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Sanpling

A discrete-time signal, f [x], is formed from a continuous-time signal, f(x),
by the following relationship:

f [x] = f(xT ) −∞ < x < ∞, (1)

x

f(x)

f[x]

for integer values x. In this expression, the quantity
T is the sampling period. I will denote continuous-
time signals with rounded parenthesis (e.g., f(·)),
and discrete-time signals with square parenthesis
(e.g., f [·]). As shown on the right, this sampling
operation may be considered as a multiplication of
the continuous time signal with an impulse train.
The impulse train is defined as:

s(x) =
∞!

k=−∞

δ(x− kT ), (2)

where δ(·) is the unit-impulse, and T is the sampling period. Note that the
impulse train is a continuous-time signal. Multiplying the impulse train with
a continuous-time signal gives a sampled signal:

fs(x) = f(x)s(x), (3)
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Figure 1: Sampling in the Fourier domain without (a) and with (b) alias-

ing.

Note that the sampled signal, fs(x), is indexed on the continuous variable x,
while the final discrete-time signal, f [x] is indexed on the integer variable x.
It will prove to be mathematically convenient to work with this intermediate
sampled signal, fs(x).

In the space domain, sampling was described as a product between the
impulse train and the continuous-time signal, Equation (3). In the frequency
domain, this operation amounts to a convolution between the Fourier trans-
form of these two signals:

Fs(ω) = F (ω) # S(ω) (4)

For example, shown in Figure 1(a) (from top to bottom) are the Fourier
transforms of the continuous-time function, F (ω), the impulse train, S(ω),
itself an impulse train, and the results of convolving these two signals, Fs(ω).
Notice that the Fourier transform of the sampled signal contains multiple (yet
exact) copies of the Fourier transform of the original continuous signal. Note
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however the conditions under which an exact replica is preserved depends on
the maximum frequency response ωn of the original continuous-time signal,
and the sampling interval of the impulse train, ωs which, not surprisingly, is
related to the sampling period T as ωs = 2π/T . More precisely, the copies
of the frequency response will not overlap if:

ωn < ωs − ωn or

ωs > 2ωn, (5)

The frequency ωn is called the Nyquist frequency and 2ωn is called the Nyquist
rate. Shown in Figure 1(b) is another example of this sampling process in
the frequency domain, but this time, the Nyquist rate is not met, and the
copies of the frequency response overlap. In such a case, the signal is said to
be aliased.

Not surprisingly, the Nyquist rate depends on both the characteristics
of the continuous-time signal, and the sampling rate. More precisely, as
the maximum frequency, ωn, of the continuous-time signal increases, the
sampling period, T must be made smaller (i.e., denser sampling), which in
turn increases ωs, preventing overlap of the frequency responses. In other
words, a signal that changes slowly and smoothly can be sampled fairly
coarsely, while a signal that changes quickly requires more dense sampling.

If the Nyquist rate is met, then a discrete-time signal fully characterizes
the continuous-time signal from which it was sampled. On the other hand,
if the Nyquist rate is not met, then the sampling leads to aliasing, and
the discrete-time signal does not accurately represent its continuous-time
counterpart. In the former case, it is possible to reconstruct the original
continuous-time signal, from the discrete-time signal. In particular since the
frequency response of the discrete-time signal contains exact copies of the
original continuous-time signals frequency response, we need only extract
one of these copies, and inverse transform the result. The result will be
identical to the original signal.

In order to extract a single copy,
the Fourier transform of the sampled
signal is multiplied by an ideal recon-
struction filter as shown on the right.
This filter has unit value between the
frequencies −π/T to π/T and is zero
elsewhere. This frequency band is
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Figure 2: The ideal sync function.

guaranteed to be greater than the
Nyquist frequency, ωn (i.e., ωs =
2π/T > 2ωn, so that π/T > ωn). In the space domain, this ideal recon-
struction filter has the form:

h(x) =
sin(πx/T )

πx/T
, (6)

and is often referred to as the ideal sync function, as shown in Figure 2. Since
reconstruction in the frequency domain is accomplished by multiplication
with the ideal reconstruction filter, we could equivalently reconstruct the
signal by convolving with the ideal sync in the space domain.

Example: Consider the following continuous-time signal:

f(x) = cos(ω0x),

a sinusoid with frequency ω0. We will eventually be interested in
sampling this function and seeing how the effects of aliasing are
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manifested. But first, let’s compute the Fourier transform of this
signal:

F (ω) =
∞!

k=−∞

f(k)e−iωk

=
∞!

k=−∞

cos(ω0k)(cos(ωk)− i sin(ωk))

=
∞!

k=−∞

cos(ω0k) cos(ωk)− i cos(ω0k) sin(ωk)

First let’s consider the product of two cosines. It is easy to show
from basic trigonometric identities that cos(A) cos(B) = 0 when
A ∕= B, and is equal to π when |A| = |B|. Similarly, one can
show that cos(A) sin(B) = 0 for all A and B. So, the Fourier
transform of cos(ω0x) = π for |ω| = ω0, and is 0 otherwise (see
below). If the sampling rate is greater than 2ω0, then there will
be no aliasing, but if the sampling rate is less than 2ω0, then
the reconstructed signal will be of the form cos((ωs − ω0)x), that
is, the reconstructed signal will be appear as a lower frequency
sinusoid - it will be aliased.
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We will close by drawing on the linear algebraic framework for additional
intuition on the sampling and reconstruction process. First we will need to
restrict ourselves to the sampling of an already sampled signal. Consider am-
dimensional signal sub-sampled to a n-dimensional signal. We may express
this operation in matrix form as follows:

"
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...
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%

&' =

"

#####$
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0 0 1 0 . . . 0 0 0 0
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. . .
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%

&&&&&'
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%gn = Sn×m
%fm, (7)

where the subscripts denote the vector and matrix dimensions, and in this
example n = m/2. Our goal now is to determine when it is possible to

reconstruct the signal %f , from the sub-sampled signal %g. The Nyquist sam-
pling theory tells us that if a signal is band-limited (i.e., can be written as a
sum of a finite number of sinusoids), then we can sample it without loss of
information. We can express this constraint in matrix notation:

%fm = Bm×n %wn, (8)

where the columns of the matrix B contains the basis set of sinusoids - in
this case the first n sinusoids. Substituting into the above sampling equation
gives:

%gn = Sn×mBm×n %wn

= Mn×n %wn. (9)

If the matrixM is invertible, then the original weights (i.e., the representation
of the original signal) can be determined by simply left-multiplying the sub-
sampled signal %g by M−1. In other words, Nyquist sampling theory can be
thought of as simply a matrix inversion problem. This should not be at all
surprising, the trick to sampling and perfect reconstruction is to simply limit
the dimensionality of the signal to at most twice the number of samples.
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