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Pyramid  as a Compact  Image  Code 
BURT, MEMBER, IEEE, AND EDWARD H.  ADELSON 

Abstract-We describe  a  technique  for  image  encoding in  which 
local  operators  of  many  scales but identical  shape  serve  as  the  basis 
functions.  The representation  differs  from  established  techniques in 
that  the  code  elements  are  localized  in  spatial  frequency  as  well  as in 
space. 

Pixel-to-pixel  correlations  are  first  removed by subtracting  a  low- 
pass  filtered  copy  of  the  image :From the  image  itself.  The  result is a  net 
data  compression  since the  dil‘ference, or  error, image has low vari- 
ance  and  entropy, and  the  low-pass  filtered  image may represented  at 
reduced  sample  density.  Further  data  compression is achieved by 
quantizing  the  difference  image.  These  steps  are  then  repeated  to 
compress  the  low-pass image.  Iteration  of  the  process  at  appropriately 
expanded  scales  generates  a  pyramid  data  structure. 

The  encoding process is equivalent  to  sampling  the image with 
Laplacian  operators  of  many  scales.  Thus,  the  code  tends  to  enhance 
salient  image  features. A further  advantage  of  the  present  code  is that 
it is well  suited  for  many  image  analysis  tasks  as  well  as  for image 
compression.  Fast  algorithms  are  described  for  coding  and  decoding. 

INTRODUCTION 

A COMMON characteristic of images is that neighboring 
pixels  are highly correlated.  To represent the image 

directly in terms of the p:ixel values is therefore  inefficient: 
most of the  encoded  information is redundant.  The first 
task  in designing an  efficient, compressed code is to find a 
representation  which,  in  effect,  decorrelates  the image pixels. 
This has  been achieved through predictive and  through  trans- 
form  techniques (cf. [9], [lo] for  recent reviews). 

In predictive  coding,  pixels  are encoded sequentially in a 
raster format. However, prior to encoding each  pixel, its value 
is predicted  from previously coded pixels in  the same and 
preceding  raster lines. The predicted pixel value, which repre- 
sents  redundant  information, is subtracted  from  the  actual 
pixel value, and  only  the  difference,  or  prediction  error, is 
encoded. Since only previously encoded pixels  are used in 
predicting  each pixel’s value, this process is said to be causal. 
Restriction to causal prediction facilitates  decoding: t o  decode 
a given pixel, its  predicted value is recomputed  from already 
decoded neighboring  pixels, and  added  to  the  stored predic- 
tion  error. 

Noncausal prediction, based on a symmetric  neighborhood 
centered  at  each pixel, should yield more  accurate  prediction 
and,  hence, greater data compression.  However, this  approach 
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does  not  permit simple sequential coding. Noncausal  ap- 
proaches to image coding typically involve image transforms, 
or  the  solution to large sets of simultaneous  equations.  Rather 
than encoding pixels sequentially,  such  techniques  encode 
them all at  once,  or  by blocks. 

Both predictive and  transform  techniques have advantages. 
The  former is relatively simple to implement  and is readily 
adapted  to  local image characteristics. The  latter generally 
provides greater data compression, but  at  the expense of 
considerably  greater computation. 

Here we shall describe  a new technique  for removing image 
correlation  which  combines  features  of predictive and  trans- 
form  methods.  The  technique is noncausal, yet  computations 
are relatively simple and local. 

The  predicted value for  each pixel is computed as a  local 
weighted average, using a unimodal Gaussian-like (or related 
trimodal) weighting function  centered  on  the  pixel itself. The 
predicted values for all pixels  are  first obtained  by convolving 
this weighting function  with  the image. The result is a  low- 
pass filtered image which is then  subtracted  from  the original. 

Let go(Q) be the original image, and g, (i i)  be  the result of 
applying an  appropriate low-pass filter to go. The  prediction 
error Lo (Q) is then given by 

Lo(@) =go(@) -g,(@). 

