
8 Tutorial 115

Chemometrics and Intelligent Laboratory Systems, 18 (1993) 115-155
Elsevier Science Publishers B.V., Amsterdam

Backpropagation neural networks

A tutorial

Barry J. Wythoff

Inorganic Analytical Research Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899 (USA)

(Received 25 March 1992; accepted 27 May 1992)

Abstract

Wythoff, B.J., 1993. Backpropagation neural networks. A tutorial. Chemometrics and Intelligent Laboratory Systems, 18: 115-155.

Artificial neural networks have enjoyed explosive growth in the past ten years. An indication of the rate of growth of research in
this area is the fact that, although the first research journal devoted exclusively to this subject was just introduced in 1987, there are
now at least five refereed neural net research journals. These developments are being taken seriously by the semiconductor
industry as well: in addition to a host of products developed by smaller firms, Intel, AT&T Bell Labs, Motorola and Hitachi have
all introduced silicon implementations of neural network algorithms. Neural networks have a very broad scope of potential
application, including many tasks central to chemical research and development. This tutorial begins with a short history of neural
network research, and a review of chemical applications. The bulk, however, is devoted to providing a clear and detailed
introduction to the theory behind backpropagation neural networks, along with a discussion of practical issues facing developers.

CONTENTS

1. General introduction and history of artificial neural networks 116

2. Biological comparisons .. 117
3. Backpropagation networks ... 118

3.1. Introduction .. 118
3.2. Architecture and theory of the feed-forward process involved in prediction 118
3.3. Backpropagation networks and supervised learning 123
3.4. Regression and backpropagation learning 123
3.5. Generalization, interpolation and extrapolation 124

3.6. The learning equations .. 125

116 B.J. Wythoff / Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial n

4.

5.

6.

7.

8.

3.7. Sampling the training and test sets .. 127
3.8. Application of the learning equations 129

3.8.1. Local and multiple minima ... 129
3.8.2. Incremental versus batch mode learning 129
3.8.3. The momentum term ... 131
3.8.4. Noise on the error surface ... 131
3.8.5. Setting the learning parameters 132
3.8.6. Divergent weight oscillations .. 133

Modifications and alternatives to backpropagation learning 134
4.1. Fahlman’s modification .. 134
4.2. Delta-Bar-Delta ... 135
4.3. Classical optimization methods ... 135
Classification response surfaces and the sigmoid function 139
5.1. Sample problems ... 139
5.2. Optimality of neural networks for classification 147
Problematic issues for backpropagation networks 147
6.1. Overtraining and the frequency response of sigmoidal nodes 147
6.2. Architecture and design .. 150
Conclusions.. .. 152
Glossary .. 153

Acknowledgments ... 154
References .. 154

1. GENERAL INTRODUCTION AND HISTORY OF AR-
TIFICIAL NEURAL NETWORKS

As is the case with most new technologies
reaching a broad scientific audience for the first
time, artificial neural networks are currently the
subject of a great deal of excitement. Along with
this excitement come unrealistic expectations
raised by enthusiastic new converts. We will see
in this article that neural networks are not really
new, nor completely different from classical
methods, and that they will not solve all data
processing problems. For many difficult problems
which have stymied classical methods, however,
neural networks can provide an effective solution.
They offer the prospect of a usable solution to
problems which cannot even be described analyti-
cally.

Artificial neural networks are based on simpli-
fied mathematical descriptions of what is known
about the physical structure and mechanism of
biological cognition and learning. The roots of
this research field can be traced back to qualita-

tive ideas first published in the early 1940s by
McCulloch and Pitts in their paper entitled ‘A
logical calculus of the ideas immanent in nervous
activity’ [l]. Therein, McCulloch and Pitts de-
scribe binary neurons with fixed thresholds that
integrate inputs received through weighted exci-
tatory and inhibitory synapses, to determine the
activation state of the neuron (on or off). Through
complex formal proofs, they showed that net-
works employing such neurons could implement
any arithmetic or logical function.

In 1949, Hebb published ‘The Organization of
Behavior’ [2], in which he outlined the first plau-
sible learning rule for modification of the synapse
weights between neurons. Hebb’s postulate can
be stated as: synapses used repeatedly in excita-
tion are reinforced, or strengthened.

The first practical computational model was
described by Rosenblatt in a 19.58 paper entitled
‘The perceptron: a probabilistic model for infor-
mation storage and organization in the brain’ [3].
Rosenblatt described a multi-layered hierarchical
structure of neurons with localized and random

n B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) IU-155/ Tutorial 117

connectivity. Each node formed a weighted sum
of its inputs and compared them to a fixed
threshold to determine if the output would be 1
or - 1. His initial learning law was a relatively
simple reinforcement rule, which later evolved
into a mechanism for supervised learning using
error feedback. The perceptron was implemented
in the analog hardware of the day by Rosenblatt
and coworkers, who used the system to experi-
mentally demonstrate the learning, recall and
generalization capabilities that they had postu-
lated. They later proved that the perceptron (a
linear hyperplane classifier) would converge to a
solution, if one exists, for any binary classification
problem, in a finite number of steps.

An explosion of interest in neural networks
followed, and many interesting and practical ap-
plications of these linear learning machines were
produced. Among these were chemical applica-
tions of perceptrons to classifying infrared and
mass spectral data in the late 1960s and early
1970s [4-71. Two factors contributed to a marked
decline of interest and funding for neural net-
work research in the late 1960s and early 1970s.
One was the realization that the hardware avail-
able then simply could not support the calcula-
tion workload required by larger experiments and
applications. The second was the influential book
‘Perceptrons’ published by Minsky and Papert in
1969 [8]. They rigorously proved that networks
employing linear transfer functions (such as the
perceptron of that time) are incapable of solving
nonlinear classification problems. This limitation
had been realized previously by other workers.
Such was the reputation of Minsky and Papert,
however, that their pessimistic analysis of then
current as well as future neural networks consid-
erably diminished interest in the field until the
early 1980s. During this interval, a number of
dedicated researchers quietly made steady
progress in both theory and practice.

During the early 1980s neurocomputing under-
went a renaissance; research funding began to
rise rapidly as powerful new network models and
learning rules were developed. Today, there are
myriad varieties of neural network architectures
and learning rules for both supervised and unsu-
pervised learning, with many new variants re-

ported every year. Despite its history, this is still a
very young field - the research literature is each
month rife with new theorems, lemmas, and asso-
ciated proofs. Even a brief summary of the cur-
rent state of the field is beyond the scope of this
article.

Although the achievements of the pioneers of
the ’40s and ’50s may seem to be eclipsed by
those of current researchers, it is important to
realize that many of the original ideas laid out
during those early days are still in use today,
albeit in different forms.

2. BIOLOGICAL COMPARISONS

Artificial neural networks, as their name im-
plies, take their inspiration from biological sys-
tems. The efforts of the true biological neural
modelers are focused on generating a rigorous
mathematical description of biological neural ac-
tivities. The physical, morphological, and chemi-
cal structure of the brain are exceedingly com-
plex, however, and ethics preclude invasive stud-
ies on the human cortex. While a great many
pieces of information are known, there still re-
mains a vast number of missing fragments to the
puzzle which is the mystery of the human brain.
Therefore, even the most rigorous of current
mathematical models are not thought to be accu-
rate, but to provide simply the fewest conflicts
with what is known.

While the work of the biophysicists, neuropsy-
chologists, and biomathematicians has been going
on, other scientists, mathematicians, and engi-
neers have become interested in the purely ab-
stract properties of connectionist models and their
applications. These scientists (such as analytical
chemists) are generally less interested in the
faithfulness of an artificial neural network than in
any new capabilities which the model may pro-
vide as an alternative to classical methods.

Both biological networks and backpropagation
(or backprop) networks are parallel machines that
use a large number of simple processors with a
high degree of connectivity, and process informa-
tion through relatively discrete events. Both sys-

118 B.J. Wythoff / Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial n

terns use a distributed form of representation or
memory. Biological networks and backprop net-
works are both adaptive systems that learn by
adjusting the ‘strength’ of the connections be-
tween neurons in some manner. Table 1 indicates
some of the gross differences between a typical
backpropagation network implemented on a digi-
tal computer, and nature’s human neural net-
work.

3. BACKPROPAGATION NETWORKS

3.1. Introduction

We will focus now on a single neural network
model: multilayered, feed-forward, backpropaga-
tion networks. This choice is not an arbitrary one:
(a) backprop networks are capable of implement-
ing pattern association, pattern classification, data
compression, robot control, and function approxi-
mation tasks, which together encompass the bulk
of possible chemical applications; (b) they have
been extensively studied, both theoretically and
experimentally; (cl they have been the network
architecture of choice in the vast majority of
practical applications, including chemical applica-
tions.

To date, chemical applications of backpropa-
gation networks have included classification of:
sugars from 13C NMR data [9], functional groups
from infrared spectra [lO,ll], infrared peaks from
infrared spectra [12], functional groups from mass
spectra [131, aromatic substitution reaction prod-

TABLE 1

ucts 1141, protein secondary structure [15,16], jet
fuels from chromatographic data [17], odorants
from piezoelectric crystal arrays [18], and alloys
from glow-discharge atomic emission spectra [19].
Quantitative applications have included wheat
samples from near-IR data [20], pharmaceutical
components from UV-VIS data [20,21], quantita-
tive structure-activity studies on drugs [22-241,
and pork constituents from near-IR data [25].
Recirculating neural networks have been used for
spectral data compression [26], and an algorithm
for designing minimal networks has been re-
ported in the chemometric literature [27]. A re-
cent review explored many of these works in
greater detail [28]. This list will continue to grow
rapidly for the foreseeable future.

3.2. Architecture and theory of the feed-forward
process involved in prediction

The explosion of interest in backpropagation
networks is due to the work of Rumelhart and
McClelland [29]. It has since been shown that
other workers independently discovered the back-
prop learning rule as early as 1974 [30]. Rumel-
hart and McClelland, however, provided lucid
descriptions of the architecture and a clear pre-
sentation of the derivation of the training rule,
along with elegant and simple example applica-
tions in their 1986 manuscript. Their communica-
tion skills caused rapid dissemination of the new
method to other scientists and engineers.

There are two phases to the operation of back-
prop nets: the forward propagation of activation,

Some of the differences between a typical backpropagation network simulated on a digital computer, and the human cortex

Number of neurons
Connection density
Uniformity
Timing
‘Quanta’
Response time (1 neuron)
Topological organization
Learning modes

Backpropagation

lo’-104
5-100 synapses/neuron

Human cortex

Homogenous
Synchronous
Digital
Nanoseconds
Usually none
Supervised
Deterministic

10’0
lo’-lo4 synapses/neuron
Very heterogenous
Asynchronous
Analog
Milliseconds
Highly organized
Supervised and unsupervised
Deterministic and stochastic

n B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 11%l%/Tutorial 119

Input Layer

Hidden Layer

Fig. 1. A fully connected backpropagation network, with the
direction of activation and error flow indicated.

which is involved in producing an output result, is
described here. The backward propagation of er-
ror, which is necessary for ‘learning’, is described
in subsequent sections.

A backpropagation network uses a layered hi-
erarchical architecture of simple neurons (nodes)
employing a high degree of connectivity between
layers. Only between-layer connections (synapses)
are allowed in the ‘simple’ non-recursive net-
works described here; no within-layer connec-
tions may be used. A schematic diagram of a two
layered feed-forward network employing full con-
nectivity between adjacent layers is shown in Fig.
1. It is often overlooked that the backpropagation
algorithm does not require complete connection
of adjacent layers - restricted connectivity
schemes may be employed. Also permitted are
synapses which ‘skip’ one or more layers. The
only real restriction is that activation can only
flow forward in the network, not backward, later-
ally, or recursively.

The ‘input layer’ performs no processing on its
inputs, and serves merely to distribute them to
the first processing layer. For this reason, it is
often not counted in reporting the number of
layers in a network architecture, as will be done
here. Following the input layer are one or more
‘hidden layers’, so called because they receive no
input from, and produce no output to, the out-
side world. Finally, the ‘output layer’ produces
the output results of the network for the user.
The number of input nodes is fixed by the num-
ber of input variables provided for the task, and
the number of output nodes is fixed by the num-
ber of values which are desired. These would

normally correspond to the number of indepen-
dent and dependent variables involved in the
problem, respectively.

