig. 7 (continued). 
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a correction to the weights. This is termed full 
batch mode learning. At the other extreme, we 
can use the estimate of the gradient provided by 
measuring the error on a single pattern, and 
correct the weights after each pattern presenta- 
tion. This latter method is termed incremental 
learning. The coarse estimate of the gradient 
generated during incremental learning with ran- 
dom pattern selection has the effect of superpos- 
ing a stochastic component on the search process, 
which can be beneficial for the reasons described 
above. In between full batch and incremental 

learning, one can form improved estimates of the 
true gradient by examining a random subset of 
the training patterns before each weight correc- 
tion. Often, using just a small fraction of the 
training set provides a sufficient estimate of the 
gradient, and the more frequent weight updates 
provide a faster solution than full batch mode 
learning. 

If a form of batch mode learning is used, then 
the weight error derivative should be divided by 
the number of patterns used in estimating it, 
prior to applying Eqn. 8. This practice allows 
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meaningful comparison of the effects of different 
learning parameters, even when different num- 
bers of patterns are used to estimate the weight 
derivatives. 

3.8.3. The momentum term 
An almost universally used modification to the 

basic backpropagation learning rule (Eqn. 8) is 

Awi( t) = T/&x~ + a[ Awi( t - l)] (12) 

where t is an index denoting the discrete time 
steps involved in learning, and (Y is the momen- 
tum constant. 

The right-hand term in Eqn. 12, called the 
‘momentum term’, causes a fraction of the previ- 
ous step to be added to the current step. Momen- 
tum will cause opposing components of the step 
at successive positions to be canceled, and rein- 
forcing components to be enhanced. This has 
many potential benefits. Acceleration across long 
regions of shallow but fairly constant gradient can 
be achieved. If sufficient momentum is held on 
entering a local minimum, this may allow uphill 
escape from the opposite side. 

A graphical example of the effect of momen- 
tum in a two-dimensional weight space is shown 
in Fig. 4. A single node system with two input 

weights and a bias weight fixed at 3.9 was permit- 
ted to train on the function cos(x, +x,1. Both 
inputs were constrained in the training set to the 
range O-r/4. This provided a simple two-dimen- 
sional error surface with a broad minimum. Full 
batch mode learning was used. Thirty-five steps 
were taken, beginning with an off-axis approach 
position. Fig. 4a shows progress with a stepsize of 
2.0 and momentum of 0.0 and Fig. 4b shows 
progress made with the same stepsize and mo- 
mentum of 0.9. In a given application, the actual 
settings of these parameters must be scaled ac- 
cording to the size of the features in error space, 
however, these plots provide a qualitative per- 
spective. Although momentum here provided a 
somewhat circuitous route towards the minimum, 
it nonetheless allowed greater progress in this 
case, for the same number of steps. More compli- 
cated weight vector trajectories were observed at 
other settings, but this same qualitative argument 
was generally true. 

3.8.4. Noise on the error surface 
The error surface in practical problems can be 

‘noisy’, rather than smooth. This may be due to 
errors in measuring or estimating the input 
and/or output vectors used in training. A detri- 

Fig. 8. A 2: 3 : 1 network solution to the circle in a square problem, employing a linear output node. (a) Schematic representation of 
the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in the hvo-dimen- 
sional input space; Cd) contour plot of the fitted response surface. 
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mental consequence is that location of a mini- 
mum is often delayed by superfluous random 
local gradients due to this noise. The use of a 
momentum term helps to filter out the effect of 
high frequency noise on an error surface. A possi- 
ble beneficial effect of this noise, however, is that 
the superposition of a stochastic component on 
the search process results in a more thorough 
exploration of the error surface. This can often 
be sufficient to escape from shallow local minima, 
or circumvent others. For this reason, many 
workers purposely add independent noise to the 

input or output vectors, or randomly perturb the 
weights of the network at regular intervals during 
training. These perturbations would normally be 
decreased in magnitude as training progresses, to 
allow more accurate location of the precise mini- 
mum. 

3.8.5. Setting the learning parameters 
Unfortunately, there are no hard and fast rules 

for setting the learning parameters commonly 
used: the stepsize and momentum terms. While 
smaller settings will produce more ideal behavior, 
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they will also exacerbate an already computation- 
ally expensive problem. Momentum, if used, must 
be less than 1.0 in order for learning to be stable. 
Otherwise the weight vector will move on the 
error surface under greater influence from the 
previous gradient than from the current gradient, 
for a given step. Typical settings are from 0.40 to 
0.90. 

Stepsize, on the other hand, can be set at any 
value - typical settings range from 0.10 to 10.0, 
if sigmoidal output nodes are employed. Error 
surfaces with broad shallow minima will be best 
searched with a larger stepsize, while those with 
small steep minima are best searched with a 
smaller value. Settings which are too large may 
promote oscillation about a minimum, or may 
cause a jump completely over a global minimum 
into an attractive basin of a local minimum. 

using a simple example: consider a one-dimen- 
sional error surface with a quadratic minimum: 

E = k( w - we,,)’ (13) 

The error gradient would therefore be given by: 

3E 
aw = 2k( w - w,,,~“) 

and the gradient would therefore continually in- 
crease with the term (W - w,&. If the learning 
parameters are set such that the first step taken 
carries the weight vector across the minimum to a 
distance farther from the minimum than the 
starting point, then the weight vector is already 
doomed to undergo divergent oscillations, as each 
step will cause a jump to the opposite side further 
than the previous one, encountering ever-steeper 
gradients, and so taking ever-larger steps back 
and forth (Fig. 5). The use of momentum will also 
discourage divergent oscillations in the weight 
vector, due to the cancellation of opposing step 
components, as discussed above. 

This phenomenon is much more common in 
networks employing linear output nodes. Since 

3.8.6. Divergent weight oscillations 
One behavior which may be observed during 

training is that of divergent oscillations in the 
weight vector position, eventually causing the 
weight values to ‘explode’. This can be explained 

(b) 

Fig. 9. A 2: 3 : 1 network solution to the circle in a square problem, employing a sigmoidal output node. (a) Schematic 
representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in 
the two-dimensional input space; (d) contour plot of the fitted response surface. 
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Fig. 9 (continued). 

the output of such nodes is unbounded, the error 
surface in such a system must also be unbounded, 
rendering the situation described above more 
likely. When sigmoidal nodes are used at the 
outputs, however, the bounded output of these 
nodes places a corresponding bound on the error 
surface. Therefore, larger stepsize parameters 
may be typically employed in networks containing 
only sigmoidal nodes. 