Rather  than  encode go, we encode Lo and g, . This results 
in  a net  data compression  because a) Lo is largely  decorrelated,  
and so may be  represented  pixel by pixel with  many fewer bits 
than g o ,  and  b) gl is low-pass filtered,  and so may be encoded 
at a  reduced  sample  rate. 

Further  data compression is achieved by  iterating  this  pro- 
cess. The reduced image g, is itself low-pass filtered to yield 
g2 and a  second error image is obtained: L2(Q)  =g, (Q) -g2(U). 
By repeating  these steps several times we obtain a  sequence of 
two-dimensional arrays L o ,  L ,  , L 2 ,  e-; L,. In  our  implemen- 
tation each is smaller than  its predecessor by a scale factor of 
1/2 due to reduced  sample density. If we  now imagine these 
arrays stacked  one above another,  the result is a tapering 
pyramid  data  structure.  The value at  each  node  in  the  pyramid 
represents the difference between  two Gaussian-like or related 
functions convolved with  the original image. The  difference 
between these two  functions is similar to the “Laplacian” 
operators  commonly used in image enhancement [13]. Thus, 
we refer to  the  proposed compressed image representation as 
the Laplacian-pyramid code. 

The coding  scheme outlined above will be  practical only if 
required  filtering computations can  be performed  with  an ef- 
ficient algorithm. A suitable  fast  algorithm  has  recently been 
developed [ 2 ]  and will be  described in  the  next section. 
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THE GAUSSIAN PYRAMID 

The first step in Laplacian pyramid coding is to low-pass 
filter the original image go to  obtain image gl . We say that gl 
is a “reduced” version of go in  that  both  resolution  and sample 
density are  decreased. In a similar way we form g2 as a re- 
duced version of g,, and so on. Filtering is performed  by a 
procedure equivalent to convolution  with  one of a  family of 
local, symmetric weighting functions. An important  member 
of this  family resembles the Gaussian probability  distribution, 
so the sequence of images go,  gl , -., g,, is called the Gaussian 
pyramid.’ 

A fast  algorithm for generating the Gaussian pyramid is 
given in the  next subsection. In the following subsection we 
show how  the same algorithm  can be used to “expand” an 
image array  by  interpolating values between sample  points. 
This device is used here to  help visualize the  contents of levels 
in  the Gaussian pyramid,  and in the  next section to define the 
Laplacian pyramid. 

Gaussian Pyramid  Generation 

Suppose the image is represented  initially  by the array go 
which contains C columns  and R rows of pixels. Each  pixel 
represents the light intensity  at  the  corresponding image point 
by an integer I between 0 and K - 1 .  This image becomes the 
bottom  or zero level of  the Gaussian pyramid. Pyramid level 1 
contains image g, , which is a  reduced or low-pass  filtered ver- 
sion of go.  Each value within level 1 is computed as a weighted 
average of values in level 0 within a 5-by-5  window. Each value 
within level 2, representing g2 ,  is then  obtained,  from values 
within  level 1 by applying the same pattern  of weights. A 
graphical representation of this process in one dimension is 
given in Fig. 1.  The size of  the weighting function is not critical 
[2]. We have selected the  5-by-5  pattern because it provides 
adequate filtering at  low  computational cost. 

The level-to-level averaging process is performed  by  the 
function REDUCE. 

gk = REDUCE (gk- 1 )  (1) 

which  means, for levels 0 < 1 < N and  nodes i, j ,  0 < i < C,, 
O < j < R l ,  

2 2 

gl(i,j) = C. 4 m ,  n)g,- 1 (2i + m ,  2i + n). 