Each node in the network receives one or
more inputs from the outside world or from pre-
ceding layers, and produces a single output value
which is broadcast to other node inputs in suc-
ceeding layers. The equations which follow are
expressed from the viewpoint of a single node,
and should be understood to be carried out over
the entire network. The first step in calculating
the output of a given node is to determine the net
input, which is just the dot product of the node’s
weight vector with its input vector:

a = 2 wini + 8 (1)
i=l

where xi represent the inputs to the node; wi
represent the weights applied to those inputs; 8 is
the offset or bias term for the node; and n is the
number of synapses for the node.

Next comes the determination of the node
output, which is performed by passing the net
input of the node through its transfer function.

Although any continuously differentiable (the
derivative is defined over the entire function do-
main) and monotonic (the function is either con-
tinually increasing or decreasing over the entire
domain) transfer function may be employed in
backpropagation networks, those used most often
are linear and sigmoidal functions. Linear nodes
may be used in conjunction with nonlinear nodes,
for scaling the input or output, or to perform
feature compression by generating a reduced lin-
ear combination of a preceding layer’s outputs. A
nonlinear transfer function in a multilayered neu-
ral network allows it to perform nonlinear func-
tional mappings. There are several forms of equa-
tions which may be used to implement a sig-
moidal transfer function, including the hyperbolic
tangent, but the most often used form is shown
below:

1.0
o=

1.0 + e-* (2)

where o is the node output, and a is the net
input, from Eqn. 1.

120 B.J. Wythoff/ Chemom. Intell. Lab. Syst. 18 (1993) 1X5-155 / Tutorial n

A one-dimensional sigmoid function was gen-
erated by using Eqn. 2, and is shown along with
its first derivative in Fig. 2a. This is the type of
function that would be produced by a node with
one input. The weight on the single input was
fixed at 1.0, and the offset at 0.0 for the plots
shown in Fig. 2a. For future reference, it is im-
portant to note that, with this weight and offset,
the net input is equal to the external input, so
Fig. 2a also shows the response of the sigmoid
with respect to its net input. The effects of vary-

(a) (W
l.OO-

0.60-

0.60-
2
3
ao.ro-

1st Derivative

-20 -10 0 10 20

Inout

(4 k-4
1.00

1

-10 0 10 20

Input

ing the offset from - 10.0 to 10.0, by steps of 2.0,
is shown in Fig. 2b. Varying the offset serves to
translate the sigmoid along the x axis. When a
positive input weight is used, positive offsets shift
the sigmoid center to more negative values, and
negative offsets shift it to more positive values. A
negative input weight produces the converse be-
havior.

The effects of varying the weight from 0.25 to
4.0, by factors of 2, is shown in Fig. 2c. The
sigmoid is a centrosymmetric function, with the

1.00

+,0.60

z
U
so.40

-20 -10 0 10 20

Inout

\
\
\

\ \
\ \
\ \
\ \

\
\

-10 0 10 20

Input

Fig. 2. A one-dimensional sigmoid function as would be formed by a single neuron with one input. (a) The sigmoid and its first
derivative; (b) when a positive input weight is used, a positive offset shifts the active region toward values more negative from zero,
and a negative offset shifts the center to more positive values; (c) increasing the input weight increases the steepness of the sigmoid
response; (d) a positive offset combined with: positive weight values (solid lines) and negative weight values (dashed lines).

n B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial 121

center located at output 0.50. It can easily be
verified by the reader that this occurs when the
net input is zero, and therefore occurs at:

8 = - xwixi (31

Increasing the weight magnitude produces a
steeper sigmoid function, and in the special case
of zero offset, as shown in Fig. 2c, does not
change the location of the center (refer also to
Eqn. 3). The solid lines in Fig. 2d show the result
of varying the weight through the same range as
was used in generating Fig. 2c, when an offset of
4.0 is used. Larger weights shift the center to
more positive values, as well as increase the slope.
Finally, the dashed lines in Fig. 2d show the
sigmoid output when an offset of 4.0 is used, and
the weights were varied from -0.25 to -4.0, by
factors of 2. The effect of reversing the weight
polarity while retaining the same offset is to
reflect the function output about the line input =
0.0. If both the weight and the offset polarities
are reversed, then the response function is re-
flected about its center.

The adjustment of the network weights during
training provides the adaptive fitting capabilities

of backprop nets. It is important to note that
since the input domain of the sigmoid is bounded
during training (a finite range of input magni-
tudes is presented), the weight adjustments can
also serve to ‘select’ a portion of the full shape of
the sigmoid function to be observed over this
input domain, by performing the appropriate
affine transformation.

Some important characteristics of this sig-
moidal function are that it is a centrosymmetric
analog threshold logic function, with a smoothly
varying output, bounded at 0.0 at -03, and 1.0 at
+a. The first derivative is very small when the
function center is approached from the left (pro-
viding resistance to noisy inputs) or from the right
(providing stability to the learning process, as
explained later). In fact, the output of the sig-
moid function is approximately equal to one con-
stant (0.0) over roughly half the domain of the set
of real numbers and another constant (1.0) for
the complementary set elements, under ordinary
conditions. All the significant variation is nor-
mally contained in a narrow portion of the input
domain, this portion will hereafter be termed the
‘active region’ of the sigmoid.

Fig. 3. A two-dimensional sigmoid function, as would be generated by a neuron with two inputs. (a) Schematic of the ‘network’; (b)
surface plot of the response in the two-dimensional input space; (c) contour plot of the response.

122 B.J. Wythoff/ Chemom. Intell. Lab. Syst. 18 (1993) lU-lSS/ Tutorial n

(4
-15.00 -12.00 -9.00 -6.00 -3.00 0.00 3.00 6.00 9.00 12.00

6.00 -

-6.00 -

-15.00
-1 5.00 -12.00 -9.00 -6.00 -3.00 0.00 3.00 6.00 9.00 12.00

Fig. 3 (continued).

A two-dimensional sigmoid, corresponding to shown in Fig. 2a. Similarly, the equation of the
a node receiving two inputs, is shown in Fig. 3. It net input for two independent variables forms the
is helpful to mentally visualize the two individual equation of a plane. The sigmoidal transfer func-
parts of the activation equation: if x is the input tion modifies the flat plane to produce the S-
vector, then the calculation of the net input can shaped plane shown in Fig. 3b. As before, chang-
be symbolically represented as f(x), and the cal- ing the offset serves to translate the active region
culation of the output as g(f(x)). Calculation of in the input space. With multidimensional sig-
the net input (forming f(x)> for a single input moids, changing the relative values of the weights
(independent variable) constitutes the equation serves to rotate or orient the active region in the
of a line. Passing this dependent value through input space, while changing the absolute weight
the transfer function (forming g(f(x))) modifies values serves to alter the slope (and also size) of
the straight line to give the S-shaped response the active region.

6.00

-6.00

-9.00

-12.00

-15.00

8 B.J. Wythoff/Chemom. Intel1 Lab. Syst. 18 (1993) 11%155/Tutorial 123

In a network employing sigmoidal nodes, each
layer of m nodes receiving n inputs can be con-
sidered to individually perform a nonlinear pro-
jection of the data from an n-dimensional input
space to an m-dimensional output space. If m is
less than n, then it may be considered that a data
reduction is performed by such a layer. The net-
work learns by positioning, orienting, and ‘slop-
ing’ the active regions of its sigmoids in the input
space of each layer, so as to approximate the
overall mapping desired.

3.3. Backpropagation networks and supervised
lea ming

Backpropagation nets are used to implement
supervised learning tasks, i.e., tasks for which a
representative number of example inputs and
correct outputs are known. All backprop net-
works work by learning to approximate a unidi-
rectional mapping from an n-dimensional input
space R”, (where n is the number of input vari-
ables) to an m-dimensional output space R”
(where m is the number of output variables).
Learning is accomplished by adjusting the weights
shown in Eqn. 1, using error feedback from the
training examples, so as to bring the network
estimates of the correct outputs for the training
patterns closer to the true values. The fundamen-
tal concept involved in all backpropagation appli-
cations is that we are using an ensemble of rela-
tively simple functions (e.g. sigmoids), and com-
bining them in both additive and embedded fash-
ions in order to approximate a complex unknown
mapping function.

3.4. Regression and backpropagation learning

The metric used to measure performance on
backprop nets is normally (other metrics are
sometimes used) the mean squared error (MSE),
defined as

I nrm 1

E = ~ ,C I C (Ytj-Oij)2
I=1 j=l J (4)

where y,, represent the correct outputs for a
pattern i; Oij represent the network estimates for

pattern i; m is the number of output nodes; and
n is the number of training patterns. This can
readily be seen to be a least squares error crite-
rion just as is used in classical regression analysis.
The fundamental difference is that, while classi-
cal regression begins with the assignment of an
explicit model generated using analytical knowl-
edge of the system under study, backpropagation
develops an implicit model. The form of this
model is constrained only by the bounds on the
set of all functions that the chosen architecture
can implement. Therefore, backpropagation
learning can be considered to be a generalization
of classical regression, a sort of ‘super regression’.
It is interesting to note, therefore, that the title of
Werbos’ 1974 Harvard dissertation, which con-
tains the first known published derivation of the
backprop learning rule, is entitled ‘Beyond Re-
gression’ [30].

Just as in classical regression analysis, since
the regression performed in backprop learning is
a nonlinear form, it must be accomplished itera-
tively, rather than by direct solution through ma-
trix inversion, as is done for linear regression
problems. A form of gradient descent function
minimization is implemented in backprop learn-
ing to solve the problem of minimizing Eqn. 4.
Although it is tempting to propose that we re-
quire at least as many training patterns as the
total number of weights in the network to solve
the system, this is not necessarily so. Such an idea
is based loosely on the fact that in order to
specify a unique solution to a mapping problem,
if it exists, then the number of independent con-
straints available must be greater than or equal to
the number of independent free parameters. One
difficulty with this line of reasoning is that train-
ing patterns with more than one output value
may provide a corresponding number of indepen-
dent constraints per pattern.

Despite claims by many network proponents
that backpropagation networks are superior to
conventional methods, this is not always true.
Consider a situation where the variance in a data
set may be adequately described by a known
theoretical model, for example a linear model:

r=k,x+k,+e (5)

124 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial n

where r is the experimental response, k, and k,
are the experimental constants to be fitted, and E
represents random error. The deterministic por-
tion of the variation is completely described by
this model. The very meaning of the term E is
that it cannot be predicted. Therefore, assuming
that the E is homogenously distributed over the
input variables, the only way to reduce the uncer-
tainty of the predictions of the model is to reduce
the average magnitude of E, through better in-
strumentation or sample manipulation, not to
substitute a neural network.

Now consider a data set with IZ degrees of
freedom (d.o.f.1, and an underlying deterministic
behavior (the analytical description of the system)
containing m d.o.f., where m <n. The n - m
degrees of freedom which remain are due to
errors in the data. The pitfall of using a neural
network to generate the mapping function, rather
than fitting the analytical equation, is that the
neural network has no explicit description of the
functional model, and so can make no distinction
between deterministic and stochastic variation in
the data. The network will use all available d.o.f
(determined by the architecture) to reduce the
MSE for the data. If the network has many more
d.o.f than the system (m), this will result (if the
training process converges to the global mini-
mum) in overfitting, or ‘fitting to the noise’ in the
data.

It has been observed experimentally for some
time that the use of IZ hidden nodes to learn a
mapping on a training set of m datapoints, where
II am, can result in ‘grandmothering’ behavior,
where the network serves as a simple lookup
table for the training set. There has been much
theoretical effort directed toward establishing
bounds on the mapping capabilities of various
network architectures and transfer functions. We
will informally present here some of the practical
consequences of recent theorems published by
Sontag [31,32]. The manuscripts cited consider
the mapping capabilities of a feedforward net-
work with a single hidden layer, and employing
some commonly used transfer functions.