Weight values may also be caused to explode if 
the error surface decreases monotonically along a 
particular weight dimension. This situation can 

be avoided by performing explicit bounds check- 
ing on the weights during training. 

4. MODIFICATIONS AND ALTERNATlVES TO BACK- 
PROPAGATION LEARNING 

4.1. Fahlman’s modification 

It is clear from Fig. 2a that the derivative of 
the sigmoidal transfer function approaches zero 
when the magnitude of a neuron’s net input is 
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large, regardless of its polarity. This portion of 
the weight error derivative may inappropriately 
contribute to very small steps for a node when its 
weights create large net inputs for the majority of 
the input patterns. It has been suggested that 
many apparent local minima may actually be due 
to ‘stuck units’ in such a situation. A simple but 
effective solution was proposed by Fahlman [34]: 
add a small constant amount to the sigmoid 
derivative term in the weight error derivative, to 
avoid that contribution from approaching zero. 
The actual derivative of Eqn. 2 ranges from ap- 
proximately zero to 0.25. Adding a value of 
0.010-0.10 to this helps to avoid stuck units, and 
has been shown to provide more robust, and in 
many cases, faster learning. 

4.2. Delta-Bar-Delta 

There exist a number of variations on the 
so-called ‘Delta-Bar-Delta’ rule for the learning 
parameters [35]. In these methods, each weight is 
often given its own stepsize parameter which is 
varied as training proceeds. In theory, this frees 
the operator from worrying about setting the 
learning parameters, and lets feedback from the 
error surface itself be used to dynamically adjust 
them. The following algorithm states the essen- 
tials of the modified Delta-Bar-Delta algorithm 
of Tollenaere, named ‘SuperSAB’ [36]: 

For each weight: 
(1) 

(2) 

If a step preserves the sign of the gradient 
from the previous step, increase the stepsize 
by a factor of Steplncr, where Steplncr is 
> 1.0. 
If a step inverts the sign of the gradient, kill 
any existing momentum, undo the step, and 
decrease the stepsize by a factor StepDecr, 
where StepDecr is < 1.0 and should also be 
less than l.O/StepZncr, to provide stability. 

Tollenaere suggests values of 1.05 and 0.50 for 
StepIncr and StepDecr, respectively. SuperSAB 
learning should not be combined with pure incre- 
mental learning, since the gradient estimates ob- 
tained from single patterns will cause such fre- 
quent sign inversions that no progress will be 
made. It is often wise with the Delta-Bar-Delta 
variants to perform explicit bounds checking of 

the weight values to ensure that they do not 
explode. While these methods may decrease 
learning times by an order of magnitude or more 
in some cases, it is important to note that the 
algorithm described above will prevent escape 
from some local minima, since a move across a 
valley and landing on the opposite side is undone. 
Nevertheless, such methods may be used in 
strategies to quickly locate a minimum, and then 
the optimization process restarted from a differ- 
ent position on the error surface. Due to the 
occurrence of local minima, it is always prudent 
to repeat a training procedure several times with 
any training set, to provide some assurance that a 
global optimum has been found. 

4.3. Classical optimization methods 

Eqns. 8-10 provide us with a measure of the 
partial derivative of the error surface with respect 
to each weight. Therefore, we can combine these 
equations with classical optimization methods ap- 
plying gradient information, such as steepest de- 
scent, and conjugate gradient methods [37]. 
Steepest descent involves line minimization along 
an estimated gradient of the error surface. Once 
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2 

i- 

2 3 
1 

2 

1 

Fig. 10. Schematic diagram of (top) the disposition and (bot- 
tom) the integer summed output of the hidden nodes for the 
2:3: 1 network solution to the circle in a square problem. 
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this has been done, the new direction of line 
minimization is obtained from the gradient mea- 
sured at the current minimum. Conjugate gradi- 
ent methods represent a refinement to steepest 
descent, where a new search direction is chosen 
using second order information on the error sur- 
face. This greatly reduces the likelihood of ‘back- 

3) (b) 

tracking’ across a valley while moving toward the 
optimum, often speeding convergence signifi- 
cantly. 

Alternatively, the information on the height of 
the error surface alone (Eqn. 4) may be used in 
conjunction with methods such as geometric sim- 
plex optimization [38], which has often been used 

Fig. 11. A 2 : 6 : 1 network solution to the disjoint circles in a square problem, representing a single class modeling problem with two 
disjoint regions. (a) Schematic representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of 
the fitted response surface in the two-dimensional input space; (d) contour plot of the fitted response surface; (e) schematic 
diagram of the disposition of the hidden nodes. 
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in analytical chemistry. Another method using 
only the height of the error surface at a given 
point for control is simulated annealing [39]. All 
methods which make use of the height of the 
error surface obviously require Eqn. 4 to be eval- 
uated over the entire training set. 

Simulated annealing employs stochastic leam- 
ing to achieve more robust convergence to the 
global optimum weights. The algorithm takes each 
step in a completely random direction. The error 
surface is then sampled, and if the error is lower, 
the step is accepted. Steps leading to higher error 

are accepted or rejected according to a proba- 
bilistic criterion in a manner analogous to 
‘Metropolis Sampling’: 

Prob( acceptance) = ePAEIT (15) 

where A E is the change in the error associated 
with the step, and T is the system temperature. 

A uniformly distributed random deviate in the 
range zero to one is drawn and compared to the 
result of Eqn. 15. If the random value is less than 
the result, then the step is accepted. The innova- 
tion of simulated annealing is to provide a gradu- 
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Fig. 11 (continued). 

ally decreasing temperature parameter. The 
search process is started at high temperature, 
allowing free access to uphill steps. The tempera- 
ture is gradually decreased, causing large uphill 
steps to become less likely. If the temperature is 
decreased slowly enough and the system is ‘equil- 
ibrated’ at each stage, then the system will in 
theory be located in the absolute and global mini- 
mum at zero temperature. 

