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10.1 Differential Motion

Our visual world is inherently dynamic. People, cars, dogs, etc.
are (usually) moving. These may be gross motions, walking across
the room, or smaller motions, scratching behind your ear. Our
task is to estimate such image motions from two or more images
taken at different instances in time.

Figure 10.1 Flow field

With respect to notation, an image is denoted as f(x, y) and an
image sequence is denoted as f(x(t), y(t), t), where x(t) and y(t)
are the spatial parameters and t is the temporal parameter. For
example, a sequence of N images taken in rapid succession may be
represented as f(x(t), y(t), t+ i∆t) with i ∈ [0, N −1], and ∆t rep-
resenting the amount of time between image capture (typically on
the order of 1/30th of a second). Given such an image sequence,
our task is to estimate the amount of motion at each point in the
image. For a given instant in space and time, we require an esti-
mate of motion (velocity) !v = ( vx vy ), where vx and vy denote
the horizontal and vertical components of the velocity vector !v.
Shown in Figure 10.1 are a pair of images taken at two moments
in time as a textured square is translating uniformly across the
image. Also shown is the corresponding estimate of motion often
referred to as a flow field. The flow field consists of a velocity vec-
tor at each point in the image (shown of course are only a subset
of these vectors).

In order to estimate motion, an assumption of brightness constancy
is made. That is, it is assumed that as a small surface patch is
moving, its brightness value remains unchanged. This constraint
can be expressed with the following partial differential equation:

∂f(x(t), y(t), t)

∂t
= 0. (10.1)

This constraint holds for each point in space and time. Expanding
this constraint according to the chain rule yields:
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= 0, (10.2)

where the partials of the spatial parameters x and y with respect
to time correspond to the velocity components:

fxvx + fyvy + ft = 0. (10.3)
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The subscripts on the function f denote partial derivatives. Note
again that this constraint holds for each point in space and time
but that for notational simplicity the spatial/temporal parameters
are dropped. This transformed brightness constancy constraint is
rewritten by packing together the partial derivatives and velocity
components into row and column vectors.
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+ ft = 0

!f t
s!v + ft = 0. (10.4)

The space/time derivatives !fs and ft are measured quantities, leav-
ing us with a single constraint in two unknowns (the two compo-
nents of the velocity vector, !v). The constraint can be solved by
assuming that the motion is locally similar, and integrating this
constraint over a local image neighborhood. A least-squares error
function takes the form:
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, (10.5)

To solve for the motion this error function is first differentiated
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Setting equal to zero and recombining the terms into matrix form
yields:
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M!v = −!b. (10.7)

If the matrix M is invertible (full rank), then the velocity can be
estimated by simply left multiplying by the inverse matrix:

!v = −M−1!b (10.8)

The critical question then is, when is the matrix M invertible?
Generally speaking the matrix is rank deficient, and hence not
invertible, when the intensity variation in a local image neighbor-
hood varies only one-dimensionally (e.g., fx = 0 or fy = 0) or
zero-dimensionally (fx = 0 and fy = 0). These singularities are
sometimes referred to as the aperture and blank wall problem.
The motion at such points simply can not be estimated.
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Motion estimation then reduces to computing, for each point in
space and time, the spatial/temporal derivatives fx, fy, and ft. Of
course the temporal derivative requires a minimum of two images,
and is typically estimated from between two and seven images.
The spatial/temporal derivatives are computed as follows. Given
a temporal sequence of N images, the spatial derivatives are com-
puted by first creating a temporally prefiltered image. The spatial
derivative in the horizontal direction fx is estimated by prefiltering
this image in the vertical y direction and differentiating in x. Simi-
larly, the spatial derivative in the vertical direction fy is estimated
by prefiltering in the horizontal x direction and differentiating in
y. Finally, the temporal derivative is estimated by temporally dif-
ferentiating the original N images, and prefiltering the result in
both the x and y directions. The choice of filters depends on the
image sequence length: an N tap pre/derivative filter pair is used
for an image sequence of length N (See Section 7).