With respect to the lower bounds on classifica-
tion performance, Sontag has shown that such a
network employing n sigmoidal nodes is capable

of dividing any arbitrary set of 2n points, regard-
less of the dimensionality, into two arbitrary sub-
sets. Clearly, if the training procedure is success-
ful in locating the global minimum, we will never
need to use more than half as many hidden nodes
as training patterns to perform any binary classifi-
cation task. If we have a sufficient number of
training patterns to define the true shape of the
class boundaries, we can expect to use far fewer
to achieve proper generalization. The network
limit described above could even resolve training
patterns which were ‘randomly mixed’ in the in-
put space, and we should not expect meaningful
data to have this distribution.

Sontag also derived results on the interpola-
tion capabilites of networks employing a single
hidden layer of sigmoidal nodes, relevant to
quantitative chemical analysis applications. Again,
we consider here only the lower limit on such
capabilities. Sontag found that a network employ-
ing n sigmoidal hidden nodes can approximate to
an arbitrary degree of accuracy the response of
any 2n - 1 datapoints, regardless of the dimen-
sionality of the input. Again, this lower limit on
performance places upper bounds on the archi-
tecture required for a given training set. While a
great many questions remain unanswered, results
such as these are emerging which are beginning
to clearly define the sometimes nebulous nature
of neural network research and application is-
sues.

The discussion above also leads to the follow-
ing generalization: neural networks should only
be used when the equations describing the varia-
tion in a system are unknown, or cannot be
solved. Attempts to do otherwise will produce a
solution which can at best match the predictive
performance of the analytical solution on un-
known inputs, and will probably be worse.

3.5 Generalization, inteqwlation and extrapolation

A close fit of the neural network model to the
training data is not the cardinal issue for the
tasks which we seek to solve with them. If all that
is desired is to recall a particular output pattern
when presented with a particular input pattern,
then no model, either explicit or implicit, is

n E.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) IU-155/ Tutorial 125

needed for the system. Instead, a simple lookup
table is sufficient.

What is desired is to produce a valid estimate
of the correct output when a novel input is pre-
sented to the trained network. This capability is
termed generalization, and can only be measured
using test inputs which have not been used to
guide the network training process. We can dis-
tinguish two types of generalization: interpola-
tion, and extrapolation. Interpolation is measured
by using test inputs which lie within the bound-
aries of the training inputs. Extrapolation is
measured by using test inputs which lie outside
the boundaries formed by the training inputs.

A neural network with the appropriate archi-
tecture, properly trained, will possess good inter-
polative capabilities. Extrapolation results, how-
ever, are often unsatisfactory. The reason for this
is simply that the equation which is actually fitted
is not the analytical description for the system,
and has only been constrained to behave well
within the bounds of the training set. It is useful
to consider, for example, that in a simple 3 : 2 : 1
network employing three input variables, two hid-
den layer nodes, and one output node, the equa-
tion which is fitted is:

r= {I + exp[-(wZ1i expp[--(wiiiri

+w112x2 + w113x3 + 4l)l + w212

xem[- tw121x1 + w122x2 + w123x3 + %2)1 +

021>1} -’

where the first subscript on the quantities indi-
cates the row in the network, the second indicates
the node, and the third, where used, indicates the
synapse; the xi here are the external inputs to
the network; and the Wijk and Oij are the parame-
ters to be fitted.

With proper adjustment of the weights accord-
ing to the MSE criterion the network may pro-
duce good results over the domain of the training
set and for intermediate values. However, the
lack of an analytical model becomes a critical
issue when trying to extend the empirical model
generated to values outside the training domain.
With no training data to constrain the model in
this region, the network may exhibit pathological

behavior on extrapolation. Although extrapolat-
ing a valid theoretical model is often risky as well,
due to uncertainty in the model parameters or to
a limited range of model validity, this is nonethe-
less an issue on which an analytical solution is
preferable.

3.6. The learning equations

In order to minimize the expression of Eqn. 4
by adjusting the weights, we need to have an
expression for the partial derivative of the error
with respect to each weight:

*w&
,

We will not derive this expression here - the
derivation is very nicely sketched by Rumelhart
and McClelland [291, and involves repeated appli-
cation of the chain rule for partial derivatives,
and some clever substitutions. The backprop
learning law, also known as the ‘generalized delta
rule’ is given by:

Awj = q&xi (8)

where Xii represents the jth input to the ith
node on that pattern presentation; 77 is the ‘step-
size’ parameter; and ai is the ‘delta’ term repre-
senting the error for the ith node.

The stepsize parameter is a user adjustable
parameter which allows some control over the
size of the weight changes during training. The
delta term is related to calculable quantities for
an output node by:

si=(y,-oi)[oi(l-oi)] (9)

where oi is the actual output for node i, and yi is
the correct output for node i.

The second term in Eqn. 9 [Oi(l - oil] repre-
sents the derivative of the activation function
with respect to the net input. This term must be
modified appropriately if a transfer function other
than Eqn. 2 is to be used.

Although the first term, representing the error
portion of Eqn. 8, may be directly specified for an
output layer node, it cannot be determined di-
rectly for a hidden layer node. Instead, it is

126 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 11%lS5/ Tutorial n

defined recursively in terms of the delta values
for the nodes in the layers above it. These delta
values are passed back through the synapses, or
‘backpropagated’, so that the error value for a
hidden layer node (i) is taken as a weighted sum
of the errors of the nodes in the layers above to
which it is connected:

(10)
j=l

where wij is the weight on the output line of node
i to node j; Sj is the 6 value for the node j in the
layer above which is ‘pointed to’ by the synapse
with weight wij; and IZ is the number of synapses
for node i.

It can be seen from Eqn. 8 that when using
incremental learning (a correction is made after
each pattern presentation) the weight vector of a
given node must move parallel to the line defined
by its input vector on that presentation. This is
why weight plots of nodes located in the first
hidden layer often show the same features as the
input patterns.

Consider a network employing sigmoidal nodes
which is being used for classification, with either
a separate output node, or even a separate net-
work, for each class. Normally, an output value of
1.0 is requested for class presence, and 0.0 for

(4 stepsize- 2.000 Momentum- 0.000

Weight 1 value

class absence. In such cases, and where certain
nodes in the first hidden layer are associated with
a particular output class, the polarities in the
features visible in the weights will be opposite for
the target class and for competing classes. This is
because errors being fed back from the output
nodes will have opposite signs for the target class
and for competing classes. This can be stated
with certainty because the sigmoidal function ap-
proaches the values of 0.0 and 1.0 asymptotically,
and so the network estimate for class presence
must always be low (less than l.O), and for class
absence must always be high (greater than 0.0).
Knowledge of this opposed polarity of error feed-
back, and hence, weight adjustment, allows inter-
pretation of the features observed in weight plots
in terms of the uniqueness of characteristic fea-
tures in the input, for classification problems.

As alluded to above, even when incremental
learning is employed, the weight vector plots need
not appear like any of the input patterns, how-
ever. The final form of the weight vector is deter-
mined from the summation of many steps of
different magnitudes and signs (corresponding to
the 6 term of Eqn. 8 at each step). Only each
individual step is oriented along the line defined
by a given pattern vector. A particular neuron
with II weights that experiences n linearly inde-

(b)
stepsize- 2.000 Momentum- 0.900

Weight 1 value

Fig. 4. Training progress on the problem cos(x, +x2) for a system with two weights. The surface shows the mean squared error as a
function of the two weight values. (a) Stepsize = 2.0, momentum = 0.0; (b) stepsize = 2.0, momentum = 0.90.

n B.J. Wythoff/Chenwm. Intell. Lab. Syst. 18 (1993) 115-lSS/Tutorial 127

pendent input patterns during training has access
to the entire n-dimensional weight space belong-
ing to it. Fewer than it linearly independent input
patterns will allow access to only a subset of the
weight space for that neuron, because they can-
not completely span its weight space.

3.7. Sampling the training and test sets

In developing a backpropagation solution, it is
essential to have a sufficient number of known
examples for training and validation. A ‘sufficient
number’ constitutes enough examples to con-
strain the functional mapping learned by the net-
work into the proper form. Data sets exhibiting
more complex functional behavior such as multi-
ple interactions between variables, disjoint
and/or overlapping pattern classes, etc. will re-
quire more training examples to completely con-
strain the model, and more testing examples to
properly validate the model performance.

The training and test examples can be consid-
ered to be drawn by discretely sampling the en-
tire ‘world’ of possible input/output pairs for the
problem. This sampling should be performed ran-
domly, and with the same probability distribution
as the world of possible inputs/outputs. If these
conditions are met, then as the size of the train-
ing set is increased, the functional mapping
learned will converge to the behavior which would
be observed if the entire problem world were
sampled. Similarly, as the size of the test set is
increased, then for a given network, the mean
squared error measured on the test set will con-
verge to the idealized world value. If it is known
that an adequate training set was used, the proper
size for a test set can therefore be established by
using progressively larger test sets, and looking
for convergence of the mean squared error for
the test set [33]. Alternatively, to verify adequate
training and test sets, we can repeatedly train and
test the same network on a data set, dividing the
training data into training and test sets of fixed
proportion, and randomly choosing the elements
of each set. If adequate test and training data are
available for the number of degrees of freedom
present in the network, then stable MSE values
will be observed on both the training and test

sets, regardless of the random elements placed in
either.

Another important consideration for training
set sampling is that the error minimization can be
seen from Eqn. 4 to take on any bias present in
the training set. Consider, for example, a classifi-
cation problem for which class A has many more
examples in the training data than any other
class. The resulting network will likely perform
best on discrimination for class A, because the
error minimization will be biased toward it, due
to its greater frequency of appearance in the
training data. One simple way to overcome this
sort of behavior is to divide the training data into
separate ‘bags’, one for each class, and to sample
from each bag with equal likelihood. This does
not make very efficient use of the training data,
however.

Curry and Rumelhart [13] interpreted the class
frequency bias as the Bayesian class prior proba-
bilites, and used an error weighting system to
eliminate that bias. This author has used an anal-
ogous weighting system, which will be termed
‘fractional complement error weighting’ here:

Ei = Ci(yi - o$ (11)
where Ei is the error value for pattern i; ci is
equal to 1 - (NA/NT) if the pattern belongs to
class A, and ci is equal to (NA/NT) if the pattern
does not belong to class A; NA is the number of

A

E

I
*

Wmin W

Fig. 5. A conceptual diagram of a divergent trajectory in a
one-dimensional quadratic weight error space.

128 B.J. Wythoff/ Chenwm. Intell. Lab. Syst. 18 (1993) 115-155/Tutoriul w

patterns belonging to class A; and NT is the total
number of patterns.

These weights are proportional to those used
by Curry and Rumelhart. The latter system em-
ployed weights of l/(NJNr) for patterns con-
taining class A, and l/[l - (N,/N,)] for pat-
terns not containing class A. It is not entirely
clear from the text of their manuscript [13], but it
appears that Curry and Rumelhart still normal-
ized the weight error derivative sums by the num-
ber of patterns sampled, whether or not error
weighting was used. This might explain why they

reported that they needed to use a lower value of
the stepsize parameter, when “. . . prior probabil-
ity weighted errors.. . ” were used, because they
found that such weighting was “. . .causing an
uneven descent.” In any case, the present author
has found a very simple modification to the nor-
malization factor to be useful. The error sum may
alternatively be normalized with the sum of the
pattern error weights encountered during the
batch, just as is done when calculating any con-
ventional weighted mean. Such a scheme places
the individual error weights in proper relative

(b)
1.00

T

i
,0.60

2
c,

SO.60
Node 1

\

I\
Node 2

(4

I 1

-10 0

Input

-

-

I

0.00
I I

I, \,
1

-20 -10 0 10 20

Input

k-0
1.5

I I -0.5,

2-D Nonlinear Projection

I I

10 20 -0.5 0.5 1.5

Hidden Node 1

Fig. 6. A 1: 2 : 1 network solution to a nonlinear one-dimensional classification problem. (a) Schematic diagram of the network; (b)
response of hidden nodes 1 (solid line) and 2 (dashed line); Cc) output node response; Cd) response of hidden node 1 versus that of
hidden node 2, along with the contour of the sigmoid of the output node at output = 0.50 in the hidden node space.