Although simulated annealing is seductive for 
its theoretical robustness, there are a number of 
difficulties with it. There is no ‘correct’ scheme 
for the temperature schedule, although an expo- 
nential decay of temperature is often used. In 
order to remain at true equilibrium, the tempera- 
ture should decay infinitely slowly, and an infinite 
number of steps should be taken at each stage. 
This is obviously impractical. One of the greatest 
disadvantages of this method is its computational 
cost, which often requires current mainframe or 
even supercomputer technology for implementa- 
tion on any but the smallest networks. 

An interesting refinement to simulated anneal- 
ing was reported by Xu and Oja [40]. While not 
referring to it by the common name, they com- 
bined simulated annealing with the so-called 
‘pocket algorithm’. The pocket algorithm is use- 
ful in conjunction with any optimization method 

wherein the quantity to be optimized is not a 
monotonic function of search time. This simple 
but effective modification requires that the best 
system state observed so far is always to be saved 
in our pocket (separate computer memory from 
the current system storage). On terminating the 
optimization process, then, the optimal system is 
pulled out of the pocket for use. Xu and Oja 
returned the system to this best state before 
restarting the search at each temperature step. 

Bohachevsky et al. [41] reported another varia- 
tion designed to make simulated annealing faster 
and more robust. They modified the exponential 
to include an additional term as follows (the form 
of the equation used above is retained): 

Prob( acceptance) = exp( - [(E - E,,)“AE] /T> 

(16) 

where E is the value of the error at the current 
location; Emin is the global minimum error; and g 
is a constant Q 0. Basically, this added term 
makes the probabilty of accepting uphill steps 
smaller as the current height of the error surface 
decreases. Therefore, the deeper the minimum 
we are located in, the smaller the likelihood of 
escaping with this algorithm. As noted by Bo- 
hachevsky et al., a difficulty often associated with 
practical problems is that Emin may be unknown. 
They suggested that an initial estimate of Emin 
that is updated with information from the surface 
is often sufficient to provide fairly robust conver- 
gence, however. 

The two modifications to simulated annealing 
just discussed could, of course, be combined to 
provide even greater confidence in the robustness 
of the method. It is important to recognize, how- 
ever, that for practical multidimensional prob- 
lems in which the complexity and scale of the 
features on an energy surface may be unknown 
and heterogenous, and the height of the optimum 
is unknown, there is still no way to guarantee that 
we will settle into (be trapped in) the global 
minimum in a finite number of moves and tem- 
perature steps. These stochastic methods do how- 
ever, improve our likelihood of locating the global 
minimum. 
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5. CJ.ASSIFICATION RESPONSE SURFACES AND THE 
SIGMOID FUNCTION 

5.1. Sample problems 

This section will present several highly simpli- 
fied classification problems in one- and two-di- 
mensional input spaces, along with neural net- 
work solutions to these problems. These low-di- 
mensional input spaces are necessary to allow 
plotting the fitted network response function. Ex- 
amination of these problems and the solutions 
provided by various network architectures is ex- 
tremely helpful in getting a qualitative under- 
standing of neural network solutions. In all cases, 
a unique output node was assigned to each class, 
and the ‘correct’ output values used in training 
were 1.0 for class presence, and 0.0 for class 
absence. 

As noted earlier, one can consider a neural 
network in any application to be a function ap- 
proximation device, and, in the case of a back- 
prop network, to provide a generalized least 
squares approximation to the desired mapping 
function. From this perspective, one can consider 
that in a two layered network, the hidden layer 
constructs a nonlinear basis for the desired func- 
tion, according to the least squares criterion. Fur- 
thermore, the output node(s) generate the de- 
sired function by taking a linear combination of 
the basis formed at the hidden layer, and passing 
it through their transfer function, which, for a 
sigmoid, is also termed a ‘squashing function’. 
The reason for the term squashing function will 
become clear later. 

Readers who are more comfortable with logic 
than with multivariate algebra may find the fol- 
lowing alternative interpretation of two layered 
sigmoidal networks more helpful. We will first 
make the simplification that the sigmoidal nodes 
operate as discrete step functions, rather than 
graded analog functions. For a classification 
problem, each hidden layer node can then be 
considered to independently implement a crisp 
logical dichotomy (a Boolean function) on the 
elements of the real Euclidean space forming its 
input domain. Each output node can be consid- 

ered to poll the hidden layer nodes to arrive at its 
own output. Depending on the relation between 
its weights and its bias, an output node may take 
the intersection (logical AND, symbolized by A) 
of the hidden node outputs, or the union (logical 
OR, symbolized by V) of the hidden node out- 
puts. If an output node is using a negative weight 
for a particular hidden node, then we can con- 
sider it to be taking the negation (logical NOT, 
symbolized by -J> of that hidden node’s truth 
value. We will return to this conceptualization in 
one of the detailed example problems below. 

For classification problems, we can consider 
that the basis formed by the hidden layer nodes 
will be a nonlinear transformation, often includ- 
ing an expansion to higher_dimensionality, if the 
problem is not linearly separable in the original 
space. The output node for any given class still 
acts as a linear classifier (Fig. 3c), therefore, the 
problem presented to it must be linearly separa- 
ble, in order for the network to succeed. 

Consider the example shown in Figs. 6a-d. 
This represents a one-dimensional classification 
problem, for which the class was contained in the 
interval [4,8] along the input axis. The desired 
function therefore maps the input value to 1 
whenever it is contained in this set, or else maps 
it to 0. This problem is not linearly separable, 
however, as we cannot draw a single boundary on 
this axis which can separate the class interior 
from its exterior. 

