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5.1 Camera Model †

Under an ideal pinhole camera model, the perspective projection
of arbitrary points P in 3-D world coordinates is given, in homo-
geneous coordinates, by:
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(5.1)

p = λKMP, (5.2)

where p is the 2-D projected point in homogeneous coordinates,
which in non-homogeneous coordinates is (x/s y/s ), λ is a scale
factor, K is the intrinsic matrix, and M is the extrinsic matrix.
Within the extrinsic matrix, R is a 3 × 3 rotation matrix, and t

is a 3× 1 translation vector. Within the intrinsic matrix, f is the
focal length, α is the aspect ratio, (c1, c2) is the principle point
(the projection of the camera center onto the image plane), and β
is the skew.

For simplicity, it is typically assumed that the pixels are square
(α = 1, β = 0). This is a reasonable assumptions for most modern-
day cameras. With this assumption, the intrinsic matrix simplifies
to:
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 . (5.3)

The camera model in Equation (5.2) specifies the perspective pro-
jection of arbitrary 3-D points from world to image coordinates.
In the special case when the world points are constrained to a
planar surface, the projection takes the form:
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p = λKMP (5.5)

p = HP, (5.6)
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where p is the 2-D projected point in homogeneous coordinates,
and P, in the appropriate coordinate system, is specified by 2-D
coordinates in homogeneous coordinates. As before, λ is a scale
factor, K is the intrinsic matrix, M is a now 3×3 extrinsic matrix
in which r1, r2 and r1 × r2 are the columns of the 3 × 3 rotation
matrix that describes the transformation from world to camera
coordinates, and as before, t is a 3×1 translation vector. The 3×3
matrix H, referred to as a homography, embodies the projection
of a planar surface.

Example 5.1 Show that if Z is a constant in Equation (5.2), then this imaging

model is the same as the model in Equation (5.6).
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5.2 Calibration†

Recall from the previous section that a planar homography H is
a scaled product of an intrinsic, K, and extrinsic, M , matrix:
H = λKM . It can be desirable to factor a homography into these
components in order to determine the intrinsic camera parameters.

It is straightforward to show that r1 = 1
λK−1h1 and r2 = 1

λK−1h2

where h1 and h2 are the first two columns of the matrix H. The
constraint that r1 and r2 are orthogonal (they are columns of a
rotation matrix) and have the same norm (unknown due to the
scale factor λ) yields two constraints on the unknown intrinsic
matrix K:

rT
1 r2 = 0

hT
1 (K−T K−1)h2 = 0, (5.7)

and

rT
1 r1 − rT

2 r2 = 0

hT
1 (K−T K−1)h1 − hT

2 (K−T K−1)h2 = 0. (5.8)

With only two constraints, it is possible to estimate the principal
point (c1, c2) or the focal length f , but not both. If, however, the
focal length is known, then it is possible to estimate the principal
point.

For notational simplicity we solve for the components of
Q = K−T K−1, which contain the desired coordinates of the prin-
cipal point and the assumed known focal length:

Q =
1

f2




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

 . (5.9)

In terms of Q, the first constraint, Equation (5.7), takes the form:

h1h2 + h4h5 − (h2h7 + h1h8)c1 − (h5h7 + h4h8)c2

+h7h8(c
2
1 + c2

2 + f2) = 0, (5.10)

Note that this constraint is a second-order polynomial in the co-
ordinates of the principal point, which can be factored as follows:

(c1 − α1)
2 + (c2 − β1)

2 = γ2
1 , (5.11)

where:

α1 = (h2h7 + h1h8)/(2h7h8), (5.12)

β1 = (h5h7 + h4h8)/(2h7h8), (5.13)

γ2
1 = α2

1 + β2
1 − f2 − (h1h2 + h4h5)/(h7h8). (5.14)
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Similarly, the second constraint, Equation (5.8), takes the form:

h2
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8)(c
2
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or,
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2 = γ2
2 , (5.16)

where:
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2
7 − h2

8), (5.17)

β2 = (h4h7 − h5h8)/(h
2
7 − h2

8), (5.18)

γ2
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2 − (h2
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5)/(h

2
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8) − f2.(5.19)

Both constraints, Equations (5.11) and (5.16) are circles in the de-
sired coordinates of the principal point c1 and c2, and the solution
is the intersection of the two circles.