W B.J. kQthoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 129

proportion, while still preserving the ‘correct’
magnitude for the overall error sum, and hence
weight error derivative vector length.

Finally, the training patterns are normally
sampled in random, rather than sequential order.
When full batch mode learning is used (see be-
low), there are no practical differences between
random or sequential pattern sampling. If train-
ing steps are made after sampling only a subset of
the training patterns, however, then random sam-
pling of the training patterns will decrease the
likelihood of becoming trapped in a repetitive
cycle of nonproductive steps on the error surface.

3.8. Application of the learning equations

3.8.1. Local and multiple minima
One can consider the training process to be a

search for the global minimum on an n-dimen-
sional error surface, for which n is the total
number of adjustable weights in the network.
With multilayered nonlinear neural networks, lo-
cal minima may exist on the error surface. In
addition, the error surface has multiple ‘copies’
of the various minima, due to degeneracy arising

(W
m

I)

from symmetry in the network architecture. In
order to rationalize this redundancy, consider
what would happen to the entire network map-
ping function if any hidden layer node is swapped
with another in the same layer, and their input
and output synapses are transferred along with
them: there would be no change in the network
mapping function. The larger the number of hid-
den layer nodes, the more ‘duplicate’ minima that
are present, as this is essentially a combinatorial
phenomenon.

While the existence of multiple global minima
is (generally) good news, the existence of any
local minima is bad news. Other than exploring
the entire error surface, there is no way to guar-
antee that a minimum which has been located on
an arbitrary error surface is the global minimum.
This difficulty with local minima is shared with a
great many alternative methods, however.

3.8.2. Incremental versus batch mode learning
It can be seen from Eqn. 4 that in order to

rigorously calculate the weight error derivatives
for the training set, it is necessary to sum the
errors over the entire training set, before making

Fig. 7. A 2 : 2: 1 network solution to the circle in a square problem, representing a single class modeling problem. (a) Schematic
representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in
the two-dimensional input space; (d) contour plot of the fitted response surface.

130 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial n

0.92 -

0.67 -

0.42 -

0.25 -

0.06 -

(d)
0.00 0.08 0.17

1 .oo I I

0.00 ’ ’
0.00 0.08 0.17

0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1 .oo

Fig. 7 (continued).

L

0

*a
c r
\

c
i

0.92

0.83

- 0.67

- 0.58

- 0.50

/- 0.42

- ok3

.- 0.25

-- 0.17

-. 0.08

0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1 .oo

a correction to the weights. This is termed full
batch mode learning. At the other extreme, we
can use the estimate of the gradient provided by
measuring the error on a single pattern, and
correct the weights after each pattern presenta-
tion. This latter method is termed incremental
learning. The coarse estimate of the gradient
generated during incremental learning with ran-
dom pattern selection has the effect of superpos-
ing a stochastic component on the search process,
which can be beneficial for the reasons described
above. In between full batch and incremental

learning, one can form improved estimates of the
true gradient by examining a random subset of
the training patterns before each weight correc-
tion. Often, using just a small fraction of the
training set provides a sufficient estimate of the
gradient, and the more frequent weight updates
provide a faster solution than full batch mode
learning.

If a form of batch mode learning is used, then
the weight error derivative should be divided by
the number of patterns used in estimating it,
prior to applying Eqn. 8. This practice allows

n B.J. Wythoff/Chemom. Inteli. Lab. Syst. 18 (1993) 115~155/ Tutorial 131

meaningful comparison of the effects of different
learning parameters, even when different num-
bers of patterns are used to estimate the weight
derivatives.

3.8.3. The momentum term
An almost universally used modification to the

basic backpropagation learning rule (Eqn. 8) is

Awi(t) = T/&x~ + a[Awi(t - l)] (12)

where t is an index denoting the discrete time
steps involved in learning, and (Y is the momen-
tum constant.

The right-hand term in Eqn. 12, called the
‘momentum term’, causes a fraction of the previ-
ous step to be added to the current step. Momen-
tum will cause opposing components of the step
at successive positions to be canceled, and rein-
forcing components to be enhanced. This has
many potential benefits. Acceleration across long
regions of shallow but fairly constant gradient can
be achieved. If sufficient momentum is held on
entering a local minimum, this may allow uphill
escape from the opposite side.

A graphical example of the effect of momen-
tum in a two-dimensional weight space is shown
in Fig. 4. A single node system with two input

weights and a bias weight fixed at 3.9 was permit-
ted to train on the function cos(x, +x,1. Both
inputs were constrained in the training set to the
range O-r/4. This provided a simple two-dimen-
sional error surface with a broad minimum. Full
batch mode learning was used. Thirty-five steps
were taken, beginning with an off-axis approach
position. Fig. 4a shows progress with a stepsize of
2.0 and momentum of 0.0 and Fig. 4b shows
progress made with the same stepsize and mo-
mentum of 0.9. In a given application, the actual
settings of these parameters must be scaled ac-
cording to the size of the features in error space,
however, these plots provide a qualitative per-
spective. Although momentum here provided a
somewhat circuitous route towards the minimum,
it nonetheless allowed greater progress in this
case, for the same number of steps. More compli-
cated weight vector trajectories were observed at
other settings, but this same qualitative argument
was generally true.

3.8.4. Noise on the error surface
The error surface in practical problems can be

‘noisy’, rather than smooth. This may be due to
errors in measuring or estimating the input
and/or output vectors used in training. A detri-

Fig. 8. A 2: 3 : 1 network solution to the circle in a square problem, employing a linear output node. (a) Schematic representation of
the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in the hvo-dimen-
sional input space; Cd) contour plot of the fitted response surface.

132 B.J. Wythoff / Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial W

M
0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.56 0.67 0.75 0.83 0.92 l.OO_ --

1 .oo

0.83

0.67

0.58

0.42

0.25

0.08

0.00 1 1
0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1 .oo

Fig. 8 (continued).

0.67

0.58

0.42

0.25

0.06

mental consequence is that location of a mini-
mum is often delayed by superfluous random
local gradients due to this noise. The use of a
momentum term helps to filter out the effect of
high frequency noise on an error surface. A possi-
ble beneficial effect of this noise, however, is that
the superposition of a stochastic component on
the search process results in a more thorough
exploration of the error surface. This can often
be sufficient to escape from shallow local minima,
or circumvent others. For this reason, many
workers purposely add independent noise to the

input or output vectors, or randomly perturb the
weights of the network at regular intervals during
training. These perturbations would normally be
decreased in magnitude as training progresses, to
allow more accurate location of the precise mini-
mum.

3.8.5. Setting the learning parameters
Unfortunately, there are no hard and fast rules

for setting the learning parameters commonly
used: the stepsize and momentum terms. While
smaller settings will produce more ideal behavior,

m B.I. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 133

they will also exacerbate an already computation-
ally expensive problem. Momentum, if used, must
be less than 1.0 in order for learning to be stable.
Otherwise the weight vector will move on the
error surface under greater influence from the
previous gradient than from the current gradient,
for a given step. Typical settings are from 0.40 to
0.90.

Stepsize, on the other hand, can be set at any
value - typical settings range from 0.10 to 10.0,
if sigmoidal output nodes are employed. Error
surfaces with broad shallow minima will be best
searched with a larger stepsize, while those with
small steep minima are best searched with a
smaller value. Settings which are too large may
promote oscillation about a minimum, or may
cause a jump completely over a global minimum
into an attractive basin of a local minimum.

using a simple example: consider a one-dimen-
sional error surface with a quadratic minimum:

E = k(w - we,,)’ (13)

The error gradient would therefore be given by:

3E
aw = 2k(w - w,,,~“)

and the gradient would therefore continually in-
crease with the term (W - w,&. If the learning
parameters are set such that the first step taken
carries the weight vector across the minimum to a
distance farther from the minimum than the
starting point, then the weight vector is already
doomed to undergo divergent oscillations, as each
step will cause a jump to the opposite side further
than the previous one, encountering ever-steeper
gradients, and so taking ever-larger steps back
and forth (Fig. 5). The use of momentum will also
discourage divergent oscillations in the weight
vector, due to the cancellation of opposing step
components, as discussed above.

This phenomenon is much more common in
networks employing linear output nodes. Since

3.8.6. Divergent weight oscillations
One behavior which may be observed during

training is that of divergent oscillations in the
weight vector position, eventually causing the
weight values to ‘explode’. This can be explained

(b)

Fig. 9. A 2: 3 : 1 network solution to the circle in a square problem, employing a sigmoidal output node. (a) Schematic
representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of the fitted response surface in
the two-dimensional input space; (d) contour plot of the fitted response surface.

134 B.J. Wythoff / Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial n

@I
0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1 .oo

1.00 1 .oo

0.92 / 0.92

0.83 0.83

0.75 0.75

0.67 - 0.67

0.58 - 0.58

0.50 - 0.50

0.42 - 0.42

0.33 - 0.33

0.25 0.25

0.17 0.17

0.08 0.08

0.00 0.00
0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1 .oo

Fig. 9 (continued).

the output of such nodes is unbounded, the error
surface in such a system must also be unbounded,
rendering the situation described above more
likely. When sigmoidal nodes are used at the
outputs, however, the bounded output of these
nodes places a corresponding bound on the error
surface. Therefore, larger stepsize parameters
may be typically employed in networks containing
only sigmoidal nodes.

Weight values may also be caused to explode if
the error surface decreases monotonically along a
particular weight dimension. This situation can

be avoided by performing explicit bounds check-
ing on the weights during training.

4. MODIFICATIONS AND ALTERNATlVES TO BACK-
PROPAGATION LEARNING

4.1. Fahlman’s modification

It is clear from Fig. 2a that the derivative of
the sigmoidal transfer function approaches zero
when the magnitude of a neuron’s net input is

H B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 11%lSS/Tutorial 135

large, regardless of its polarity. This portion of
the weight error derivative may inappropriately
contribute to very small steps for a node when its
weights create large net inputs for the majority of
the input patterns. It has been suggested that
many apparent local minima may actually be due
to ‘stuck units’ in such a situation. A simple but
effective solution was proposed by Fahlman [34]:
add a small constant amount to the sigmoid
derivative term in the weight error derivative, to
avoid that contribution from approaching zero.
The actual derivative of Eqn. 2 ranges from ap-
proximately zero to 0.25. Adding a value of
0.010-0.10 to this helps to avoid stuck units, and
has been shown to provide more robust, and in
many cases, faster learning.

4.2. Delta-Bar-Delta

There exist a number of variations on the
so-called ‘Delta-Bar-Delta’ rule for the learning
parameters [35]. In these methods, each weight is
often given its own stepsize parameter which is
varied as training proceeds. In theory, this frees
the operator from worrying about setting the
learning parameters, and lets feedback from the
error surface itself be used to dynamically adjust
them. The following algorithm states the essen-
tials of the modified Delta-Bar-Delta algorithm
of Tollenaere, named ‘SuperSAB’ [36]:

For each weight:
(1)

(2)

If a step preserves the sign of the gradient
from the previous step, increase the stepsize
by a factor of Steplncr, where Steplncr is
> 1.0.
If a step inverts the sign of the gradient, kill
any existing momentum, undo the step, and
decrease the stepsize by a factor StepDecr,
where StepDecr is < 1.0 and should also be
less than l.O/StepZncr, to provide stability.

Tollenaere suggests values of 1.05 and 0.50 for
StepIncr and StepDecr, respectively. SuperSAB
learning should not be combined with pure incre-
mental learning, since the gradient estimates ob-
tained from single patterns will cause such fre-
quent sign inversions that no progress will be
made. It is often wise with the Delta-Bar-Delta
variants to perform explicit bounds checking of

the weight values to ensure that they do not
explode. While these methods may decrease
learning times by an order of magnitude or more
in some cases, it is important to note that the
algorithm described above will prevent escape
from some local minima, since a move across a
valley and landing on the opposite side is undone.
Nevertheless, such methods may be used in
strategies to quickly locate a minimum, and then
the optimization process restarted from a differ-
ent position on the error surface. Due to the
occurrence of local minima, it is always prudent
to repeat a training procedure several times with
any training set, to provide some assurance that a
global optimum has been found.