A reasonable (but not optimal, or unique) so- 
lution to this problem for a 1: 2 : 1 (one input, two 
hidden layer nodes, one output node) network 
was constructed heuristically ‘by hand’ using the 
Eqns. l-3 and consulting Figs. 2a and c in the 
following manner: first the two hidden layer sig- 
moids were ‘placed’ at the input locations 4.0 and 
8.0, and ‘pointed’ right and left, respectively, with 
steep slopes. This was done by solving Eqn. 3 for 
the ratio of offset/weight for x locations of 4.0 
and 8.0 for the sigmoid centers. Sizable weights 
(to initiate a sharp response) of identical magni- 
tude but opposing sign were then used on the 
hidden node inputs to provide the symmetrical 
closed region desired. The chosen weights were: 
hidden node 1: (weight = 10.125, offset = -45.0), 
hidden node 2: (weight = - 10.125, offset = 81.0). 
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Fig. 12. A 2 : 6 : 1 solution to the embedded circles in a square problem, representing a two class problem, where one class (A) is 
embedded in the other (B). (a) Schematic representation of the problem; (b) schematic diagram of the network architecture; (c) 
surface plot of the heuristically generated response surface in the two-dimensional input space; (d) contour plot of the heuristically 
generated response surface; (e) surface plot of the fitted response surface in the two-dimensional input space; (0 contour plot of 
the fitted response surface; (g) discrete summed output of hidden nodes Hl-H3 minus the discrete summed output of H4-H6. 



n B.J. Wythoff/Chemom. Zntell. Lab. Syst. 18 (1993) 115-155/Tutorial 141 

For the output node, in order to produce then chosen for the output node consistent with 
values of 0 and 1 when outside and inside the these constraints. The chosen weights for the 
class boundaries, the net input to the output output node were: (weight 1 = 20.0, weight 2 = 
node must then be a fairly large negative and 20.0, offset = - 30.0), chosen so as to produce a 
positive number, respectively, when the external net input to the output node of - 10.0 when 
input is in these regions (consult Fig. 2a, for outside the target region, and + 10.0 when inside 
which the net input and external input values are the target region. 
identical). The values passed to it by the hidden The choice of solution weights was guided 
nodes will be essentially (1, 01, (1, 1) and (0, 11, using the concept that the hidden layer node 
when on the left side, inside, and right side of the functions should be chosen so as to allow the 
target area, respectively (Fig. 6b). Symmetrical required sharp, bump-shaped function response 
positive input weights and a negative bias were by linear summation and squashing at the output 

(4 
-1.00 -0.38 0.24 0.86 1.48 2.10 2.72 3.34 3.97 4.59 

4.59 

3.97 

3.34 

2.72 

2.10 

1.48 

0.86 

0.24 

-0.38 

2.72 

0.24 

-0.38 

.oo -0.38 0.24 0.66 1.48 2.10 2.72 3.34 3.97 4.59 

Fig. 12 (continued). 



142 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) IU-155/ Tutorial n 

node. However, another helpful, and not incom- 
patible view, is that in order to solve this prob- 
lem, the hidden layer nodes must perform a non- 
linear expansion of the input into a two-dimen- 
sional space, so as to transform the problem into 
one that is a linearly separable problem for the 
output node. Fig. 6d presents the problem ‘from 
the perspective of the output node’. The points 
shown in Fig. 6d were generated by sampling the 
one-dimensional external input space over the 
interval [ - 20,201 at 100, evenly spaced locations. 
The output of the first hidden node was then 
plotted against the output of the second hidden 
node. The points are clustered at the locations 
(0, l), (1, 1) and (1, O), with the majority over- 
lapping at these precise coordinates. This can of 
course also be deduced from Fig. 6b, but Fig. 6d 
clearly shows that the hidden nodes transform a 
one-dimensional nonlinearly separable problem 
into a two-dimensional linearly separable prob- 
lem, for the output node. The linear decision 
boundary corresponding to the contour along 
which the output node response is 0.50 has also 
been sketched in Fig. 6d. 

A more complex two-dimensional problem in- 
volving a single class, with a circular boundary 
shape, was considered next. The networks were 
asked to produce a response of one when the 
input vector was located inside a circle of radius 
0.40 that was centered at 0.50, 0.50, and zero 
when the input vector came from outside this 
region. The ideal response function would there- 
fore be a right circular cylinder of radius 0.40 
centered at 0.50, 0.50, and with a perfectly flat 
top of height 1.0. We will call this the ‘circle in a 
square’ problem. 

The first network solution employed a 2: 2: 1 
architecture, employing all sigmoidal nodes, (Fig. 
7). Comparison of the response surface shown in 
Fig. 7 with the two-dimensional sigmoid shown in 
Fig. 3b indicates that the two sigmoids in the 
hidden layer are oriented so as to ‘point’ directly 
at one another, generating the parallel ridge re- 
sponse shown in Fig. 7. Refer also to Fig. 3c to 
convince yourself that the two hidden nodes must 
have parallel weights with opposing polarities and 
nonzero offsets, and that the output node must 
also use essentially identical input weights on the 

results from the two hidden nodes, in order to 
generate the overall response shown in Fig. 7. 

Three hidden layer nodes are required to form 
a closed region in a two-dimensional input space, 
and the solution provided by a 2: 3 : 1 network 
employing sigmoidal hidden nodes and a linear 
output node is shown in Fig. 8. It can be seen 
from the contour plot that the hidden layer nodes 
have arranged themselves at 120” angles in the 
input space, the required symmetry for the solu- 
tion. Although we have now formed the closed 
hill-shaped response region, the sides of the hill 
are not very steep, and the top is not very flat. 

Another 2: 3 : 1 network was trained on this 
problem, this time employing a sigmoidal transfer 
function at the output node (Fig. 9). The C, 
symmetry of the solution is more apparent in 
these response contours than in the previous ex- 
ample, but is in fact the same. The sides of the 
hill have now achieved the desired steepness, and 
the top is very flat. The reason that this solution 
is so much improved is that the bounded output 
of the sigmoidal output node allows great amplifi- 
cation of the response of the hidden layer nodes, 
providing steeper sides without exceeding a value 
of 1.0 in the center, and thereby also flattening 
(or ‘squashing’) the top. In addition, the output 
node sigmoid can be considered (loosely> to per- 