Here N refers to  the  number  of levels in the  pyramid, while 
C, and R ,  are the dimensions of the  lth level. Note  in Fig. 1 
that  the  density of nodes is reduced by half in one dimension, 
or by  a fourth in two dimensions from level to level. The  di- 
mensions of  the original image are  appropriate  for pyramid 
construction if integers M c ,   M R ,  and N exist such  that C = 
Mc2N + 1 and R = MR 2N + 1. (For example, if Mc and MR 
are both 3 and N is 5,  then images measure 97  by  97 pixels.) 
The  dimensions of g, are C, = McZN-’ + 1 and R ,  = M R  p-’ + 
1. 

m z - 2  n z - 2  

1 We will  refer to  this  set of low-pass  filtered  images as the Gaussian 
uvramid.  even  though  in  some  cases  it will be  generated  with  a  trimodal 
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go = IMAGE 

g, = REDUCE [g , - , ]  

Fig. 1. A one-dimensional  graphic  representation  of the process  which 
generates  a  Gaussian  pyramid.  Each  row of dots  represents  nodes 
within  a  level of the pyramid.  The value of each  node in the  zero 
level is just  the gray  level of a  corresponding  image  pixel.  The  value 
of each  node in a  high  level is the weighted  average of node values 
in the  next lower level. Note  that  node spacing  doubles from level 
to level,  while the  same weighting pattern or “generating  kernel” is 
used to generate all levels. 

The Generating  Kernel 

Note  that  the same 5-by-5 pattern of weights w is used to 
generate  each pyramid array from  its predecessor. This  weight- 
ing pattern, called the generating kernel, is chosen  subject to 
certain  constraints [2]  . For simplicity we make w separable: 

w(m, n) = t;(m)G(n). 

The  one-dimensional, length 5, function is normalized 

and  symmetric 

&(z) = t;(-i) for i = 0, 1,2.  

An additional  constraint is called equal  contribution. This 
stipulates that all nodes  at a given level must contribute  the 
same total weight (=1/4) to  nodes at the  next higher level. 
Let k(0) = a ,  +(-I) = G(l) = b ,  and &(-2) = G(2) = c. In 
this case equal  contribution requires that a 4- 2c = 2b. These 
three  constraints are satisfied when 

$0) = a 

&(-I) = G(1) = 1/4 

&(-2) = &(2) = 1 /4 - a/2. 

Equivalent Weighting Functions 
Iterative  pyramid  generation is equivalent to convolving the 

image go with a  set of “equivalent weighting functions” h,: 

or 

_. 
rather  than  unirnod2 weighting function. - m=-MI n=-MI  

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 24,2021 at 23:47:18 UTC from IEEE Xplore.  Restrictions apply. 



534 IEEE TRANSACTIONS ON COMMUNICATIONS,  VOL.  COM-31, NO. 4, APRIL 1983 

9L = h, @ 90 

0.4 r ,-t 

EQUIVALENT WEIGHTING FUNCTIONS 

L I I I I I I I I  

Fig. 3 .  The shape of the equivalent weighting function depends on the 
choice of parameter u. For a = 0.5, the function is  triangular; for u = 
0.4 it is Gaussian-like, and for a = 0.3 it is  broader than Gaussian. 
For a = 0.6 the function is trimodal. 

SPATIAL POSITION ( x )  

Fig. 2. The equivalent weighting functions hl(x)  for nodes in levels 1, 
2, 3, and infinity of the Gaussian pyramid. Note that axis scales 
have been adjusted by factors of 2 to aid comparison. Here the pa- 
rameter u of the generating, kernel is 0.4, and the resulting equiv- 
alent weighting functions closely resemble the Gaussian probability 
density functions. 

The size M I  of the  equivalent weighting function  doubles 
from  one level to  the  next, as  does  the  distance  between 
samples. 

Equivalent  weighting  functions  for  Gaussian-pyramid levels 
1, 2,  and 3 are shown  in Fi.g. 2. In  this case a = 0.4. The  shape 
of the  equivalent  function converges  rapidly to  a characteristic 
form with successively  higher levels  of the  pyramid, so that 
only  its  scale  changes.  However,  this  shape  does  depend on 
the  choice  of a in  the  generating  kernel.  Characteristic  shapes 
for  four  choices  of a are shown  in Fig. 3. Note  that  the  equiv- 
alent  weighting functions are  particularly  Gaussian-like  when 
a = 0.4. When a = 0.5 the  shape is triangular;  when a = 0.3 it 
is flatter  and  broader  than  a Gaussian. With a = 0.6 the  central 
positive  mode is sharply  peaked,  and is flanked  by  small  nega- 
tive  lobes. 