4.3. Classical optimization methods

Eqns. 8-10 provide us with a measure of the
partial derivative of the error surface with respect
to each weight. Therefore, we can combine these
equations with classical optimization methods ap-
plying gradient information, such as steepest de-
scent, and conjugate gradient methods [37].
Steepest descent involves line minimization along
an estimated gradient of the error surface. Once

1

2

i-

2 3
1

2

1

Fig. 10. Schematic diagram of (top) the disposition and (bot-
tom) the integer summed output of the hidden nodes for the
2:3: 1 network solution to the circle in a square problem.

136 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 115lS/Tutorial H

this has been done, the new direction of line
minimization is obtained from the gradient mea-
sured at the current minimum. Conjugate gradi-
ent methods represent a refinement to steepest
descent, where a new search direction is chosen
using second order information on the error sur-
face. This greatly reduces the likelihood of ‘back-

3) (b)

tracking’ across a valley while moving toward the
optimum, often speeding convergence signifi-
cantly.

Alternatively, the information on the height of
the error surface alone (Eqn. 4) may be used in
conjunction with methods such as geometric sim-
plex optimization [38], which has often been used

Fig. 11. A 2 : 6 : 1 network solution to the disjoint circles in a square problem, representing a single class modeling problem with two
disjoint regions. (a) Schematic representation of the problem; (b) schematic diagram of the network architecture; (c) surface plot of
the fitted response surface in the two-dimensional input space; (d) contour plot of the fitted response surface; (e) schematic
diagram of the disposition of the hidden nodes.

n B.J. F@thoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 137

in analytical chemistry. Another method using
only the height of the error surface at a given
point for control is simulated annealing [39]. All
methods which make use of the height of the
error surface obviously require Eqn. 4 to be eval-
uated over the entire training set.

Simulated annealing employs stochastic leam-
ing to achieve more robust convergence to the
global optimum weights. The algorithm takes each
step in a completely random direction. The error
surface is then sampled, and if the error is lower,
the step is accepted. Steps leading to higher error

are accepted or rejected according to a proba-
bilistic criterion in a manner analogous to
‘Metropolis Sampling’:

Prob(acceptance) = ePAEIT (15)

where A E is the change in the error associated
with the step, and T is the system temperature.

A uniformly distributed random deviate in the
range zero to one is drawn and compared to the
result of Eqn. 15. If the random value is less than
the result, then the step is accepted. The innova-
tion of simulated annealing is to provide a gradu-

(4
0.00 0.12 0.24 0.35 0.47 0.59 0.71 0.82 0.94 1.08 1.18 1.29 1.41 1.53 1.85 1.78 1.88 2.00

2.00 2.00

1.88 1.88

1.78 1.78

1.85 1.85

1.53 1.53

1.41 1.41

1.29 1.29

1.18 1.18

1.08 1.06

0.94 0.94

0.82 0.82

0.71 0.71

0.59 0.59

0.47 0.47

0.35 0.35

0.24 0.24

0.12 0.12

0.00 0.06
0.00 0.12 0.24 0.35 0.47 0.59 0.71 0.82 0.94 1.06 1.18 1.29 1.41 1.53 1.65 1.76 1.88 2.00

Fig. 11 (continued).

138 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 11%l55/ Tutorial H

(4

Fig. 11 (continued).

ally decreasing temperature parameter. The
search process is started at high temperature,
allowing free access to uphill steps. The tempera-
ture is gradually decreased, causing large uphill
steps to become less likely. If the temperature is
decreased slowly enough and the system is ‘equil-
ibrated’ at each stage, then the system will in
theory be located in the absolute and global mini-
mum at zero temperature.

Although simulated annealing is seductive for
its theoretical robustness, there are a number of
difficulties with it. There is no ‘correct’ scheme
for the temperature schedule, although an expo-
nential decay of temperature is often used. In
order to remain at true equilibrium, the tempera-
ture should decay infinitely slowly, and an infinite
number of steps should be taken at each stage.
This is obviously impractical. One of the greatest
disadvantages of this method is its computational
cost, which often requires current mainframe or
even supercomputer technology for implementa-
tion on any but the smallest networks.

An interesting refinement to simulated anneal-
ing was reported by Xu and Oja [40]. While not
referring to it by the common name, they com-
bined simulated annealing with the so-called
‘pocket algorithm’. The pocket algorithm is use-
ful in conjunction with any optimization method

wherein the quantity to be optimized is not a
monotonic function of search time. This simple
but effective modification requires that the best
system state observed so far is always to be saved
in our pocket (separate computer memory from
the current system storage). On terminating the
optimization process, then, the optimal system is
pulled out of the pocket for use. Xu and Oja
returned the system to this best state before
restarting the search at each temperature step.

Bohachevsky et al. [41] reported another varia-
tion designed to make simulated annealing faster
and more robust. They modified the exponential
to include an additional term as follows (the form
of the equation used above is retained):

Prob(acceptance) = exp(- [(E - E,,)“AE] /T>

(16)

where E is the value of the error at the current
location; Emin is the global minimum error; and g
is a constant Q 0. Basically, this added term
makes the probabilty of accepting uphill steps
smaller as the current height of the error surface
decreases. Therefore, the deeper the minimum
we are located in, the smaller the likelihood of
escaping with this algorithm. As noted by Bo-
hachevsky et al., a difficulty often associated with
practical problems is that Emin may be unknown.
They suggested that an initial estimate of Emin
that is updated with information from the surface
is often sufficient to provide fairly robust conver-
gence, however.

The two modifications to simulated annealing
just discussed could, of course, be combined to
provide even greater confidence in the robustness
of the method. It is important to recognize, how-
ever, that for practical multidimensional prob-
lems in which the complexity and scale of the
features on an energy surface may be unknown
and heterogenous, and the height of the optimum
is unknown, there is still no way to guarantee that
we will settle into (be trapped in) the global
minimum in a finite number of moves and tem-
perature steps. These stochastic methods do how-
ever, improve our likelihood of locating the global
minimum.

n B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 139

5. CJ.ASSIFICATION RESPONSE SURFACES AND THE
SIGMOID FUNCTION

5.1. Sample problems

This section will present several highly simpli-
fied classification problems in one- and two-di-
mensional input spaces, along with neural net-
work solutions to these problems. These low-di-
mensional input spaces are necessary to allow
plotting the fitted network response function. Ex-
amination of these problems and the solutions
provided by various network architectures is ex-
tremely helpful in getting a qualitative under-
standing of neural network solutions. In all cases,
a unique output node was assigned to each class,
and the ‘correct’ output values used in training
were 1.0 for class presence, and 0.0 for class
absence.

As noted earlier, one can consider a neural
network in any application to be a function ap-
proximation device, and, in the case of a back-
prop network, to provide a generalized least
squares approximation to the desired mapping
function. From this perspective, one can consider
that in a two layered network, the hidden layer
constructs a nonlinear basis for the desired func-
tion, according to the least squares criterion. Fur-
thermore, the output node(s) generate the de-
sired function by taking a linear combination of
the basis formed at the hidden layer, and passing
it through their transfer function, which, for a
sigmoid, is also termed a ‘squashing function’.
The reason for the term squashing function will
become clear later.

Readers who are more comfortable with logic
than with multivariate algebra may find the fol-
lowing alternative interpretation of two layered
sigmoidal networks more helpful. We will first
make the simplification that the sigmoidal nodes
operate as discrete step functions, rather than
graded analog functions. For a classification
problem, each hidden layer node can then be
considered to independently implement a crisp
logical dichotomy (a Boolean function) on the
elements of the real Euclidean space forming its
input domain. Each output node can be consid-

ered to poll the hidden layer nodes to arrive at its
own output. Depending on the relation between
its weights and its bias, an output node may take
the intersection (logical AND, symbolized by A)
of the hidden node outputs, or the union (logical
OR, symbolized by V) of the hidden node out-
puts. If an output node is using a negative weight
for a particular hidden node, then we can con-
sider it to be taking the negation (logical NOT,
symbolized by -J> of that hidden node’s truth
value. We will return to this conceptualization in
one of the detailed example problems below.

For classification problems, we can consider
that the basis formed by the hidden layer nodes
will be a nonlinear transformation, often includ-
ing an expansion to higher_dimensionality, if the
problem is not linearly separable in the original
space. The output node for any given class still
acts as a linear classifier (Fig. 3c), therefore, the
problem presented to it must be linearly separa-
ble, in order for the network to succeed.

Consider the example shown in Figs. 6a-d.
This represents a one-dimensional classification
problem, for which the class was contained in the
interval [4,8] along the input axis. The desired
function therefore maps the input value to 1
whenever it is contained in this set, or else maps
it to 0. This problem is not linearly separable,
however, as we cannot draw a single boundary on
this axis which can separate the class interior
from its exterior.

A reasonable (but not optimal, or unique) so-
lution to this problem for a 1: 2 : 1 (one input, two
hidden layer nodes, one output node) network
was constructed heuristically ‘by hand’ using the
Eqns. l-3 and consulting Figs. 2a and c in the
following manner: first the two hidden layer sig-
moids were ‘placed’ at the input locations 4.0 and
8.0, and ‘pointed’ right and left, respectively, with
steep slopes. This was done by solving Eqn. 3 for
the ratio of offset/weight for x locations of 4.0
and 8.0 for the sigmoid centers. Sizable weights
(to initiate a sharp response) of identical magni-
tude but opposing sign were then used on the
hidden node inputs to provide the symmetrical
closed region desired. The chosen weights were:
hidden node 1: (weight = 10.125, offset = -45.0),
hidden node 2: (weight = - 10.125, offset = 81.0).

140 B.J. Wythoff/Chenwm. Intell. Lab. Syst. 18 (1993) IIS-155/Tutorial n

la)

Fig. 12. A 2 : 6 : 1 solution to the embedded circles in a square problem, representing a two class problem, where one class (A) is
embedded in the other (B). (a) Schematic representation of the problem; (b) schematic diagram of the network architecture; (c)
surface plot of the heuristically generated response surface in the two-dimensional input space; (d) contour plot of the heuristically
generated response surface; (e) surface plot of the fitted response surface in the two-dimensional input space; (0 contour plot of
the fitted response surface; (g) discrete summed output of hidden nodes Hl-H3 minus the discrete summed output of H4-H6.

n B.J. Wythoff/Chemom. Zntell. Lab. Syst. 18 (1993) 115-155/Tutorial 141

For the output node, in order to produce then chosen for the output node consistent with
values of 0 and 1 when outside and inside the these constraints. The chosen weights for the
class boundaries, the net input to the output output node were: (weight 1 = 20.0, weight 2 =
node must then be a fairly large negative and 20.0, offset = - 30.0), chosen so as to produce a
positive number, respectively, when the external net input to the output node of - 10.0 when
input is in these regions (consult Fig. 2a, for outside the target region, and + 10.0 when inside
which the net input and external input values are the target region.
identical). The values passed to it by the hidden The choice of solution weights was guided
nodes will be essentially (1, 01, (1, 1) and (0, 11, using the concept that the hidden layer node
when on the left side, inside, and right side of the functions should be chosen so as to allow the
target area, respectively (Fig. 6b). Symmetrical required sharp, bump-shaped function response
positive input weights and a negative bias were by linear summation and squashing at the output

(4
-1.00 -0.38 0.24 0.86 1.48 2.10 2.72 3.34 3.97 4.59

4.59

3.97

3.34

2.72

2.10

1.48

0.86

0.24

-0.38

2.72

0.24

-0.38

.oo -0.38 0.24 0.66 1.48 2.10 2.72 3.34 3.97 4.59

Fig. 12 (continued).

142 B.J. Wythoff /Chemom. Intell. Lab. Syst. 18 (1993) IU-155/ Tutorial n

node. However, another helpful, and not incom-
patible view, is that in order to solve this prob-
lem, the hidden layer nodes must perform a non-
linear expansion of the input into a two-dimen-
sional space, so as to transform the problem into
one that is a linearly separable problem for the
output node. Fig. 6d presents the problem ‘from
the perspective of the output node’. The points
shown in Fig. 6d were generated by sampling the
one-dimensional external input space over the
interval [- 20,201 at 100, evenly spaced locations.
The output of the first hidden node was then
plotted against the output of the second hidden
node. The points are clustered at the locations
(0, l), (1, 1) and (1, O), with the majority over-
lapping at these precise coordinates. This can of
course also be deduced from Fig. 6b, but Fig. 6d
clearly shows that the hidden nodes transform a
one-dimensional nonlinearly separable problem
into a two-dimensional linearly separable prob-
lem, for the output node. The linear decision
boundary corresponding to the contour along
which the output node response is 0.50 has also
been sketched in Fig. 6d.