Fig. 12 (continued). 
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form a saturating high-pass amplitude filter func- prism solution. The response function derived is 
tion (Fig. 2a), and so the ripples which occur at the best compromise according to the least 
the intersections of the ‘feet’ of the sigmoids are squares error criterion. 
reduced as well. It may be curious to some read- As noted above, the three sigmoids do not 
ers that the hidden layer nodes are not amplified produce a perfect closed trigonal figure, but in 
further, generating even steeper sides and a flat- fact have ‘extra’ raised regions formed by their 
ter top. While this could indeed be done, the intersection, to produce feet. The origin of these 
curved regions at the intersection of the sigmoid is made more clear with the schematic drawings 
regions of the hidden layer are due to the curved of Fig. 10. Fig. 10a depicts the location and 
profile of the shoulder of the sigmoid function. direction of the three sigmoids. Making the sim- 
Excessive amplification would square off the plification that the sigmoids operate as step func- 
shoulder (see Fig. 2~1, and produce a trigonal tions, Fig. lob depicts the unweighted discrete 
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Fig. 12 (continued). 

sum of their outputs, in the different regions of 
the input space. Of course the sigmoids are not 
step functions, but such a view simplifies a picto- 
rial analysis. Clearly, there are three extra raised 
regions of summed amplitude two. These regions 
are still visible in the filtered output, as shown in 
Figs. 9c and d. Note that the thresholding ‘front’ 
of the output node transfer function has greatly 
reduced their relative magnitude, however. The 
affine transfer performed in generating the net 
input to the output serves to provide the bipolar 
range and the appropriate magnitude scale for 
the net input to produce output values of approx- 
imately 1 and 0 when inside and outside the class 
boundary, respectively. 

The next problem posed was still a single class 
problem, but involved two disjoint circular re- 
gions for the class. A 2 : 6 : 1 network architecture 
was generated by extension of the solution of the 
first problem. It was initially thought that the 
solution would consist of two circular humps with 
C, symmetry, that is, that the six hidden layer 
nodes would partition into two groups of three to 
solve the problem according to a ‘divide and 
conquer’ approach. Instead, the solution showed 
two hills, but with four surfaces making up each 
hump (Fig. 11). The only way that this solution 
can be generated is that two sigmoids are used to 
generate the edges parallel to the major axis, two 
are used to generate the inside minor edges, and 
two to generate the outside minor edges. In other 
words, all six hidden nodes are being applied 
globally to the problem, with two being used 
‘twice’ to form the major edges. The decision 

surfaces formed by the individual hidden nodes 
were examined individually to verify this conclu- 
sion, and are shown schematically in Fig. lle. 

The divide and conquer solution was later 
formed by starting the network from an appropri- 
ate set of weights, however the MSE for this 
latter approach, while low, was significantly higher 
than for the solution shown in Fig. llc. It is 
certainly very reasonable that a globally con- 
strained solution should be better than an (effec- 
tively) locally constrained piecewise solution, if 
symmetry in the desired function is exploited; and 
that, effectively, four sigmoids can generate a 
better approximation to a cylinder than three. 

A concave region in a Euclidean space is one 
in which it is possible to connect two points in the 
region with a straight line segment that passes 
outside the boundary of the region. Despite early 
speculation that neural networks employing a sin- 
gle hidden layer of sigmoidal units could not form 
a concave decision region, this is now known to 
be within their capability. The final problem ap- 
proached included such a concave set. In this 
problem, one circular class (class A) was com- 
pletely embedded inside the other (class B). The 
outermost circular region was centered at 2.0, 2.0, 
and had a radius of 1.5. The inner class region 
was centered at 2.25, 2.00, and had a radius of 
0.50. There was no overlap between the two sets. 
It was proposed intuitively that this problem could 
be minimally approached with the same number 
of hidden nodes as was used in the previous 
problem, six. Two output nodes were used for the 
two classes. Forming the shape of class B clearly 
posed the more difficult problem. The ‘hole’ 
within it corresponds exactly to the bounds of 
class A, however. Therefore, it was reasoned that 
by using six hidden nodes, three could be allo- 
cated to forming the outer circular boundary, and 
three to forming the inner circular boundary. The 
two different output nodes could simply use op- 
posite signs on the weights to the hidden node 
groups, to generate the correct approximation to 
the desired shapes. In other words, the design 
called for one output node to generate a hump 
for the inner class A by summation of three 
sigmoid outputs, just as was done for the circle in 
a square problem. We will arbitrarily designate 
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these three hidden nodes as Hl-H3. The other 
output node was intended to sum the three other 
hidden node outputs (H4-H6) to form the outer 
boundary of class B, and to subtract the output 
of Hl-H3, in order to create the ‘hole’ in the 
interior, which corresponds to the region occu- 
pied by the class A. A schematic depiction of the 
problem and the initial network used to form the 
solution is shown in Figs. 12a and b. To revisit 
the crisp logic paradigm introduced earlier, the 
output node corresponding to class A was in- 
tended to form (Hl A H2 A H3). The output node 
corresponding to class B was intended to form 
(7H1 A 7H2 A 7H3 A H4 A H5 A H6). This 
numerical rule follows naturally when one seeks 
to answer the question: where is class B true? 
Class B is true inside the outer circle formed by 
hidden nodes H4-H6 (in the intersection of their 
true regions), and not inside the inner circle 
formed by hidden nodes Hl-H3 (in the intersec- 
tion of their true regions). 

Numerous training runs from random starting 
positions failed to produce a solution with the 
desired concentric closed class boundaries. Spec- 
ulating that this difficult problem might contain a 
global minimum that was difficult to approach 
using gradient descent, it was decided to write a 
simple computer procedure to assign the initial 
weight configuration. The goal in doing this was 
not to generate the optimal weights analytically, 
but simply to try to start the network optimiza- 
tion from a point within the attractive basin of 
the global minimum. The conceptual solution de- 
scribed above was encoded heuristically, together 
with the solution of the corresponding Eqn. 3, to 
generate the weights for the proper position and 
orientation of the hidden nodes. The hidden layer 
nodes were divided into two groups, one for each 
region. They were distributed symmetrically 
around the outer boundary of the respective cir- 
cles and pointed inward. Opposite polarities were 
used on the weights connecting the hidden nodes 
to the output nodes, for the two regions. The 
response of the naive heuristic solution for the 
2 : 6 : 2 network is shown in Figs. 12c and d. The 
networks were then trained as before, beginning 
from the heuristically assigned starting configura- 
tions. 