10.2 Differential Stereo

V

D

Figure 10.2 Motion and

Stereo

Motion estimation involves determining, from a single stationary
camera, how much an object moves over time (its velocity). Stereo
estimation involves determining the displacement disparity of a
stationary object as it is imaged onto a pair of spatially offset
cameras. As illustrated in Figure 10.2, these problems are virtu-
ally identical: velocity (!v) ≡ disparity (∆). Motion and stereo
estimation are often considered as separate problems. Motion is
thought of in a continuous (differential) framework, while stereo,
with its discrete pair of images, is thought of in terms of a dis-
crete matching problem. This dichotomy is unnecessary: stereo
estimation can be cast within a differential framework.

Stereo estimation typically involves a pair of cameras spatially
offset in the horizontal direction such that their optical axis remain
parallel (Figure 10.2). Denoting an image as f(x, y), the image
that is formed by translating the camera in a purely horizontal
direction is given by f(x + ∆(x, y), y). If a point in the world
(X,Y,Z) is imaged to the image position (x, y), then the shift
∆(x, y) is inversely proportional to the distance Z (i.e., nearby
objects have large disparities, relative to distant objects). Given
this, a stereo pair of images is denoted as:

fL(x + δ(x, y), y) and fR(x − δ(x, y), y), (10.9)

where the disparity ∆ = 2δ. Our task is to determine, for each
point in the image, the disparity (δ) between the left and right
images. That is, to find the shift that brings the stereo pair back
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into register. To this end, we write a quadratic error function to
be minimized:

E(δ(x, y)) = [fL(x + δ(x, y), y) − fR(x − δ(x, y), y)]2. (10.10)

In this form, solving for δ is non-trivial. We may simplify things
by expressing the image pair in terms of their truncated first-order
Taylor series expansion:

f(x + δ(x, y), y) = f(x, y) + δ(x, y)fx(x, y), (10.11)

where fx(x, y) denotes the partial derivative of f with respect to
x. With this first-order approximation, the error function to be
minimized takes the form:

E(δ) = [(fL + δ(fL)x) − (fR − δ(fR)x)]2

= [(fL − fR) + δ(fL + fR)x]2, (10.12)

where for notational convenience, the spatial parameters have been
dropped. Differentiating, setting the result equal to zero and solv-
ing for δ yields:

dE(δ)

dδ
= 2(fL + fR)x[(fL − fR) + δ(fL + fR)x]

= 0

δ = −
fL − fR

(fL + fR)x
(10.13)

Stereo estimation then reduces to computing, for each point in the
image, spatial derivatives and the difference between the left and
right stereo pair (a crude derivative with respect to viewpoint).

Why, if motion and stereo estimation are similar, do the math-
ematical formulations look so different? Upon closer inspection
they are in fact quite similar. The above formulation amounts to
a constrained version of motion estimation. In particular, because
of the strictly horizontal shift of the camera pair, the disparity
was constrained along the horizontal direction. If we reconsider
the motion estimation formulation assuming motion only along
the horizontal direction, then the similarity of the formulations
becomes evident. Recall that in motion estimation the brightness
constancy assumption led to the following constraint:
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Constraining the motion along the vertical y direction to be zero
yields:
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= 0, (10.15)
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where the partial derivative of the spatial parameter x with re-
spect to time correspond to the motion (speed) in the horizontal
direction:

fxvx + ft = 0. (10.16)

Unlike before, this leads to a single constraint with a single un-
known which can be solved for directly:

vx = −
ft

fx
. (10.17)

This solution now looks very similar to the solution for differential
stereo in Equation 10.13. In both solutions the numerator is a
derivative, in one case with respect to time (motion) and in the
other with respect to viewpoint (stereo). Also in both solutions,
the denominator is a spatial derivative. In the stereo case, the
denominator consists of the spatial derivative of the sum of the
left and right image pair. This may seem odd, but recall that
differentiation of a multi-dimensional function requires differenti-
ating along the desired dimension and prefiltering along all other
dimensions (in this case the viewpoint dimension).

In both the differential motion and stereo formulations there exists
singularities when the denominator (spatial derivative) is zero. As
with the earlier motion estimation this can be partially alleviated
by integrating the disparities over a local image neighborhood.
However, if the spatial derivative is zero over a large area, corre-
sponding to a surface in the world with no texture, then disparities
at these points simply can not be estimated.
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