A more complex two-dimensional problem in-
volving a single class, with a circular boundary
shape, was considered next. The networks were
asked to produce a response of one when the
input vector was located inside a circle of radius
0.40 that was centered at 0.50, 0.50, and zero
when the input vector came from outside this
region. The ideal response function would there-
fore be a right circular cylinder of radius 0.40
centered at 0.50, 0.50, and with a perfectly flat
top of height 1.0. We will call this the ‘circle in a
square’ problem.

The first network solution employed a 2: 2: 1
architecture, employing all sigmoidal nodes, (Fig.
7). Comparison of the response surface shown in
Fig. 7 with the two-dimensional sigmoid shown in
Fig. 3b indicates that the two sigmoids in the
hidden layer are oriented so as to ‘point’ directly
at one another, generating the parallel ridge re-
sponse shown in Fig. 7. Refer also to Fig. 3c to
convince yourself that the two hidden nodes must
have parallel weights with opposing polarities and
nonzero offsets, and that the output node must
also use essentially identical input weights on the

results from the two hidden nodes, in order to
generate the overall response shown in Fig. 7.

Three hidden layer nodes are required to form
a closed region in a two-dimensional input space,
and the solution provided by a 2: 3 : 1 network
employing sigmoidal hidden nodes and a linear
output node is shown in Fig. 8. It can be seen
from the contour plot that the hidden layer nodes
have arranged themselves at 120” angles in the
input space, the required symmetry for the solu-
tion. Although we have now formed the closed
hill-shaped response region, the sides of the hill
are not very steep, and the top is not very flat.

Another 2: 3 : 1 network was trained on this
problem, this time employing a sigmoidal transfer
function at the output node (Fig. 9). The C,
symmetry of the solution is more apparent in
these response contours than in the previous ex-
ample, but is in fact the same. The sides of the
hill have now achieved the desired steepness, and
the top is very flat. The reason that this solution
is so much improved is that the bounded output
of the sigmoidal output node allows great amplifi-
cation of the response of the hidden layer nodes,
providing steeper sides without exceeding a value
of 1.0 in the center, and thereby also flattening
(or ‘squashing’) the top. In addition, the output
node sigmoid can be considered (loosely> to per-

Fig. 12 (continued).

n B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutotil 143

form a saturating high-pass amplitude filter func- prism solution. The response function derived is
tion (Fig. 2a), and so the ripples which occur at the best compromise according to the least
the intersections of the ‘feet’ of the sigmoids are squares error criterion.
reduced as well. It may be curious to some read- As noted above, the three sigmoids do not
ers that the hidden layer nodes are not amplified produce a perfect closed trigonal figure, but in
further, generating even steeper sides and a flat- fact have ‘extra’ raised regions formed by their
ter top. While this could indeed be done, the intersection, to produce feet. The origin of these
curved regions at the intersection of the sigmoid is made more clear with the schematic drawings
regions of the hidden layer are due to the curved of Fig. 10. Fig. 10a depicts the location and
profile of the shoulder of the sigmoid function. direction of the three sigmoids. Making the sim-
Excessive amplification would square off the plification that the sigmoids operate as step func-
shoulder (see Fig. 2~1, and produce a trigonal tions, Fig. lob depicts the unweighted discrete

if)
-1.00 -0.51 -0.02 0.47 0.96 1.45 1.94 2.43

4.66

2.43

0.96

-1 .oo -0.51 -0.02 0.47‘ 0.96 1.45 1.94 2.43

Fig. 12 (continued).

2.92 3.41 3.90 4.39 4.66

2.92 3.41 3.90 4.39 4.66

4.66

2.43

0.96

144 B.J. Wythoff /Chemom. Intel Lab. Syst. 18 (1993) 115-155/Tutorial 8

Fig. 12 (continued).

sum of their outputs, in the different regions of
the input space. Of course the sigmoids are not
step functions, but such a view simplifies a picto-
rial analysis. Clearly, there are three extra raised
regions of summed amplitude two. These regions
are still visible in the filtered output, as shown in
Figs. 9c and d. Note that the thresholding ‘front’
of the output node transfer function has greatly
reduced their relative magnitude, however. The
affine transfer performed in generating the net
input to the output serves to provide the bipolar
range and the appropriate magnitude scale for
the net input to produce output values of approx-
imately 1 and 0 when inside and outside the class
boundary, respectively.

The next problem posed was still a single class
problem, but involved two disjoint circular re-
gions for the class. A 2 : 6 : 1 network architecture
was generated by extension of the solution of the
first problem. It was initially thought that the
solution would consist of two circular humps with
C, symmetry, that is, that the six hidden layer
nodes would partition into two groups of three to
solve the problem according to a ‘divide and
conquer’ approach. Instead, the solution showed
two hills, but with four surfaces making up each
hump (Fig. 11). The only way that this solution
can be generated is that two sigmoids are used to
generate the edges parallel to the major axis, two
are used to generate the inside minor edges, and
two to generate the outside minor edges. In other
words, all six hidden nodes are being applied
globally to the problem, with two being used
‘twice’ to form the major edges. The decision

surfaces formed by the individual hidden nodes
were examined individually to verify this conclu-
sion, and are shown schematically in Fig. lle.

The divide and conquer solution was later
formed by starting the network from an appropri-
ate set of weights, however the MSE for this
latter approach, while low, was significantly higher
than for the solution shown in Fig. llc. It is
certainly very reasonable that a globally con-
strained solution should be better than an (effec-
tively) locally constrained piecewise solution, if
symmetry in the desired function is exploited; and
that, effectively, four sigmoids can generate a
better approximation to a cylinder than three.

A concave region in a Euclidean space is one
in which it is possible to connect two points in the
region with a straight line segment that passes
outside the boundary of the region. Despite early
speculation that neural networks employing a sin-
gle hidden layer of sigmoidal units could not form
a concave decision region, this is now known to
be within their capability. The final problem ap-
proached included such a concave set. In this
problem, one circular class (class A) was com-
pletely embedded inside the other (class B). The
outermost circular region was centered at 2.0, 2.0,
and had a radius of 1.5. The inner class region
was centered at 2.25, 2.00, and had a radius of
0.50. There was no overlap between the two sets.
It was proposed intuitively that this problem could
be minimally approached with the same number
of hidden nodes as was used in the previous
problem, six. Two output nodes were used for the
two classes. Forming the shape of class B clearly
posed the more difficult problem. The ‘hole’
within it corresponds exactly to the bounds of
class A, however. Therefore, it was reasoned that
by using six hidden nodes, three could be allo-
cated to forming the outer circular boundary, and
three to forming the inner circular boundary. The
two different output nodes could simply use op-
posite signs on the weights to the hidden node
groups, to generate the correct approximation to
the desired shapes. In other words, the design
called for one output node to generate a hump
for the inner class A by summation of three
sigmoid outputs, just as was done for the circle in
a square problem. We will arbitrarily designate

n B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) IU-155/ Tutorial 145

these three hidden nodes as Hl-H3. The other
output node was intended to sum the three other
hidden node outputs (H4-H6) to form the outer
boundary of class B, and to subtract the output
of Hl-H3, in order to create the ‘hole’ in the
interior, which corresponds to the region occu-
pied by the class A. A schematic depiction of the
problem and the initial network used to form the
solution is shown in Figs. 12a and b. To revisit
the crisp logic paradigm introduced earlier, the
output node corresponding to class A was in-
tended to form (Hl A H2 A H3). The output node
corresponding to class B was intended to form
(7H1 A 7H2 A 7H3 A H4 A H5 A H6). This
numerical rule follows naturally when one seeks
to answer the question: where is class B true?
Class B is true inside the outer circle formed by
hidden nodes H4-H6 (in the intersection of their
true regions), and not inside the inner circle
formed by hidden nodes Hl-H3 (in the intersec-
tion of their true regions).

Numerous training runs from random starting
positions failed to produce a solution with the
desired concentric closed class boundaries. Spec-
ulating that this difficult problem might contain a
global minimum that was difficult to approach
using gradient descent, it was decided to write a
simple computer procedure to assign the initial
weight configuration. The goal in doing this was
not to generate the optimal weights analytically,
but simply to try to start the network optimiza-
tion from a point within the attractive basin of
the global minimum. The conceptual solution de-
scribed above was encoded heuristically, together
with the solution of the corresponding Eqn. 3, to
generate the weights for the proper position and
orientation of the hidden nodes. The hidden layer
nodes were divided into two groups, one for each
region. They were distributed symmetrically
around the outer boundary of the respective cir-
cles and pointed inward. Opposite polarities were
used on the weights connecting the hidden nodes
to the output nodes, for the two regions. The
response of the naive heuristic solution for the
2 : 6 : 2 network is shown in Figs. 12c and d. The
networks were then trained as before, beginning
from the heuristically assigned starting configura-
tions.

The 2 : 6 : 2 net did find a stable solution to the
problem from the heuristic starting weights, with
concentric closed regions corresponding to the
two classes. However, the error of the solution
was still fairly large (Figs. 12e and f). The major
problem appeared to be the excess lobes corre-
sponding to the ‘feet’ of the overlapping sig-
moids. The origin of these feet is shown more
clearly in the schematic drawing of Fig. 12g. This
drawing depicts the discrete unweighted sum of
H4-H6 minus the discrete unweighted sum of
Hl-H3. In order to reduce the magnitude of the
corresponding positive errors, the minimization
process reduced the amplitude of the outer shell,
thereby necessarily introducing negative devia-
tions from the ideal response on the outer ‘cylin-
der’ walls.

Next, a 2: 30: 2 net was trained on the same
problem. The starting weights were again heuris-
tically assigned. This time, hidden nodes Hl-H15
were assigned to the task of forming the inner
region, and nodes H16-30 to forming the outer

Ia)

Fig. 13. A 2: 30: 2 solution to the embedded circles in a square
problem. (a) Surface plot of the heuristically generated re-
sponse surface in the two-dimensional input space; (b) con-
tour plot of the heuristically generated response surface; (c)
surface plot of the fitted response surface in the two-dimen-
sional input space; Cd) contour plot of the fitted response
surface.

146 B.J. fithoff / Chemom. Intell. Lab. Syst. 18 (1993) 115-155 /Tutorial l

region. A much better solution, both qualitatively
and quantitatively, was formed using 30 hidden
nodes instead of six. The response surfaces for
the naive heuristic starting configuration and the
fitted network are shown in Fig. 13.

In order to provide a more detailed view of
these two different solutions to the same prob-
lem, a program was written to provide plots of
the discrete summed responses of the trained
hidden nodes in the input space. The input space
was scanned in raster fashion, and the hidden
nodes outputs were summed at each position

according to the following rule: if the output of
the hidden node was greater than 0.50 (the mid-
point of its range), then 1 was added to the
summed output at that position, else 0 was added.
The hidden nodes were divided into two groups
according to the polarity of the weight between
them and the output node corresponding to class
B. Two plots were generated for each network,
with one plot corresponding to sums of positively
weighted hidden nodes, and one for negatively
weighted nodes. The intensity values were scaled
to span a 64-level grayscale. These plots for the

04
-1.00 -0.54 -0.08 0.38 0.85 1.31 1.77 2.23 2.69 3.15 3.62 4.08 4.54 5.00 _ __

5.00

3.02

2.69

2.23

0.85

3.62

2.69

2.23

0.85

0.38

-0.08

-1.00
-1 .OO -0.54 -0.08 0.38 0.65 1.31 1.77 2.23 2.69 3.15 3.62 4.06 4.54 5.00

Fig. 13 (continued).

n B.J. Wythoff/Chenwm. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 147

2 : 6 : 2 net are shown in Figs. 14a and b, and for
the 2 : 30 : 2 net in Figs. 14c and d.