The 2 : 6 : 2 net did find a stable solution to the 
problem from the heuristic starting weights, with 
concentric closed regions corresponding to the 
two classes. However, the error of the solution 
was still fairly large (Figs. 12e and f). The major 
problem appeared to be the excess lobes corre- 
sponding to the ‘feet’ of the overlapping sig- 
moids. The origin of these feet is shown more 
clearly in the schematic drawing of Fig. 12g. This 
drawing depicts the discrete unweighted sum of 
H4-H6 minus the discrete unweighted sum of 
Hl-H3. In order to reduce the magnitude of the 
corresponding positive errors, the minimization 
process reduced the amplitude of the outer shell, 
thereby necessarily introducing negative devia- 
tions from the ideal response on the outer ‘cylin- 
der’ walls. 

Next, a 2: 30: 2 net was trained on the same 
problem. The starting weights were again heuris- 
tically assigned. This time, hidden nodes Hl-H15 
were assigned to the task of forming the inner 
region, and nodes H16-30 to forming the outer 

Ia) 

Fig. 13. A 2: 30: 2 solution to the embedded circles in a square 
problem. (a) Surface plot of the heuristically generated re- 
sponse surface in the two-dimensional input space; (b) con- 
tour plot of the heuristically generated response surface; (c) 
surface plot of the fitted response surface in the two-dimen- 
sional input space; Cd) contour plot of the fitted response 
surface. 
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region. A much better solution, both qualitatively 
and quantitatively, was formed using 30 hidden 
nodes instead of six. The response surfaces for 
the naive heuristic starting configuration and the 
fitted network are shown in Fig. 13. 

In order to provide a more detailed view of 
these two different solutions to the same prob- 
lem, a program was written to provide plots of 
the discrete summed responses of the trained 
hidden nodes in the input space. The input space 
was scanned in raster fashion, and the hidden 
nodes outputs were summed at each position 

according to the following rule: if the output of 
the hidden node was greater than 0.50 (the mid- 
point of its range), then 1 was added to the 
summed output at that position, else 0 was added. 
The hidden nodes were divided into two groups 
according to the polarity of the weight between 
them and the output node corresponding to class 
B. Two plots were generated for each network, 
with one plot corresponding to sums of positively 
weighted hidden nodes, and one for negatively 
weighted nodes. The intensity values were scaled 
to span a 64-level grayscale. These plots for the 
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2 : 6 : 2 net are shown in Figs. 14a and b, and for 
the 2 : 30 : 2 net in Figs. 14c and d. 

The ideal symmetries of the two target regions 
corresponding to class A and class B are both 
C,. The heuristic starting weights provided ideal 
symmetries of C, and CrSV, for the 2: 6: 2 and 
the 2 : 30 : 2 net, respectively. These’ symmetries 
were largely retained in the ‘learned’ solutions. 
One reason that the 2 : 30 : 2 net provides a better 
solution is that it has a closer approximation to 
the ideal symmetry. This can of course be pre- 
dicted intuitively, and is shown to be true in Figs. 
14c and d. In addition to this better rotational 
symmetry match, we find a second effect visible 
in these figures, which is actually more noticable 
in a color-mapped plot. The ‘feet’ generated by 
the 2 : 30 : 2 network hidden node overlaps decay 
more quickly as we move away from the region 
edge than those generated by the 2 : 6 : 2 net. This 
too provides a better approximation to the de- 
sired right circular cylinder shape for each class 
region. 

5.2. Optima& of neural networks for classification 

While classification has been performed with 
explicit modeling methods for many years, such 
methods can on reflection be seen to be inappro- 
priate in many cases. For example, a number of 
explicit methods make use of a multivariate nor- 
mal distribution fitted to the members of each 
class. While this approach may give the appear- 
ance of rigor, it should be noted that the multi- 
variate normal distribution is intended to de- 
scribe stochastic variation in a quantity. The dif- 
ferent positions of class members in the input 
space are normally not primarily due to random 
errors in determining their location. Rather, they 
are the result of some underlying complex and 
deterministic processes which give rise to real 
differences in measured properties. There is no 
reason to expect that such variation will necessar- 
ily manifest itself as a multivariate normal distri- 
bution. Therefore, although a multivariate nor- 
mal approximation of class shape may be useful, 
we can expect less constrained, self-modeling 
methods such as are implemented in neural net- 
works to provide better solutions. 

6. PROBLEMATIC ISSUES FOR BACKPROPAGATION 
NETWORKS 

6.1. Overtraining and the frequency response of 
sigmoidal nodes 

It is known that backpropagation networks 
which are ‘too large’ often pass through a point 
of maximum generalization during training, to 
eventually overfit the data. The usual approach to 
avoiding such behavior is to monitor the MSE on 
an independent cross-validation set during train- 
ing as well. The training process is then stopped 
when the error on the cross-validation set is at a 
minimum. Chauvin [42] noted that networks ex- 
hibiting such behavior appear to start out by 
mapping the DC component of the input data, 
and move steadily toward mapping higher and 
higher frequency components. He rationalized 
this by pointing out that the maximum reduction 
in mean squared error on the training data is 
obtained by mapping the DC component, with 
successively smaller reductions obtained at higher 
and higher frequencies. This causes us to wonder 
how the network would ‘know’ this, and how such 
a frequency behavior can be explained in terms of 
the weight vector trajectory. 

It is proposed here that the observed progres- 
sion of frequency mapping is produced by the 

Fig. 13 (continued). 
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Fig. 13 (continued). 

normal initial conditions (all weights set to small 
random values), and that the frequency progres- 
sion is caused by the variation in the node re- 
sponse ‘frequencies’ as they move away from the 
origin to the minimum MSE. The overall fre- 
quency reponse of the system is directly related 
to the frequency response of its components, the 
individual neurons. 

A ‘frequency’ could be ascribed to each node 
by determining the change in input required to 
produce some fixed macroscopic change in out- 
put. The corresponding change in input could 

I I I I I I I I I I I I I I I I I_,.00 

2.69 3.15 3.62 4.08 4.54 5.00 

than be termed a ‘decay time’ for the node, and 
inverted to produce a frequency. To simplify our 
analysis in multidimensional input space, we will 
instead consider the frequency of a given node to 
be equal to the maximum slope of its response 
curve, measured along the gradient of its re- 
sponse surface. 