Fast Filter 
The  effect of convolving  an image with  one  of  the  equiv- 

alent  weighting functions hl is to  blur,  or  low-pass  filter,  the 
image.  The  pyramid  algorithm  reduces  the  filter  band  limit  by 
an  octave  from level to level,  and  reduces the  sample  interval 
by  the same factor. Thi:;  is a very fast  algorithm,  requiring 
fewer computational step!: to  compute  a set of  filtered  images 
than are  required  by  the  fast  Fourier  transform  to  compute  a 
single  filtered image [ 2 ] .  

Example: Fig. 4 illustrates  the  contents of a Gaussian 
pyramid  generated  with a = 0.4. The  original  image,  on  the 
far  left,  measures 257 by 257. This  becomes level 0 on  the 
pyramid.  Each  higher level array is roughly  half as large  in  each 
dimension  as  its  predecessor,  due to reduced  sample  density. 

Gaussian  Pyramid Interpolation 
We now  define  a  function EXPAND as the reverse of REDUCE. 

Its  effect is to  expand an (M + 1)-by-(N + 1) array  into  a 
( 2 M  + l)-by-(2N + 1)  array  by  interpolating new node values 
between  the given  values. Thus, EXPAND applied to array gl of 
the Gaussian  pyramid would  yield  an  array gl, which is the 
same size as gl- . 

Let gl, be the  result  of  expanding gl n times.  Then 

&,a = gl 

and 

By EXPAND we mean,  for levels 0 < 1 < N and 0 < n and 
nodesi,j,  O < i < C l ~ n , O < j < R , ~ n ,  

2 2 

Only  terms  for  which ( i  - m)/2 and ( j  - n)/2 are  integers 
are  included  in  this  sum. 

If  we apply EXPAND I times to image g,, we obtain gl,l,  
which is the same size  as the original image go.  Although  full 
expansion will not  be used in image coding, we  will  use it to 
help visualize the  contents of various  arrays  within  pyramid 
structures. The top row of Fig. 5 shows image go,,, g l  , 1 ,  

The  low-pass  filter  effect  of  the  Gaussian  pyramid is now 
shown  clearly. 

g2.2 9 .-. obtained  by  expanding levels of  the  pyramid in Fig. 4. 
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0 1 2 3 4 5  
Fig. 4. First six levels of the Gaussian pyramid for the  “Lady” image. The original image, level 0, measures 257 by 257 

pixels, and  each  higher level array is roughly half the  dimensions of its  predecessor.  Thus, level 5 measures just 9 by 9 pixels. 

THE LAPLACIAN PYRAMID 
Recall that  our purpose for  constructing  the reduced image 

gl is that  it may serve as a prediction  for pixel values in the 
original image go. To obtain a  compressed representation, we 
encode  the error image which  remains when  an  expanded g, 
is subtracted  from go. This image becomes the  bottom level 
of  the Laplacian pyramid. The next level is generated  by 
encoding g, in the same way. We now give a  formal  defini- 
tion  for  the Laplacian pyramid,  and examine its  properties. 

Laplacian  Pyramid Generation 

The Laplacian pyramid is a  sequence of error images L o ,  
L ,  , . * a ,  L N .  Each is the difference between  two levels of the 
Gaussian pyramid.  Thus,  for 0 < 1 < N ,  

L I  = gl- EXPAND (gr+ 1 

=g1--g1+1,1. (3) 

Since there is no image gN+l to serve as the  prediction image 
forgN, we say LN = g N .  

