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Principal Component Analysis

Principal component analysis (PCA) is the classic approach to reducing the
complexity of analyzing high-dimensional data by projection into a lower-
dimensional linear subspace. PCA projects data onto axes of maximal data
variance. In so doing, the dimensionality of data is reduced while minimizing
the loss of information or distortion. For example, shown in the left panel
of Figure 1 are data in a 2-D space. Shown in the right panel is this data
projected onto a 1-D linear subspace (dashed black line) as determined by
PCA. Notice that this projection axis coincides with the axis along which
the data varies the most. As a result, when the data is projected onto this
axis it reduces the dimensionality while preserving as much of the original
structure as possible.

In the language of linear algebra, PCA is a change of basis where the new
basis reduces redundancy in the data. We quantify the amount of redundancy
as the amount of co-variation between the components of each data point. In
the left panel of Figure 1, for example, the x- and y-components of the data
clearly covary and so knowledge of one component provides knowledge of the
other – these components are somewhat redundant. In the transformed space
in the right panel of Figure 1, the y-component of the data has been collapsed
to 0 and so there is no covariation and we can eliminate this dimension.

We say that the goal of PCA is to diagonalize the covariance matrix.
Without loss of generality, assume that the m 2-D data points in the above
example are centered at the origin (i.e., are zero-mean). The covariance
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Figure 1: Dimensionality reduction from 2-D (blue) to 1-D (red).

matrix C is:

C = MMT
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We seek to transform the data points (xi, yi) such that the off-diagonal ele-
ments of the matrix C are zero.

Each column of the n×m data matrix M contains a n-dimensional data
point. A change of basis from the original canonical basis to a new orthonor-
mal basis is computed as:

M̃ = EM, (2)

where each row of the matrix E contains a new basis vector. We seek the
matrix E that diagonalizes the covariance matrix of our transformed data:

C̃ = M̃M̃T . (3)

We will show that if the rows of the matrix E contain the eigenvectors of the
covariance matrix C, then the covariance matrix C̃ of the transformed data
will be diagonal.
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To begin, let’s rewrite the covariance matrix C̃ in terms of the original
data matrix:

C̃ = M̃M̃T

= (EM)(EM)T

= (EM)(MTET )

= E(MMT )ET

= ECET . (4)

Now, consider the singular value decomposition (SVD) of the symmetric
matrix C:

C = USV = USUT , (5)

where, U and V are orthonormal matrices, S is a diagonal matrix, and be-
cause C is symmetric, V = UT . The columns of the matrix U contain the
eigenvectors of C. Recall that the rows of the matrix E contain the eigenvec-
tors of C. As such we see that ET = U . Substituting this SVD decomposition
into the above expression for C̃ yields:

C̃ = ECET

= E(USUT )ET

= E(ETSE)ET

= (EET )S(EET ). (6)

Because the matrix E is orthonormal, its transpose is its inverse (ET = E−1),
so:

C̃ = (EET )S(EET )

= (EE−1)S(EE−1)

= S, (7)

where recall that S is a diagonal matrix. We see, therefore, that projecting
the original data M onto the eigenvectors E of the covariance matrix C
results in a new diagonal covariance matrix C̃. As desired, the components
of the transformed data do not covary.

Note that by formulating the problem of dimensionality reduction in
terms of maximizing projected variance, it is being implicitly assumed that
the original data is Gaussian distributed. Significant deviations of data from
this assumption can yield highly undesirable results in which significant dis-
tortions are introduced into the projected data.
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Implementation: Implementing PCA is relatively straight-forward. De-
note column vectors !xi ∈ Rn, i = 1, . . . ,m as the input data. The overall
mean is:

!µ =
1

m

m*

i=1

!xi (8)

The zero-meaned data is packed into a n×m matrix:

M =
+
!x1 − !µ !x2 − !µ . . . !xm − !µ

,
(9)

The n× n covariance matrix is computed as:

C = MMT . (10)

The principle components are the eigenvectors !ej of the covariance matrix
(i.e., C!ej = λj!ej), where the eigenvalue, λj is proportional to the variance of
the original data along the jth eigenvector. The dimensionality of each !xi is
reduced from n to p by projecting (via an inner product) each !xi onto the top
p eigenvalue-eigenvectors. The resulting p-dimensional vector is the reduced-
dimension representation. This, of course, is simply a change of basis, where
the basis is now computed directly from the underlying data.

If the dimensionality of n is larger than the number of data points m,
then the n× n covariance matrix MMT may become prohibitively large. In
this case, the eigenvectors of the smaller m × m covariance MTM can be
computed, from which the desired eigenvectors of MMT can be efficiently
determined. Let !εj be an eigenvector of the smaller MTM covariance matrix:

MTM!εj = λ!εj. (11)

Left multiplying each side of the above equation by M yields:

M(MTM)!εj = λM!εj

(MMT )M!εj = λM!εj

CM!εj = λM!εj, (12)

from which we see that M!εj is the eigenvector of the desired covariance
matrix.

4