Proceeding in a manner analogous to that re- 
ported by McClelland and Rumelhart for deriv- 
ing the partial derivative of the error with respect 
to a node weight [29], we can arrive at an expres- 
sion for the partial derivative of a sigmoid node 
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output, with respect to an input dimension, ob- 
taining after numerous steps: 

a0 

Gi- - -o(l -oo)wi=uwi (17) 

Noting that the overall gradient can be obtained 
by summing the individual orthogonal compo- 
nents, and that the length of this net gradient 
vector can be obtained by normal Euclidean 
means, we obtain: 

The expression -o(l - o) is equal to its maxi- 
mum magnitude of -0.25 at o = 0.50, therefore 

(4 

the magnitude of the maximum node slope (its 
‘frequency’) is proportional to one-quarter the 
length of its weight vector. The frequency re- 
sponse behavior of a given node with respect to 
its weight space is therefore a radially symmetric 
‘hyper-cone’ centered at the origin, where the 
frequency is 0.0. 

It is perfectly reasonable therefore, that the 
overall dynamic frequency behavior of the net- 
work during learning is actually due to the initial 
conditions imposed for the error minimization, 
which, being located near the origin of the weight 
space, must produce a low frequency response. 
Moving away from the origin toward the solution 
will then necessarily produce higher frequencies 
in the network basis set (its hidden nodes). 

In addition to providing some insight into gen- 
eralization dynamics of oversized networks, this 
analysis may allow one to prevent overfitting, by 

Fig. 14. Normalized grayscale plots of the integer summed outputs of the hidden nodes for the nets applied 
in a square problem. (a) Positively weighted nodes for the 2 : 6 : 2 net; (b) negatively weighted nodes for the 
weighted nodes for the 2: 30 : 2 net; (d) negatively weighted nodes for the 2 : 30 : 2 net. 
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limiting the frequency response (weight vector 
lengths) of the network nodes to match the fre- 
quency limit in the desired function to be approx- 
imated. It might also be possible to speed training 
by assigning the initial weights according to a 
frequency spectrum dictated by the desired re- 
sponse function. 

6.2. Architecture and design 

A difficult issue for the neural network engi- 
neer is deciding on the appropriate architecture 
for a given problem. Since response functions for 
quantitative analysis tend to be relatively simple 
(although not necessarily linear), this is not such 
a problematic limitation there. In qualitative 
analysis, however, we are essentially trying to fit 
class probability distributions in a multivariate 
input space. The true shape of such functions can 
have an absolutely arbitrary complexity. Even with 
a good understanding of how sigmoidal functions 

combine to generate such surfaces, we are limited 
in the multivariate case by the fact that we cannot 
even see the appearance of the desired function. 

There has been a good deal of work aimed at 
generating ‘optimal’ network architectures for 
backpropagation networks employing sigmoidal 
nodes. Many can be divided into two categories: 
(a) beginning with a network which is too small, 
and systematically enlarging it by some scheme 
until the error on the training set and an inde- 
pendent test set drops to acceptable limits; (b) 
beginning with a network which is too large and 
systematically pruning connections and nodes, and 
observing the error to try to obtain a reduced 
system with acceptable error. The majority of 
such schemes are systematic and reasonable 
means of finding an economical solution to the 
‘appropriate architecture’ question. However, 
such systems do not use any explicit information 
about the problem, and both types are essentially 
brute force approaches, requiring a great deal of 

b) 

Fig. 14 (continued). 
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‘wasted’ computation along the path to the termi- 
nal architecture. Finally, the architectures de- 
rived are only optimal in the sense that they 
represent the best performing network encoun- 
tered during what can be described as a heuristi- 
cally directed search of an ‘architecture space’ 
wherein nodes in a search tree correspond to 
particular architectures. The morphology of the 
tree, as well as the entry point(s) are different for 
every algorithm. 

Beyond such ‘brute force’ approaches, there 
have been several promising methods reported in 
the literature for learning systems which begin 
with an architecture which possesses too many 
hidden units, and dynamically prunes unneces- 
sary weights and/or units as training proceeds. 
Two such methods, briefly presented here, add a 
second penalty term to the cost function (beyond 
mean squared error), to discourage the use of 
correlated weights or units. 

Weigend et al. [43] described a method for 

pruning unnecessary weights by ‘weight decay’ 
according to the following cost function: 

(20) 

where E, represents the MSE from Eqn. 4; wij 
represents the jth weight for the ith node; wa is a 
real constant; y is a real constant; n is the 
number of training patterns; M is the number of 
output nodes. 

This method was used by Curry and Rumel- 
hart [131 in experiments concerning their mass 
spectrum interpretation network ‘MSnet’. In ad- 
dition, Chauvin [44] reported the use of a similar 
approach to extend the cost function ;by pruning 
unnecessary hidden units, one incarnation of 
which is presented here: 

Fig. 14 (continued). 
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Fig. 14 (continued). 

where E, represents the MSE from Eqn. 4; Oij 
represents the output of the ith hidden node on 
the jth pattern; per is a real constant; pen is a 
real constant; II is the number af training pat- 
terns; and m is the number of hidden nodes. 

This version of Chauvin’s method is obviously 
very similar in its form, if not meaning, to the 
former expression for minimizing redundant 
weights. Both expressions utilize some factor to 
adjust the relative importance of the MSE term, 
and the ‘network complexity’ term. Both of these 
equations penalize the system for employing ex- 
cessive complexity, either in the number of 
weights or the number of hidden units used to 
achieve a given error. In doing so, they encourage 
the elimination of correlated or unimportant net- 
work components. It seems clear that aggressive 
use of either augmenting term too early in the 
training process can jeopardize convergence. 
Weigend and coworkers, in fact, suggested that 

the proportion of the cost attributed to weight 
magnitudes be held at zero initially, and in- 
creased in importance as training proceeded, 
while monitoring the MSE to prevent elimination 
of necessary weights. Such dynamic adjustment of 
the augmenting term may be tricky to perform in 
real applications. Nonetheless, these and related 
methods hold a good deal of promise for ‘auto- 
matically’ arriving at an approximately optimal 
architecture, and thereby achieving an efficient 
architecture in terms of storage space and com- 
putation time, as well as minimizing the likeli- 
hood of overfitting. 