For certain homographies this solution can be numerically unsta-
ble. For example, if h7 ≈ 0 or h8 ≈ 0, the first constraint becomes
numerically unstable. Similarly, if h7 ≈ h8, the second constraint
becomes unstable. In order to avoid these instabilities, an error
function with a regularization term can be introduced. We start
with the following error function to be minimized:

E(c1, c2) = g1(c1, c2)
2 + g2(c1, c2)

2, (5.20)

where g1(c1, c2) and g2(c1, c2) are the constraints on the principal
point given in Equations (5.10) and (5.15), respectively. To avoid
numerical instabilities, a regularization term is added to penalize
deviations of the principal point from the image center (0, 0) (in
normalized coordinates). This augmented error function takes the
form:

E(c1, c2) = g1(c1, c2)
2 + g2(c1, c2)

2 + ∆(c2
1 + c2

2), (5.21)

where ∆ is a scalar weighting factor. This error function is a
nonlinear least-squares problem, which can be minimized using a
Levenberg-Marquardt iteration. The image center (0, 0) is used as
the initial condition for the iteration.

If, on the other hand, we assume that the principal point is the
image center (0, 0), then the focal length f can be estimated. In
this case, the intrinsic matrix simplifies to:

K =





f 0 0
0 f 0
0 0 1



 , (5.22)
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to yield a homography of the form:

H = λ





f 0 0
0 f 0
0 0 1



 ( r1 r2 t ) . (5.23)

Left-multiplying by K−1 yields:

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
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As before, because r1 and r2 are the first two columns of a rotation
matrix, their inner product, rT

1 ·r2, is zero, leading to the following
constraint:
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
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




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The focal length is estimated by solving the above linear system
for f :

f =

√

−
h1h2 + h4h5

h7h8
. (5.28)

The additional constraint that r1 and r2 are each unit length,
rT
1 · r1 = rT

2 · r2, can also be used to estimate the focal length.

Example 5.2 The scale factor λ can be determined by exploiting the unit norm

constraint on the columns of the rotation matrix. Describe how to estimate

this scale factor.

If there is no relative rotation between the world and camera co-
ordinate systems, then there is an inherent ambiguity between the
world to camera translation in X and Y and the position of the
principal point, and between the translation in Z (depth) and the
focal length. As such, the factorization of the homography is not
unique in the case of a fronto-parallel view.
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5.3 Lens Distortion†

The imaging model described in the previous two sections assumes
an idealized pinhole camera. In practice, however, cameras have
multiple lenses that can deviate substantially from this model.
Most significantly, lenses introduce geometric distortion whereby
straight lines in the world appear curved in the image.

Figure 5.1 Barrel

and pin cushion lens dis-

tortion.

Geometric lens distortions can be modeled with a one-parameter
radially symmetric model. Given an ideal undistorted image fu(x, y),
the distorted image is denoted as fd(x̃, ỹ), where the distorted spa-
tial parameters are given by:

x̃ = x + κxr2 and ỹ = y + κyr2, (5.29)

where r2 = x2+y2, and κ controls the amount of distortion. Shown
in Figure 5.1 are the results of distorting a rectilinear grid with
a negative (barrel distortion) and positive (pincushion distortion)
value of κ.

This model assumes that the center of the image coincides with
the principal axis of the lens. If, however, this is not the case,
then it is necessary to add additional parameters to the model
to account for a spatial offset of the distortion center. This new
model takes the form:

x̃ = x + κ(x − cx)r2 and ỹ = y + κ(y − cy)r
2, (5.30)

where r2 = (x − cx)2 + (y − cy)2, and (cx, cy) corresponds to the
center of the distortion (i.e., the principal point).