The ideal symmetries of the two target regions
corresponding to class A and class B are both
C,. The heuristic starting weights provided ideal
symmetries of C, and CrSV, for the 2: 6: 2 and
the 2 : 30 : 2 net, respectively. These’ symmetries
were largely retained in the ‘learned’ solutions.
One reason that the 2 : 30 : 2 net provides a better
solution is that it has a closer approximation to
the ideal symmetry. This can of course be pre-
dicted intuitively, and is shown to be true in Figs.
14c and d. In addition to this better rotational
symmetry match, we find a second effect visible
in these figures, which is actually more noticable
in a color-mapped plot. The ‘feet’ generated by
the 2 : 30 : 2 network hidden node overlaps decay
more quickly as we move away from the region
edge than those generated by the 2 : 6 : 2 net. This
too provides a better approximation to the de-
sired right circular cylinder shape for each class
region.

5.2. Optima& of neural networks for classification

While classification has been performed with
explicit modeling methods for many years, such
methods can on reflection be seen to be inappro-
priate in many cases. For example, a number of
explicit methods make use of a multivariate nor-
mal distribution fitted to the members of each
class. While this approach may give the appear-
ance of rigor, it should be noted that the multi-
variate normal distribution is intended to de-
scribe stochastic variation in a quantity. The dif-
ferent positions of class members in the input
space are normally not primarily due to random
errors in determining their location. Rather, they
are the result of some underlying complex and
deterministic processes which give rise to real
differences in measured properties. There is no
reason to expect that such variation will necessar-
ily manifest itself as a multivariate normal distri-
bution. Therefore, although a multivariate nor-
mal approximation of class shape may be useful,
we can expect less constrained, self-modeling
methods such as are implemented in neural net-
works to provide better solutions.

6. PROBLEMATIC ISSUES FOR BACKPROPAGATION
NETWORKS

6.1. Overtraining and the frequency response of
sigmoidal nodes

It is known that backpropagation networks
which are ‘too large’ often pass through a point
of maximum generalization during training, to
eventually overfit the data. The usual approach to
avoiding such behavior is to monitor the MSE on
an independent cross-validation set during train-
ing as well. The training process is then stopped
when the error on the cross-validation set is at a
minimum. Chauvin [42] noted that networks ex-
hibiting such behavior appear to start out by
mapping the DC component of the input data,
and move steadily toward mapping higher and
higher frequency components. He rationalized
this by pointing out that the maximum reduction
in mean squared error on the training data is
obtained by mapping the DC component, with
successively smaller reductions obtained at higher
and higher frequencies. This causes us to wonder
how the network would ‘know’ this, and how such
a frequency behavior can be explained in terms of
the weight vector trajectory.

It is proposed here that the observed progres-
sion of frequency mapping is produced by the

Fig. 13 (continued).

148 B.J. Wythoff / Chemom. Intell. Lab. Syst. 18 (1993) I IS-155 / Tutorial n

4.54 -

4.08 -

3.62 -

3.15 -

2.69 -

2.23 -

1.77 -

1.31 -

0.65 -

0.36 -

-0.08 -

-0.54 -

(4
-1.00 -0.54 -0.08 0.38 0.65 1.31 1.77 2.23 2.69 3.15 3.62 4.06 4.54 5.00

5.00 I lJ5.W

.05

I

>
,-

4.54

4.08

3.62

3.15

2.69

2.23

1.77

1.31

0.85

0.38

-0.08

-0.54

-1.00 L I ’ I ’ ’ I I ’ I I ’ I I I ’ ’ I I ’ I I ’
-1.00 -0.54 -0.08 0.38 0.85 1.31 1.77 2.23

Fig. 13 (continued).

normal initial conditions (all weights set to small
random values), and that the frequency progres-
sion is caused by the variation in the node re-
sponse ‘frequencies’ as they move away from the
origin to the minimum MSE. The overall fre-
quency reponse of the system is directly related
to the frequency response of its components, the
individual neurons.

A ‘frequency’ could be ascribed to each node
by determining the change in input required to
produce some fixed macroscopic change in out-
put. The corresponding change in input could

I I I I I I I I I I I I I I I I I_,.00

2.69 3.15 3.62 4.08 4.54 5.00

than be termed a ‘decay time’ for the node, and
inverted to produce a frequency. To simplify our
analysis in multidimensional input space, we will
instead consider the frequency of a given node to
be equal to the maximum slope of its response
curve, measured along the gradient of its re-
sponse surface.

Proceeding in a manner analogous to that re-
ported by McClelland and Rumelhart for deriv-
ing the partial derivative of the error with respect
to a node weight [29], we can arrive at an expres-
sion for the partial derivative of a sigmoid node

n B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 149

output, with respect to an input dimension, ob-
taining after numerous steps:

a0

Gi- - -o(l -oo)wi=uwi (17)

Noting that the overall gradient can be obtained
by summing the individual orthogonal compo-
nents, and that the length of this net gradient
vector can be obtained by normal Euclidean
means, we obtain:

The expression -o(l - o) is equal to its maxi-
mum magnitude of -0.25 at o = 0.50, therefore

(4

the magnitude of the maximum node slope (its
‘frequency’) is proportional to one-quarter the
length of its weight vector. The frequency re-
sponse behavior of a given node with respect to
its weight space is therefore a radially symmetric
‘hyper-cone’ centered at the origin, where the
frequency is 0.0.

It is perfectly reasonable therefore, that the
overall dynamic frequency behavior of the net-
work during learning is actually due to the initial
conditions imposed for the error minimization,
which, being located near the origin of the weight
space, must produce a low frequency response.
Moving away from the origin toward the solution
will then necessarily produce higher frequencies
in the network basis set (its hidden nodes).

In addition to providing some insight into gen-
eralization dynamics of oversized networks, this
analysis may allow one to prevent overfitting, by

Fig. 14. Normalized grayscale plots of the integer summed outputs of the hidden nodes for the nets applied
in a square problem. (a) Positively weighted nodes for the 2 : 6 : 2 net; (b) negatively weighted nodes for the
weighted nodes for the 2: 30 : 2 net; (d) negatively weighted nodes for the 2 : 30 : 2 net.

I to the en/bedded cil
2: 6 : 2 nelt; (c) positi

rcles

150 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-lS5/ Tutorial n

limiting the frequency response (weight vector
lengths) of the network nodes to match the fre-
quency limit in the desired function to be approx-
imated. It might also be possible to speed training
by assigning the initial weights according to a
frequency spectrum dictated by the desired re-
sponse function.

6.2. Architecture and design

A difficult issue for the neural network engi-
neer is deciding on the appropriate architecture
for a given problem. Since response functions for
quantitative analysis tend to be relatively simple
(although not necessarily linear), this is not such
a problematic limitation there. In qualitative
analysis, however, we are essentially trying to fit
class probability distributions in a multivariate
input space. The true shape of such functions can
have an absolutely arbitrary complexity. Even with
a good understanding of how sigmoidal functions

combine to generate such surfaces, we are limited
in the multivariate case by the fact that we cannot
even see the appearance of the desired function.

There has been a good deal of work aimed at
generating ‘optimal’ network architectures for
backpropagation networks employing sigmoidal
nodes. Many can be divided into two categories:
(a) beginning with a network which is too small,
and systematically enlarging it by some scheme
until the error on the training set and an inde-
pendent test set drops to acceptable limits; (b)
beginning with a network which is too large and
systematically pruning connections and nodes, and
observing the error to try to obtain a reduced
system with acceptable error. The majority of
such schemes are systematic and reasonable
means of finding an economical solution to the
‘appropriate architecture’ question. However,
such systems do not use any explicit information
about the problem, and both types are essentially
brute force approaches, requiring a great deal of

b)

Fig. 14 (continued).

8 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) llS-155/ Tutorial 151

‘wasted’ computation along the path to the termi-
nal architecture. Finally, the architectures de-
rived are only optimal in the sense that they
represent the best performing network encoun-
tered during what can be described as a heuristi-
cally directed search of an ‘architecture space’
wherein nodes in a search tree correspond to
particular architectures. The morphology of the
tree, as well as the entry point(s) are different for
every algorithm.

Beyond such ‘brute force’ approaches, there
have been several promising methods reported in
the literature for learning systems which begin
with an architecture which possesses too many
hidden units, and dynamically prunes unneces-
sary weights and/or units as training proceeds.
Two such methods, briefly presented here, add a
second penalty term to the cost function (beyond
mean squared error), to discourage the use of
correlated weights or units.

Weigend et al. [43] described a method for

pruning unnecessary weights by ‘weight decay’
according to the following cost function:

(20)

where E, represents the MSE from Eqn. 4; wij
represents the jth weight for the ith node; wa is a
real constant; y is a real constant; n is the
number of training patterns; M is the number of
output nodes.

This method was used by Curry and Rumel-
hart [131 in experiments concerning their mass
spectrum interpretation network ‘MSnet’. In ad-
dition, Chauvin [44] reported the use of a similar
approach to extend the cost function ;by pruning
unnecessary hidden units, one incarnation of
which is presented here:

Fig. 14 (continued).

152 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial n

(dl

Fig. 14 (continued).

where E, represents the MSE from Eqn. 4; Oij
represents the output of the ith hidden node on
the jth pattern; per is a real constant; pen is a
real constant; II is the number af training pat-
terns; and m is the number of hidden nodes.

This version of Chauvin’s method is obviously
very similar in its form, if not meaning, to the
former expression for minimizing redundant
weights. Both expressions utilize some factor to
adjust the relative importance of the MSE term,
and the ‘network complexity’ term. Both of these
equations penalize the system for employing ex-
cessive complexity, either in the number of
weights or the number of hidden units used to
achieve a given error. In doing so, they encourage
the elimination of correlated or unimportant net-
work components. It seems clear that aggressive
use of either augmenting term too early in the
training process can jeopardize convergence.
Weigend and coworkers, in fact, suggested that

the proportion of the cost attributed to weight
magnitudes be held at zero initially, and in-
creased in importance as training proceeded,
while monitoring the MSE to prevent elimination
of necessary weights. Such dynamic adjustment of
the augmenting term may be tricky to perform in
real applications. Nonetheless, these and related
methods hold a good deal of promise for ‘auto-
matically’ arriving at an approximately optimal
architecture, and thereby achieving an efficient
architecture in terms of storage space and com-
putation time, as well as minimizing the likeli-
hood of overfitting.

7. CONCLUSIONS

There is still a great deal of theoretical work
which remains to be done in neural network
research, which is one of the reasons that the

8 B.J. Wythoff/Chemom. Intell. Lab. Syst. 18 (1993) 115-155/Tutorial 153

field is so exciting. The rather murky nature of
neural network solutions may disturb some scien-
tists, but the very problems which are appropriate
are likewise ill-defined. What neural networks
offer is the prospect of a usable solution to prob-
lems which cannot even be described analytically.
While some claims of enthusiastic network pro-
ponents are no doubt exaggerated, these systems
are not just a fad, and will in fact continue to
increase in popularity and importance. The next
ten years will show a remarkable number of solu-
tions to ill-defined chemical problems.

One of the key problems facing neural net-
work developers is training time. This is being
attacked through research into more efficient
learning algorithms, and with direct hardware
support for neural network calculations. Some of
these current hardware solutions claim to offer
billions of backpropagation connection updates
per second. Another important issue is conver-
gence probability, and the hazards of local min-
ima, i.e. understanding learning dynamics. These
problems, too, are being attacked by current re-
searchers. Finally, there is the extremely complex
problem of deriving ‘an ‘optimal’ architecture for
a specific application. While important strides are
being made on this subject, we should not expect
this problem to be completely solved in the near
future. The optimal architecture is related to
both the functional complexity and the ‘inherent
dimensionality’ of the desired mapping. Accurate
assessment of these factors for arbitrary problems
is an extraordinarily complex task.

Although we have concentrated here on back-
propagation networks, there are new network ar-
chitectures and learning paradigms introduced
virtually every month in the research literature,
along with new theoretical results elucidating the
mathematical properties of existing systems. This
is a field pregnant with advances, and the possi-
ble applications in chemistry are limited only by
the imaginations of today’s chemists.