7. CONCLUSIONS 

There is still a great deal of theoretical work 
which remains to be done in neural network 
research, which is one of the reasons that the 



8 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 153 

field is so exciting. The rather murky nature of 
neural network solutions may disturb some scien- 
tists, but the very problems which are appropriate 
are likewise ill-defined. What neural networks 
offer is the prospect of a usable solution to prob- 
lems which cannot even be described analytically. 
While some claims of enthusiastic network pro- 
ponents are no doubt exaggerated, these systems 
are not just a fad, and will in fact continue to 
increase in popularity and importance. The next 
ten years will show a remarkable number of solu- 
tions to ill-defined chemical problems. 

One of the key problems facing neural net- 
work developers is training time. This is being 
attacked through research into more efficient 
learning algorithms, and with direct hardware 
support for neural network calculations. Some of 
these current hardware solutions claim to offer 
billions of backpropagation connection updates 
per second. Another important issue is conver- 
gence probability, and the hazards of local min- 
ima, i.e. understanding learning dynamics. These 
problems, too, are being attacked by current re- 
searchers. Finally, there is the extremely complex 
problem of deriving ‘an ‘optimal’ architecture for 
a specific application. While important strides are 
being made on this subject, we should not expect 
this problem to be completely solved in the near 
future. The optimal architecture is related to 
both the functional complexity and the ‘inherent 
dimensionality’ of the desired mapping. Accurate 
assessment of these factors for arbitrary problems 
is an extraordinarily complex task. 

Although we have concentrated here on back- 
propagation networks, there are new network ar- 
chitectures and learning paradigms introduced 
virtually every month in the research literature, 
along with new theoretical results elucidating the 
mathematical properties of existing systems. This 
is a field pregnant with advances, and the possi- 
ble applications in chemistry are limited only by 
the imaginations of today’s chemists. 

For those readers who are unwilling or unable 
to develop their own neural network software, 
there is a large menu of commercial packages 
available that will run on most popular hardware 
platforms. The author has not reviewed, and does 
not endorse any of these commercial programs, 

however, a brief guide to such systems was pub- 
lished in the June, 1992, issue of AI Expert mag- 
azine. 

8. GLOSSARY 

Logic symbols : 
7 : represents logical negation (NOT); 
A : represents logical conjunction (AND); 
v : represents logical disjunction (OR). 

Activation: Same as neuron output. 
Afine jiuzction: A generalization of a linear func- 
tion. In the geometrical sense, it can be consid- 
ered to add translation capabilities to the rota- 
tion and scaling capabilties of a linear function. 
Architecture: The topological arrangement of 
neurons, layers, and connections, which, in a 
complex way, defines the set of modeling equa- 
tions available to the net. 
Generalization: The ability of the network to pro- 
duce the correct output for patterns not present 
in the training set, indicating induction of a valid 
mapping rule from the training set. 
Gradient descent: Procedure for iteratively mini- 
mizing some quantity by moving in the (- > direc- 
tion of the gradient (derivative, slope) of the 
response from the current state of the system, 
(loosely> ‘by always moving down the fall line’. 
Hidden layer: Any of one or more layers normally 
used between the input and output layers in 
backpropagation networks. So called because it 
receives no input from, nor produces output to 
the ‘outside world’, i.e., it calculates only inter- 
mediate values used in determining the overall 
network output. 
Input layer: The ‘first’ or ‘lowest’ layer of neu- 
rons, which is used only to broadcast the input 
values for the desired mapping to the first pro- 
cessing layer. 
Input uector: The ordered set of inputs compris- 
ing the known or independent values for a pat- 
tern, e.g., spectral absorptions. 
Mapping: The act of (verb) or rule for (noun) 
producing (an) output value(s) corresponding to a 
given input, e.g. y = kx is a rule for mapping x to 
Y- 
Neuron (syns: node, processor, unit): The funda- 
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mental building block of a neural network. Nor- 
mally, each neuron takes a weighted sum of its 
inputs to determine its net input. The net input is 
then processed through its transfer function to 
produce a single-valued output which is broadcast 
to ‘downstream’ neurons. 
Net input: normally the inner (dot) product of a 
neuron’s input vector with its weight vector. 
Output layer: The ‘last’ or ‘highest’ layer of neu- 
rons, which is used to provide the output values 
required by the application. 
Output vector: The ordered set of outputs com- 
prising the unknown or dependent values for a 
pattern, e.g., component concentrations or identi- 
ties. 
RecalZ (syn: memorization): The ability of a net- 
work to reproduce the correct output values for 
the training set. 
Sigmoid: An ‘S-shaped’ nonlinear transfer func- 
tion commonly used in artficial neurons. 
Supervised learning: A system, such as backpropa- 
gation, for deriving a rule for mapping inputs to 
outputs, i.e., for learning an approximation to a 
desired function. Supervised learning operates us- 
ing known outputs corresponding to each input in 
the training set, and adapts the mapping rule to 
bring the approximation as close as possible to 
the desired (true> mapping as provided by the 
training examples. 
Synapse (syn: connection): A connection between 
two nodes, with an associated weight. Node, 
passes its output to node,, through such a synapse. 
The value received by node,, is the product of the 
output of node, with the weight on this synapse. 
Test set: A set of example input patterns, along 
with known correct output patterns, which is in- 
dependent of the training set, to be used to 
evaluate the performance and validity of the 
learned mapping. 
Training set: A set of example input patterns, 
along with known correct output patterns, to be 
used for learning. 
Transfer function: The function a neuron uses to 
operate on its net input (e.g. sigmoid, linear, 
quadratic) to produce its activation level. 
Vkctor: An ordered set of numbers. For an n-ele- 
ment vector v, the ith element can normally be 
considered to be the ith coordinate in IZ space, or 

the length of the projection of v along the ith 
axis. 
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