Equivalent Weighting Functions 

The value at each node in the Laplacian pyramid is the 
difference between  the convolutions of  two equivalent  weight- 
ing functions h,,  hl+l with  the original image. Again, this is 
similar to convolving an appropriately scaled Laplacian 
weighting function  with  the image. The node value could have 
been obtained directly  by  applying this  operator,  although at 
considerably  greater computational  cost. 

Just as we may view the Gaussian pyramid as a  set of  low- 
pass filtered  copies of the original image, we may view the 
Laplacian pyramid as a  set of bandpass  filtered  copies of  the 
image. The scale of  the Laplacian operator  doubles  from level 
to level of the  pyramid, while the  center  frequency  of  the pass- 
band is reduced  by an octave. 

In order  to illustrate the  contents  of  the Laplacian pyramid, 
it is helpful to interpolate  between sample points. This may be 
done within the pyramid structure by Gaussian interpolation. 

Let Ll, be the result of expanding LI n times using (2). Then, 
L C I  is the size of the original image. 

The expanded Laplacian pyramid levels for  the  “Lady” 
image of Fig. 4 are shown  in the  bottom row of Fig. 5 .  Note 
that image features  such as edges and bars appear enhanced in 
the Laplacian pyramid. Enhanced features are segregated by 
size: fine  details  are prominent in Lo,o,  while progressively 
coarser features are prominent in the higher level images. 

Decoding 
It  can be shown that  the original image can be recovered 

exactly by  expanding, then summing all the levels of  the 
Laplacian pyramid: 

N 

go = c LLI. 
I= 0 

A more  efficient  procedure is to expand L, once  and  add 
it  to LN-  1 ,  then  expand  this image once  and  add  it  to L N - - 2 ,  
and SO on until level 0 is reached and go is recovered. This 
procedure simply reverses the  steps in Laplacian pyramid 
generation.  From (3) we see that 

gN =LN (4) 

a n d f o r 1 = N - l 1 , N - 2 , . + . , 0 ,  

gl = Ll i- EXPAND (gl+ 1). 

Entropy 

If we assume that  the pixel values of an image representa- 
tion are  statistically independent,  then  the  minimum  number 
of bits  per  pixel  required to exactly  encode  the image is  given 
by  the  entropy  of  the pixel value distribution. This optimum 
may be approached in practice through  techniques  such as 
variable length  coding. 

The histogram of pixel values for the  “Lady” image is 
shown in Fig. 6(a). If we let the observed frequency  of  occur- 
rence f(z3 of each  gray level i be an estimate of  its  probability 
of  occurrence in this  and  other similar images, then  the  entropy 
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Fig. 6 .  The  distribution  of pixel gray level values at various  stages of the  encoding process. The histogram of the original 
image is given in (a). (b)-(e) give histograms  for levels 0-3 of  the Laplacian  pyramid  with  generating parameter a = 0.6. 
Histograms  following quantization  at  each level are shown  in (f)-(i). Note that pixel  values in the Laplacian  pyramid 
are  concentrated  near  zero,  permitting  data  compression  through  shortened  and variable length  code  words.  Substantial 
further  reduction is realized through  quantization (particularly a t  low  pyramid levels) and  reduced sample density (par- 
ticularly a t  high  pyramid levels). 

is given by 

2 5 5  

H = - x f ( i )  l o g 2  f(i). 
i= 0 

The  maximum  entropy would be 8 in  this case since the 
image is initially  represented at 256 gray levels, and would  be 
obtained  when all gray levels were  equally  likely. The  actual 
entropy  estimate  for  “Lady” is slightly less than this,  at 
7.57. 