Lens distortion should be removed when considering the geometric
techniques described in this chapter so that the image formation
more closely matches Equation (5.2). Lens distortion can be man-
ually estimated and removed by distorting an image according to
Equation (5.29) or (5.30) until lines that are known to be straight
in the world appear straight in the image. For the one-parameter
model, this is relatively easy to do. For the three-parameter model,
however, this manual calibration can be difficult and should be
automated. This can be done by specifying curved lines in the
image that are known to be straight in the world, and searching
the three model parameters until the curved lines are mapped to
straight lines.
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5.4 Rectification

Note that, unlike the 3 × 4 projection matrix in Equation (5.2),
the 3× 3 planar homography in Equation (5.6) is invertible. This
implies that if the homography H can be estimated, then the
original world coordinates P can be determined from the projected
image coordinates p.

It is straight-forward to see that p × HP = 0, where × denotes
cross product. Specifically, the cross product is defined as:

a × b = n‖a‖‖b‖ sin(θ), (5.31)

where n is mutually orthogonal to a and b, and θ is the angle
between a and b. If a = b, then θ = 0 and a × b = 0. This
identity yields the following:

p× HP = 0 (5.32)
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
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

×




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
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
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0
0
0



 , (5.34)

where it can be assumed that Z = 1 and s = 1 because the
homography will only be estimated to within an unknown scale
factor. Evaluating the cross product on the left-hand side yields:





y(h7X + h8Y + h9Z) − s(h4X + h5Y + h6Z)
s(h1X + h2Y + h3Z) − x(h7X + h8Y + h9Z)
x(h4X + h5Y + h6Z) − y(h1X + h2Y + h3Z)



 =





0
0
0



 .(5.35)

Re-ordering the terms yields a linear system Ah = 0, where the
matrix A is:
(

0 0 0 −sX −sY −sZ yX yY yZ

sX sY sZ 0 0 0 −xX −xY −xZ

−yX −yY −yZ xX xY xZ 0 0 0

)

, (5.36)

and:

h = (h1 h2 h3 h4 h5 h6 h7 h8 h9 )T (5.37)

Given the known coordinates of a point, P, on a plane in the
world and its corresponding projected coordinates, x, the above
system seemingly provides three constraints in the nine unknowns
of h. Note, however, that the rows of the matrix A are not linearly
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independent (the third row is a linear combination of the first two
rows). As such, this system provides only two constraints in the
nine unknowns. Because the homography can only be estimated to
within an unknown scale factor, the number of unknowns reduces
from nine to eight.

As such, in order to solve for the projective transformation ma-
trix H, four or more points with known coordinates P and p are
required. The coordinates of these points are placed into the rows
of matrix A to yield the following quadratic error function to be
minimized:

Figure 5.2 A an original

photo (top), a magnified

view of the license plate

(middle), and the pla-

nar rectified license plate

(bottom).

E(h) = ‖Ah‖2. (5.38)

Note that minimizing this function using least-squares will lead to
the degenerate solution h = 0. In order to avoid this degenerate
solution we constrain h to have unit sum ‖h‖2 = 1 (hence the scale
ambiguity in estimating the homography). This added constraint
yields a total least-squares optimization. The optimal unit vector
h is the minimal eigenvalue eigenvector of AT A.

With a known projective transformation matrix H, an image can
be warped according to H−1 to yield a rectified image, Figure 5.2.

Although the estimation of H is straight-forward, there are a few
implementation details that should be considered. For the sake of
numerical stability, it is recommended that the image coordinates
p and world coordinates P are transformed so that their respec-
tive centroids are at the origin and that their respective mean
distance from the origin is

√
2. In homogeneous coordinates, this

transformation matrix takes the form:

T =





α 0 −αc1

0 α −αc2

0 0 1



 , (5.39)

where α is the multiplicative scaling and c1 and c2 are the addi-
tive offsets. The homography H estimated using these normalized
coordinates is then transformed back to the original coordinates
as T−1

1 HT2, where T1 and T2 are the transformation matrices for
the image and world coordinates, respectively.

Example 5.3 Show that after the image and world coordinates are transformed

by T1 and T2, Equation (5.39), the estimated homography H should be trans-

formed by T−1
1 HT2.

90