For those readers who are unwilling or unable
to develop their own neural network software,
there is a large menu of commercial packages
available that will run on most popular hardware
platforms. The author has not reviewed, and does
not endorse any of these commercial programs,

however, a brief guide to such systems was pub-
lished in the June, 1992, issue of AI Expert mag-
azine.

8. GLOSSARY

Logic symbols :
7 : represents logical negation (NOT);
A : represents logical conjunction (AND);
v : represents logical disjunction (OR).

Activation: Same as neuron output.
Afine jiuzction: A generalization of a linear func-
tion. In the geometrical sense, it can be consid-
ered to add translation capabilities to the rota-
tion and scaling capabilties of a linear function.
Architecture: The topological arrangement of
neurons, layers, and connections, which, in a
complex way, defines the set of modeling equa-
tions available to the net.
Generalization: The ability of the network to pro-
duce the correct output for patterns not present
in the training set, indicating induction of a valid
mapping rule from the training set.
Gradient descent: Procedure for iteratively mini-
mizing some quantity by moving in the (- > direc-
tion of the gradient (derivative, slope) of the
response from the current state of the system,
(loosely> ‘by always moving down the fall line’.
Hidden layer: Any of one or more layers normally
used between the input and output layers in
backpropagation networks. So called because it
receives no input from, nor produces output to
the ‘outside world’, i.e., it calculates only inter-
mediate values used in determining the overall
network output.
Input layer: The ‘first’ or ‘lowest’ layer of neu-
rons, which is used only to broadcast the input
values for the desired mapping to the first pro-
cessing layer.
Input uector: The ordered set of inputs compris-
ing the known or independent values for a pat-
tern, e.g., spectral absorptions.
Mapping: The act of (verb) or rule for (noun)
producing (an) output value(s) corresponding to a
given input, e.g. y = kx is a rule for mapping x to
Y-
Neuron (syns: node, processor, unit): The funda-

154 B.J. Wythoff/Chemom. IntelL Lab. Syst. 18 (1993) 115-lSS/ Tutorial H

mental building block of a neural network. Nor-
mally, each neuron takes a weighted sum of its
inputs to determine its net input. The net input is
then processed through its transfer function to
produce a single-valued output which is broadcast
to ‘downstream’ neurons.
Net input: normally the inner (dot) product of a
neuron’s input vector with its weight vector.
Output layer: The ‘last’ or ‘highest’ layer of neu-
rons, which is used to provide the output values
required by the application.
Output vector: The ordered set of outputs com-
prising the unknown or dependent values for a
pattern, e.g., component concentrations or identi-
ties.
RecalZ (syn: memorization): The ability of a net-
work to reproduce the correct output values for
the training set.
Sigmoid: An ‘S-shaped’ nonlinear transfer func-
tion commonly used in artficial neurons.
Supervised learning: A system, such as backpropa-
gation, for deriving a rule for mapping inputs to
outputs, i.e., for learning an approximation to a
desired function. Supervised learning operates us-
ing known outputs corresponding to each input in
the training set, and adapts the mapping rule to
bring the approximation as close as possible to
the desired (true> mapping as provided by the
training examples.
Synapse (syn: connection): A connection between
two nodes, with an associated weight. Node,
passes its output to node,, through such a synapse.
The value received by node,, is the product of the
output of node, with the weight on this synapse.
Test set: A set of example input patterns, along
with known correct output patterns, which is in-
dependent of the training set, to be used to
evaluate the performance and validity of the
learned mapping.
Training set: A set of example input patterns,
along with known correct output patterns, to be
used for learning.
Transfer function: The function a neuron uses to
operate on its net input (e.g. sigmoid, linear,
quadratic) to produce its activation level.
Vkctor: An ordered set of numbers. For an n-ele-
ment vector v, the ith element can normally be
considered to be the ith coordinate in IZ space, or

the length of the projection of v along the ith
axis.

ACKNOWLEDGMENTS

The author gratefully acknowledges the sup-
port of the National Research Council Postdoc-
toral Fellowship program while this manuscript
was being prepared. This paper is an official
contribution of the National Institute of Stan-
dards and Technology and therefore not subject
to copyright in the United States.

REFERENCES

6

I

8

9

10

11

12

13

W.S. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bulletin of Mathemati-
cal Biophysics, 5 (1943) 115-133.
D.O. Hebb, The Organization of Behauior, Wiley, New
York, 1949.
F. Rosenblatt, The perceptron: a probabilistic model for
information storage and organization in the brain, Psycho-
logical Review, 65 (1958) 386-408.
P.C. Jurs, B.R. Kowalski, T.L. Isenhour and C.N. Reilly,
Computerized learning machines applied to chemical
problems: investigation of convergence rate and predictive
ability of adaptive binaty pattern classifiers, Analytical
Chemistry, 41 (1968) 690-695.
B.R. Kowalski, PC. Jurs, T.L. Isenhour and C.N. Reilly,
Computerized learning machines applied to chemical
problems: interpretation of infrared spectrometry data,
Analytical Chemistry, 41 (1969) 1945-1949.
D.R. Preuss and PC. Jurs, Pattern recognition techniques
applied to the interpretation of infrared spectra, Analyti-
cal Chemistry, 46 (1974) 520-525.
R.W. Liddell III and PC. Jurs, Interpretation of infrared
spectra using pattern recognition techniques, Analytical
Chemistry, 46 (1974) 2126-2130.
M. Minsky and S. Papert, Perceptrons, MIT Press, Cam-
bridge, MA, 1969.
J.U. Thomsen and B. Meyer, Pattern recognition of the
‘H NMR spectra of sugar alditols using a neural network,
Journal of Magnetic Resonance, 84 (1989) 212-217.
E.W. Robb and M.E. Munk, A neural network approach
to infrared spectrum interpretation, Mikrwchimica Acta, I
(1990) 131-155.
M.E. Munk, Neural network models for infrared spectral
interpretation, Mikrochimica Acta, II (1991) 505-514.
B.J. Wythoff, S.E. Levine and S.A. Tomellini, Spectral
peak verification and recognition using an artificial neural
network, Analytical Chemistry, 62 (1990) 2702-2709.
B. Curry and D. Rumelhart, MSnet: A neural network

W B.J. wthoff /Chemom. Intell. Lab. Syst. 18 (1993) II5-155/ Tutorial 155

that classifies mass spectra, Tetrahedron Computer
Methodology, 3 (1990) 313-237.

14 D.W. Elrod, G.M. Maggiora and R.G. Trenaty, Applica-
tions of neural networks in chemistry. 1. Prediction of
electrophilic aromatic substitution reactions, Journal of
Chemical Information and Computer Science, 30 (1990)
477-484.

15 N. Qian and T.J. Sejnowski, Predicting the secondary
structure of globular proteins using neural network mod-
els, Journal of Molecular Biology, 202 (1988) 865-884.

16 D.G. Kneller, F.E. Cohen and R. Langridge, Improve-
ments in protein secondary structure prediction by an
enhanced neural network, Journal of Molecular Biology,
214 (1990) 171-182.

17 J.R. Long, H.T. Mayfield, M.V. Henley and P.R. Kro-
mann, Pattern recognition of jet fuel chromatographic
data by artificial neural networks with back-propagation of
error, Analytical Chemistry, 63 (1991) 1256-1261.

18 SM. Chang, Y. Iwasaki, M. Suzuki, E. Tamiya, I. Karube
and H. Muramatsu, Detection of odorants using an array
of piezoelectric crystals and neural-network pattern recog-
nition, Analytica Chimica Acta, 249 (1991) 323-329.

19 M. Glick and G.M. Hieftje, Classification of alloys with an
artificial neural network and multivariate calibration of
glow-discharge emission spectra, Applied Spectroscopy, 45
(1991) 1706-1716.

20 J.R. Long, V.G. Gregoriou and P.J. Gemperline, Spectro-
scopic calibration and quantitation using artificial neural
networks, Analytical Chemistry, 62 (1990) 1791-1797.

21 P.J. Gemperline, J.R. Long and V.G. Gregoriou, Nonlin-
ear multivariate calibration using principal components
regression and artificial neural networks, Analytical Chem-
istry, 63 (1991) 2313-2323.

22 T. Aoyama, Y. Suzuki and H. Ichikawa, Neural networks
applied to quantitative structure-activity relationship
analysis, Journal of Medicinal Chemistry, 33 (1990) 2583-
2590.

23 T. Aoyama, Y. Suzuki and H. Ichikawa, Obtaining the
correlation indices between drug activity and structural
parameters using a neural network, Chemical Pharmaceuti-
cal Bulletin, 39 (1991) 372-378.

24 T. Aoyama and H. Ichikawa, Basic operating characteris-
tics of neural networks when applied to structure-activity
studies, Chemical Pharmaceutical Bulletin, 39 (1991) 358-
366.

25 C. Borggaard and H.H. Thodberg, Optimal minimal neu-
ral interpretation of spectra, Analytical Chemistry, 64
(1992) 545-551.

26 I.E. Alguindigue and R.E. Uhrig, Compression of spectral
signatures using recirculation networks, Scientific Comput-
ing and Automation, May (1991) 43-50.

27 P. de B. Harrington, Fuzzy multivariate rule-building ex-
pert systems: minimal neural networks, Journal of Chemo-
metrics, 5 (1991) 467-486.

28 J. Zupan and J. Gasteiger, Neural networks: a new method
for solving chemical problems or just a passing phase?,
Analytica Chimica Acta, 248 (1991) l-30.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

D.E. Rumelhart and J.L. McClelland, Parallel Distributed

Processing, Vol. 1, MIT Press, Cambridge, MA, 1986.
P.J. Werbos, Beyond regression: new tools for prediction
and analysis in the behavioral sciences, Doctoral Disserta-
tion, 1974.
E.D. Sontag, Remarks on interpolation and recognition
using neural nets, in R.P. Lippmann, J.E. Moody and D.S.
Touretzky (Editor), Advances in Neural Information Pro-
cessing Systems, Vol. III, Morgan Kaufmann, San Mateo,
CA, 1991.
E.D. Sontag, Feedforward nets for interpolation and clas-
sification, Journal of Computer and Systems Science, in
press.
R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, New
York, 1991.
D. Tveter, Getting a fast break with backprop, AZ Expert,
(1991) 36-43.
R.A. Jacobs, Increased rates of convergence through
learning rate adaptation, Neural Networks, 1 (1988) 295-
307.
T. Tollenaere, SuperSAB: Fast adaptive backpropagation
with good scaling properties, Neural Networks, 3 (1990)
561-573.
J. Hertz, A. Krogh and R.G. Palmer, Introduction to
Theory of Neural Computation, Addison-Wesley, New
York, 1991.
S.N. Deming and S.L. Morgan, Simplex optimization of
variables in analytical chemistry, Analytical Chemistry, 45
(1973) 278-283A.
S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization
by simulated annealing, Science, 220 (1983) 671-680.
L. Xu and E. Oja, Improved simulated annealing, Boltz-
mann machine and attributed graph matching, in L.B.
Almeida and C.J. Wellekens (Editors), Neural Networks:
EUBASIP Workshop 1990, Semsimbra, Portugal, February
1990, Proceedings, Springer-Verlag, New York, 1990.
1.0. Bohachevsky, M.E. Johnson and M.L. Stein, General-
ized simulated annealing for function optimization, Tech-
nometrics, 28 (1986) 209-217.
Y. Chauvin, Generalization performance of overtrained
backpropagation networks, in L.B. Almeida and C.J.
Wellekens (Editors), Neural Networks: EUBASIP Work-
shop 1990, Semsimbra, Portugal, February 1990, Proceed-
ings, Springer-Verlag, New York, 1990.
A.S. Weigend, D.E. Rumelhart and B.A. Huberman,
Backpropagation, weight elimination, and time series pre-
diction, in D.S. Touretzky, J.L. Elman, T.J. Sejnowski and
G.E. Hinton (Editors), Connection& Models, Proceedings
of the 1990 Summary School, Morgan Kaufmann, San
Mateo, CA, 1991.
Y. Chauvin, A backpropagation algorithm with optimal
use of hidden units, in D.S. Touretzky (Editor), Advances
in Neural Information Processing Systems, Vol. I, Morgan
Kaufmann, San Mateo, CA, 1989.