The  technique  of  subtracting a predicted value from each 
image pixel, as in the Laplacian pyramid, removes much of 
the pixel-to-pixel correlation. Decorrelation also results  in  a 
concentration  of pixel values around  zero,  and,  therefore, in 
reduced variance and  entropy.  The degree to which  these 
measures are reduced depends on the value of the parameter 
“a” used in  pyramid generation (see Fig. 7). We found  that  the 
greatest reduction was obtained for a = 0.6 in our examples. 
Levels of the Gaussian pyramid- appeared “crisper”-wken 

generated with this value of a than  when generated with a 
smaller value such as 0.4, which yields more Guassian-like 
equivalent weighting functions. Thus, the selection a = 0.6 had 
perceptual as well as computational advantages. The first four 
levels of  the corresponding Laplacian pyramid and  their  histo- 
grams are  shown in Fig. 6(b)-(e). Variance (u2) and  entropy 
( H )  are also shown  for each level. These quantities generally 
are found  to increase from level to level, as in  this  example. 

QUANTIZATION 

Entropy can be substantially  reduced  by quantizing  the 
pixel values in each level of  the Laplacian pyramid.  This intro- 
duces quantization  errors,  but  through  the  proper choice of 
the  number  and  distribution  of  quantization levels, the degra- 
dation may  be made almost  imperceptible to human observers. 
We illustrate  this  procedure with  uniform  quantization.  The 
range of pixel values is divided into bins of size n,  and  the 
quantized value Cl(i, j )  for pixel Ll(i, j )  is just  the middle 
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40’ 014 ’ Ol5 0:s Ol7 0- 0.4 0.5 0.6 0.7 
0 a 

Fig. 7.  Entropy anld variance of  pixel values in Laplacian  pyramid level 0 as  a  function  of  the  parameter “a” for the 
“Lady” image. Greatest  reduction is obtained  for a = 0.6. This  estimate of the  optimal “a” was  also obtained  at  other 
pyramid levels and  for  other images. 

Fig. 8. Examples  of  image  data  compression using the Laplacian  pyramid code. (a)  and (c)  give the original  “Lady” and 
“Walter”  images,  while (b)  and  (d) give their  encoded versions. The  data rates  are 1.58 and  0.73  bits/pixel for “Lady” 
and “Walter,”  respectively. The corresponding  mean  square  errors  were 0.88 percent  and  0.43  percent, respectively. 

value of  the bin  which contains Lz(i, j ) :  

The  quantized image is reconstructed  through  the  expand 
and  sum  procedure (4) using C values in  the place of L values. 

Results of quantizing  the  “Lady” image are shown in Fig. 
6(f)-(ij. The bin size for each level was chosen by increasing n 
until  degradation was just perceptible when viewed from a 
distance of approximately five times  the image width (pixel- 
pixel separation = 3 min  arc). Note  that bin size becomes 
smaller at higher ievels (lower spatial  frequencies). Bin size 
at a given pyramid level reflects the sensitivity of  the  human 
observer to contrast  errors within the spatial frequency  bands 
represented  at  that level. Humans are  fairly sensitive to  con- 
trast  perturbations  at low and  medium spatial  frequencies, but 

relatively insensitive to such perturbations  at high spatial 
frequencies [3] ,  [4], [7].  

This increased observer sensitivity  along with  the increased 
data variance noted above means that more quantization 
levels must be  used at high pyramid levels than  at low levels. 
Fortunately, these pixels contribute  little to the overall bit 
rate  for  the image, due to their low  sample density.  The  low- 
level (high-frequency)  pixels,  which are densely sampled,  can 
be’ coarsely quantized (cf. [6] , [ 1 11 , [ 121 ). 

RESULTS 

The final  result of encoding,  quantization,  and  reconstruc- 
tion are shown  in Fig. 8. The original “Lady” image is shown 
in Fig. 8(a); the  encoded version, at  1.58  bitslpixel, is shown 
in Fig. 8(b). We assume that variable-length code  words are 
used to  take advantage of  the  nonuniform  distribution of 
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node values, so the bit rate  for a given pyramid level is its 
estimated  entropy  times  its sample density,  and  the bit  rate for 
the image is the sum of  that  for all levels. The same procedure 
was performed  on  the “Walter” image; the original is shown 
in Fig. 8(c). while the version encoded  at 0.73 bits/pixel is 
shown in Fig. 8(d). In both cases, the  encoded images are al- 
most indistinguishable from  the originals under viewing con- 
ditions as stated above. 

PROGRESSIVE TRANSMISSION 

It  should also be observed that  the Laplacian pyramid code 
is particularly well suited for progressive image transmission. 
In this type  of transmission  a coarse rendition  of  the image is 
sent  first to give the receiver an early  impression of image 
content,  then  subsequent transmission  provides image detail 
of progressively finer  resolution [SI. The observer may  ter- 
minate transmission of an image as soon as its contents are 
recognized, or as soon as it becomes  evident that  the image 
will.not be of  interest. To achieve progressive transmission, the 
topmost level of  the pyramid code is sent  first,  and  expanded 
in the receiving pyramid to  form  an initial, very coarse image. 
The  next lower level is then  transmitted,  expanded,  and  added 
to the  first,  and so on. At the receiving end,  the initial image 
appears very blurry,  but  then  comes steadily into  “focus.” 
This progression is illustrated in Fig. 9, from  left to right.  Note 
that while 1.58 bits are required for each pixel .of the full 
transmission  (rightmost image), about half of  these, or 0.81 
bits,  are  needed for each pixel for  the previous image (second 
from right, Fig. 9), and 0.31 for  the image previous to  that 
(third from right). 

SUMMARY AND CONCLUSION 

The Laplacian pyramid is a versatile data  structure  with 
many  attractive  features  for image processing. It  represents an 
image as  a series of quasi-bandpassed images, each sampled at 
successively sparser densities. The resulting code  elements, 
which form a self-similar structure, are  localized in both space 
and spatial frequency. By appropriately choosing the param- 
eters  of  the encoding  and quantizing scheme, one can substan- 
tially  reduce the  entropy in the  representation,  and simul- 
taneously stay within the  distortion limits imposed by the 
sensitivity of  the  human visual system. 

Fig. 10 summarizes the  steps in Laplacian pyramid  coding. 
The first step,  shown  on  the far left, is bottom-up  construction 
of  the Gaussian pyramid images go,  gl , -., g N  [see (l)] . The 
Laplacian  pyramid images LC,, L , ,  --, LN are then  obtained as 
the difference  between successive Gaussian levels [see ( 3 ) ] .  
These are quantized  to yield the compressed code represented 
by  the pyramid of values C,(ij) [see (5)]. Finally, image re- 
construction follows an  expand-and-sum  procedure [see (4)] 
using C values in the place of L values. Here we designate the 
reconstructed image by ro. 

It  should also be observed that  the Laplacian  pyramid 
encoding scheme  requires relatively simple computations.  The 
computations are local and may be performed in parallel, and 
the same computations are iterated to build  each  pyramid 
level from its predecessors. We may envision performing  Lapla- 
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Gaussian  Laplactan Quantization Reconstructed  Reconstructed 
planes  planes  Laplaclans Gaussians 

(or ig ina l  image)  (reconstructed  image) 

Fig. 10. A  summary  of the  stepsin Laplacian  pyramid  coding and  decoding.  First,  the original  image go (lower  left) is used 
to generate  Gaussian  pyramid levels gl , g2, ... through  repeated  local  averaging. Levels of the Laplacian  pyramid L o ,  L 1 ,  
... are  then  computed  as  the  differences  between  adjacent Gaussian levels. Laplacian  pyramid  elements  are quantized  to 
yield the Laplacian  pyramid code CO, C1, Cz, -. Finally,  a  reconstructed image ro is generated  by  summing  levels of 
the  code  pyramid. 

cian  coding  and decoding  in real time using array  processors 
and a  pipeline architecture. 

An additional  benefit, previously noted, is that in comput- 
ing the Laplacian pyramid,,  one  automatically  has access to 
quasi-bandpass  copies of the image. In this  representation, 
image features  of various sizes are enhanced  and  are directly 
available for various image processing (e.g., [ l])  and  pattern 
recognition tasks. 
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